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Abstract
Let (λn)n≥1 be a positive sequence and let Λn =

∑n
i=1 λi . We study the following

Copson inequality for 0 < p < 1, L > p:

∞∑

n=1

(
1

Λn

∞∑

k=n

λkxk

)p

≥
( p

L – p

)p ∞∑

n=1

xpn .

We find conditions on λn such that the above inequality is valid with the constant
being the best possible.
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1 Introduction
Let p > 0 and x = (xn)n≥1 be a positive sequence Let (λn)n≥1 be a positive sequence and let
Λn =

∑n
i=1 λi. The well-known Copson inequalities [4, Theorem 1.1, 2.1] state that

∞∑

n=1

λnΛ
–c
n

( n∑

k=1

λkxk

)p

≤
(

p
c – 1

)p ∞∑

n=1

λnΛ
p–c
n xp

n, 1 < c ≤ p; (1.1)

∞∑

n=1

λnΛ
–c
n

( ∞∑

k=n

λkxk

)p

≤
(

p
1 – c

)p ∞∑

n=1

λnΛ
p–c
n xp

n, 0 ≤ c < 1 < p. (1.2)

The above two inequalities are equivalent (see [10]) and the constants are best possible.
When λk = 1, k ≥ 1 and c = p, inequality (1.1) becomes the following celebrated Hardy
inequality ([12, Theorem 326]):

∞∑

n=1

(
1
n

n∑

k=1

xk

)p

≤
(

p
p – 1

)p ∞∑

n=1

xp
n. (1.3)

Note that the reversed inequality of (1.2) holds when c ≤ 0 < p < 1 ([4, Theorem 2.3])
with the constant being best possible and as pointed out in [1, p. 390], the reversed in-
equality of (1.2) continues to hold with constant pp when c > 0. The particular case of
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c = p, λk = 1, k ≥ 1 becomes the following one given in [12, Theorem 345]:

∞∑

n=1

(
1
n

∞∑

k=n

xk

)p

≥ pp
∞∑

n=1

xp
n. (1.4)

It is noted in [12] that the constant pp in (1.4) may not be best possible and the best
constant for 0 < p ≤ 1/3 was shown by Levin and Stečkin [13, Theorem 61] to be indeed
(p/(1 – p))p. In [8], it is shown that the constant (p/(1 – p))p stays best possible for all
0 < p ≤ 0.346. It is further shown in [11] that the constant (p/(1 – p))p is best possible
when p = 0.35.

There exists an extensive and rich literature on extensions and generalizations of Cop-
son’s inequalities and Hardy’s inequality (1.3) for p > 1. For recent developments in this
direction, we refer the reader to the articles in [6–11] and the references therein. On the
contrary, the case 0 < p < 1 is less known as can be seen by comparing inequalities (1.3)
and (1.4). On one hand, the constant in (1.3) is shown to be best possible for all p > 1. On
the other hand, though it is known the best constant that makes inequality (1.4) valid is
(p/(1 – p))p when 0 < p ≤ 0.346, it is shown in [8] that the constant (p/(1 – p))p fails to be
best possible when 1/2 ≤ p < 1 and the best constant in these cases remains unknown.

Our goal in this paper is to study the following variation of Copson’s inequalities for
0 < p < 1:

∞∑

n=1

(
1

Λn

∞∑

k=n

λkxk

)p

≥
(

p
L – p

)p ∞∑

n=1

xp
n, (1.5)

where L > p is a constant.
It is an open problem to determine the best possible constant to make inequality (1.5)

valid in general. Our choice for presenting the constant in the form (p/(L – p))p in (1.5) is
motivated by the study on the analogue case of inequality (1.5) when p > 1. We define

Lλ := sup
n

(
Λn+1

λn+1
–

Λn

λn

)

. (1.6)

A result of Cartlidge [3] shows that when Lλ < p for p > 1, then the following inequality
holds for all non-negative sequences x:

∞∑

n=1

(
1

Λn

n∑

k=1

λkxk

)p

≤
(

p
p – Lλ

)p ∞∑

n=1

xp
n, p > 1. (1.7)

We shall see in Theorem 1.3 below that the constant given in inequality (1.5) is indeed
best possible for certain sequences (λn) and certain ranges of p when one replaces L by Lλ

in (1.5). This includes case concerning the classical inequality (1.4) (with pp replaced by
(p/(1 – p))p there).

Further, let q < 0 be the number satisfying 1/p + 1/q = 1, we note that inequality (1.5) is
equivalent to its dual version (assuming that xn > 0 for all n):

∞∑
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n. (1.8)
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The equivalence of the above two inequalities can be easily established following the dis-
cussions in [8, Sect. 1].

Our main result gives a condition on λn and L such that inequalities (1.5) and (1.8) hold.
For this purpose, we define, for constants p and L,

a1(L, p) =
(

L
p

– 2
)2(

1 + L
2 – p
1 – p

)

–
(

1 +
(

L
p

– 2
)

1 – 2p
1 – p

)

× (
L2(L – 1)2 + 2L(L – 1)(L – p – 1) + L2 – 2(L – 1)(p + 1)

)

=
2p – 1

p(1 – p)
L5 –

3p – 1
1 – p

L4 –
4p3 + 2p2 – p – 2

p2(1 – p)
L3

+
6p4 + 4p3 + 2p2 – 9p + 1

p2(1 – p)
L2 +

14p – 6
p(1 – p)

L –
6p2 + 8p – 6

1 – p
,

a2(L, p) =
(

L
p

– 1
)

L4 +
(1 – p)(1 – 2p)

p
L3

– (3 – p)(1 – p)L2 –
(
p2 – p + 2

)
L + 2p(1 + p).

(1.9)

Our main result is the following statement.

Theorem 1.1 Let 0 < p < 1 be fixed. Let λ = (λn)n≥1 be a positive sequence and let Λn =
∑n

i=1 λi. If there exists a positive constant L > p such that, for any integer n ≥ 1,

L – p
p

· λn

Λn
≤

(

1 +
(

L
p

– 2
)

λn

Λn

)1/(1–p)

–
(

λn

λn+1

)1/(1–p)(
Λn

Λn+1

)p/(1–p)

, (1.10)

then inequality (1.5) holds for all non-negative sequences x. In particular, let Lλ be de-
fined by (1.6) and let ai(L, p), i = 1, 2 be defined by (1.9), then inequality (1.5) holds with
L replaced by Lλ there for all non-negative sequences x when Lλ ≥ 1, 0 < p ≤ 1/3 and
a1(Lλ, p) ≥ 0 or when 0 < Lλ < 1, 0 < p ≤ Lλ/4 and a2(Lλ, p) ≥ 0.

We note that when 0 < p < 1/2, we have limL→∞ a1(L, p) < 0, limp→0+ a2(4p, p)/p < 0. This
implies that the values of ai(L, p), i = 1, 2 do give restrictions on the validity of inequality
(1.5). We note that when λn = 1, then Lλ = 1, a1(1, p) = 3( 1

p – 2)2 – 1 and Theorem 1.1
implies the above-mentioned result of Levin and Stečkin.

In [2, 5–8], two special cases of inequality (1.7) corresponding to λn = nα – (n – 1)α and
λn = nα–1 for p > 1, αp > 1 were studied. It follows from this work that inequality (1.7)
holds in either case with best possible constant (αp/(αp – 1))p except for the case when
λn = nα–1, 1 < p ≤ 4/3, 1 ≤ α < 1 + 1/p or 4/3 < p < 2, 1 ≤ α < 2.

It is now interesting to study the following 0 < p < 1, α < 1/p analogues of the above
inequalities:

∞∑

n=1

(
1

nα

∞∑

k=n

(
kα – (k – 1)α

)
xk

)p

≥
(

αp
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)p ∞∑

n=1

xp
n, (1.11)

∞∑
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1

∑n
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∞∑
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kα–1xk

)p
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)p ∞∑
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xp
n. (1.12)
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Note that when α = 1, the above two inequalities become inequality (1.4) (with the con-
stant pp there being replaced by the best possible constant (p/(1 – p))p). We note that it is
shown in [8, (4.14)] that inequality (1.12) holds when 0 < α < 1, 0 < p < 1/(α + 2). It is also
shown in [9, Theorem 1.1] that inequality (1.11) holds when α > 0, 0 < p < 1/(α + 2) when
one replaces kα – (k – 1)α by (k + 1)α – kα . As (k + 1)α – kα ≤ kα – (k – 1)α when 0 < α ≤ 1,
this implies that inequality (1.11) holds when 0 < α ≤ 1, 0 < p < 1/(α + 2).

Note that the values of p are not given explicitly in (1.10), nor by the conditions
ai(Lλ, p) ≥ 0, i = 1, 2. Thus, Theorem 1.1 is not readily applied in practice. For this rea-
son, and with future applications in mind, we develop the following result.

Theorem 1.2 Let 0 < p < 1 be fixed. Let λ = (λn)n≥1 be a positive sequence and let Λn =
∑n

i=1 λi. Let Lλ be defined by (1.6) such that 0 < Lλ < 1 and that

p ≤ L2
λ

4
:= pLλ

, (1.13)

then inequality (1.5) holds with L replaced by Lλ there for all non-negative sequences x.
Suppose that there exist positive constants 1/2 < L < 1, 0 < M < 1, L + 2M < 1 such that,

for any integer n ≥ 1,

Λn+1

λn+1
–

Λn

λn
≤ L + M

λn

Λn
. (1.14)

Then inequality (1.5) holds for all non-negative sequences x when

p ≤ min

{
L(2L – 1)
2(4L + M)

,
L(1 – L – 2M)
2(1 – L – M)

}

. (1.15)

We remark here that it is easy to see that the minimum on the right-hand side of (1.15)
can take either values. We now apply Theorem 1.2 to study inequalities (1.11)–(1.12). As
the case α = 1 yields the classical inequality (1.4), we concentrate on the case α > 1 and we
deduce readily from Theorem 1.2 the following result.

Theorem 1.3 Let α ≥ 1 and p1/α be defined as in (1.13). Then inequality (1.11) holds for
all non-negative sequences x when α > 1, 0 < p ≤ p1/α and inequality (1.12) holds for all
non-negative sequences x when α ≥ 2, 0 < p ≤ p1/α . The constants are best possible in both
cases.

In fact, note that [5, Lemma 2.1] implies that (1.6) is satisfied for λn = nα – (n – 1)α with
Lλ = 1/α when α ≥ 1 and (1.6) is satisfied for λn = nα–1 with Lλ = 1/α when α ≥ 2. That the
constant is best possible can be seen by setting xn = n–1/p–ε and letting ε → 0+.

2 Proof of Theorem 1.1
For the first assertion of Theorem 1.1, our goal is to find conditions on the λn such that
the following inequality holds for 0 < p < 1, L > p:

∞∑

n=1

(
1

Λn

∞∑

k=n

λkxk

)p

≥
(

p
L – p

)p ∞∑

n=1

xp
n.
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It suffices to prove the above inequality by replacing the infinite sums by finite sums from
n = 1 to N (and k = n to N ) for any integer N ≥ 1. Note that, as in [6, Sect. 3], we have, for
any positive sequence w = (wn),

N∑

n=1

xp
n =

N∑

n=1

xp
n

∑n
i=1 wi

n∑

k=1

wk =
N∑

n=1

wn

N∑

k=n

xp
k

∑k
i=1 wi

.

By Hölder’s inequality, we have

N∑

k=n

xp
k

∑k
i=1 wi

≤
( N∑

k=n

(

λ
p
k

k∑

i=1

wi

)–1/(1–p))1–p( N∑

k=n

λkxk

)p

.

It follows that

N∑

n=1

xp
n ≤

N∑

n=1

wn

( N∑

k=n

(

λ
p
k

k∑

i=1

wi

)–1/(1–p))1–p( N∑

k=n

λkxk

)p

.

Suppose we can find a sequence w = (wn) of positive terms, such that, for any integer
n ≥ 1,

( n∑

i=1

wi

)1/(p–1)

≤
(

p
L – p

)p/(p–1)

λp/(1–p)
n

(
w1/(p–1)

n

Λ
p/(1–p)
n

–
w1/(p–1)

n+1

Λ
p/(1–p)
n+1

)

.

Then the desired inequality follows. Now we make a change of variables: wi �→ λiwi to
recast the above inequality as

( n∑

i=1

λiwi

)1/(p–1)

≤
(

p
L – p

)p/(p–1)

λp/(1–p)
n

(
λ

1/(p–1)
n w1/(p–1)

n

Λ
p/(1–p)
n

–
λ

1/(p–1)
n+1 w1/(p–1)

n+1

Λ
p/(1–p)
n+1

)

. (2.1)

We now define our sequence w = (wn) to satisfy w1 = 1 and we inductively see that, for
n ≥ 2,

1
Λn

n∑

i=1

λiwi =
p

L – p
wn+1. (2.2)

This allows us to deduce that, for n ≥ 1,

wn+1 =
(

1 +
(

L
p

– 2
)

λn

Λn

)

wn. (2.3)

Applying (2.2), (2.3) in (2.1), we see that inequality (2.1) becomes (1.10). This completes
the proof for the first assertion of Theorem 1.1.

We now prove the second assertion of Theorem 1.1. We set x = λn/Λn, y = λn+1/Λn+1 to
recast inequality (1.10) as

L – p
p

x ≤
(

1 +
(

L
p

– 2
)

x
)1/(1–p)

–
(

1
y

– 1
)(1+p)/(1–p)

x1/(1–p)yp/(1–p).
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To facilitate also the proof of Theorem 1.2 below, we proceed by taking the condition
(1.14) into consideration to assume that L is a constant such that 1/y ≤ 1/x + L + Mx, where
M ≥ 0 is another constant. As the function t �→ (t – 1)(1+p)/(1–p)t–p/(1–p) is an increasing
function of t ≥ 1, we deduce that it suffices to prove the above inequality for 1/y = 1/x +
L + Mx, which is equivalent to showing that fL,M,p(x) ≥ 0 for 0 < x ≤ 1, where

fL,M,p(x) :=
(

1 +
(

L
p

– 2
)

x
)1/(1–p)

–
(
1 + (L – 1)x + Mx2)(1+p)/(1–p)(1 + Lx + Mx2)–p/(1–p) –

L – p
p

x.

Suppose that (1.6) is valid and Lλ ≥ 1. In this case we set L = Lλ and M = 0 so that it suffices
to show that fL,0,p(x) ≥ 0. Calculation shows that

(1 – p)2

p
f ′′
L,0,p(x) =

(

1 +
(

L
p

– 2
)

x
)(2p–1)/(1–p)

× (
1 + (L – 1)x

)2p/(1–p)–1(1 + Lx)–1/(1–p)–1gL,p(x),

where

gL,p(x) =
(

L
p

– 2
)2(

1 + (L – 1)x
) 1–3p

1–p (1 + Lx)
2–p
1–p

–
(

1 +
(

L
p

– 2
)

x
) 1–2p

1–p

× (
L2(L – 1)2x2 + 2L(L – 1)(L – p – 1)x + L2 – 2(L – 1)(p + 1)

)
.

Suppose that 0 < p ≤ 1/3. We want to show that gL,p(x) ≥ 0 for 0 < x ≤ 1. We first note
that we have

gL,p(x) ≥
(

L
p

– 2
)2(

1 + (L – 1)x
) 1–3p

1–p (1 + Lx)
2–p
1–p

–
(

1 +
(

L
p

– 2
)

x
) 1–2p

1–p

× (
L2(L – 1)2x + 2L(L – 1)(L – p – 1)x + L2 – 2(L – 1)(p + 1)

)
.

We may now assume that

L2(L – 1)2x + 2L(L – 1)(L – p – 1)x + L2 – 2(L – 1)(p + 1) ≥ 0.

Otherwise, we have trivially gL,p(x) ≥ 0. We then estimate (1 + (L – 1)x)
1–3p
1–p trivially by

(1 + (L – 1)x)
1–3p
1–p ≥ 1 and we apply a Taylor expansion to see that

(1 + Lx)
2–p
1–p ≥ 1 + L

2 – p
1 – p

x,

(

1 +
(

L
p

– 2
)

x
) 1–2p

1–p ≤ 1 +
(

L
p

– 2
)

1 – 2p
1 – p

x.
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It then follows that gL,p(x) ≥ uL,p(x), where

uL,p(x) =
(

L
p

– 2
)2(

1 + L
2 – p
1 – p

x
)

–
(

1 +
(

L
p

– 2
)

1 – 2p
1 – p

x
)

× (
L2(L – 1)2x + 2L(L – 1)(L – p – 1)x + L2 – 2(L – 1)(p + 1)

)
.

Suppose first that

L2(L – 1)2 + 2L(L – 1)(L – p – 1) ≤ 0. (2.4)

We then deduce that

uL,p(x) =
(

L
p

– 2
)2(

1 + L
2 – p
1 – p

x
)

–
(

1 +
(

L
p

– 2
)

1 – 2p
1 – p

x
)

(
L2 – 2(L – 1)(p + 1)

)

–
(

1 +
(

L
p

– 2
)

1 – 2p
1 – p

x
)

(
L2(L – 1)2 + 2L(L – 1)(L – p – 1)

)
x

≥
(

L
p

– 2
)2(

1 + L
2 – p
1 – p

x
)

–
(

1 +
(

L
p

– 2
)

1 – 2p
1 – p

x
)

(
L2 – 2(L – 1)(p + 1)

)
.

(2.5)

We regard the last expression above as a linear function of x to see that its derivative
with respect to x is

(
L
p

– 2
)2(2 – p

1 – p

)

L –
(

L
p

– 2
)(

1 – 2p
1 – p

)
(
L2 – 2(L – 1)(p + 1)

)

≥
(

L
p

– 2
)2(2 – p

1 – p

)

L –
(

L
p

– 2
)(

1 – 2p
1 – p

)

L2

=
(

L
p

– 2
)(

L
1 – p

)((
L
p

– 2
)

(2 – p) – L(1 – 2p)
)

.

As we have 0 < p ≤ 1/3 and L ≥ 1, we deduce that

(
L
p

– 2
)

(2 – p) ≥ 3L – 2 ≥ L ≥ L(1 – 2p).

It follows from this that the last expression in (2.5) is minimized at x = 0 with cor-
responding value being uL,p(0). On the other hand, if the inequality in (2.4) does not
hold, then one checks that uL,p(x) is a quadratic function of x with negative leading co-
efficient, hence is minimized at x = 0 or x = 1. Thus, in either case, we conclude that
uL,p(x) ≥ min{uL,p(0), uL,p(1)} for 0 ≤ x ≤ 1. One checks that

uL,p(0) =
(

L
p

– 2
)2

– L2 + 2(L – 1)(p + 1). (2.6)
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When we regard the above expression as a function of L, it is readily seen that uL,p(0) is
convex in L such that

u1,p(0) ≥ 0,
∂uL,p(0)

∂L

∣
∣
∣
∣
L=1

≥ 0.

We thus deduce that uL,p(0) ≥ 0 when 0 < p ≤ 1/3. On the other hand, we have uL,p(1) =
a1(L, p) ≥ 0 by our assumption, where a1(L, p) is defined in (1.9). It follows that gL,p(x) ≥
uL,p(x) ≥ 0, hence f ′′

L,0,p(x) ≥ 0 for 0 < x ≤ 1. As fL,0,p(0) = f ′
L,0,p(0) = 0, we then deduce that

fL,0,p(x) ≥ 0 and this completes the proof for the case Lλ ≥ 1 of the second assertion of
Theorem 1.1.

To prove the case 0 < Lλ < 1 of the second assertion of Theorem 1.1, we first note that

p
L – p

f ′
L,M,p(x) + 1

=
(

L
p

– 2
)

p
(1 – p)(L – p)

(

1 +
(

L
p

– 2
)

x
)p/(1–p)

+
p(1 + p)(1 – L)
(1 – p)(L – p)

(

1 –
2Mx
1 – L

)
(
1 + (L – 1)x + Mx2)(2p)/(1–p)(1 + Lx + Mx2)–p/(1–p)

+
Lp2

(1 – p)(L – p)

(

1 +
2Mx

L

)
(
1 + (L – 1)x + Mx2)(1+p)/(1–p)(1 + Lx + Mx2)–1/(1–p).

One checks that
(

L
p

– 2
)

p
(1 – p)(L – p)

+
p(1 + p)(1 – L)
(1 – p)(L – p)

+
Lp2

(1 – p)(L – p)
= 1.

It follows from this and the arithmetic–geometric mean inequality that

p
L – p

f ′
L,M,p(x) + 1

≥
(

1 +
(

L
p

– 2
)

x
) p

1–p ·( L
p –2) p

(1–p)(L–p)

·
((

1 –
2Mx
1 – L

)
(
1 + (L – 1)x + Mx2)(2p)/(1–p)(1 + Lx + Mx2)–p/(1–p)

) p(1+p)(1–L)
(1–p)(L–p)

·
((

1 +
2Mx

L

)
(
1 + (L – 1)x + Mx2)(1+p)/(1–p)(1 + Lx + Mx2)–1/(1–p)

) Lp2
(1–p)(L–p)

.

(2.7)

Suppose that (1.6) is valid and 0 < Lλ < 1. In this case we can also set L = Lλ and M = 0
to see that inequality (2.7) becomes

p
L – p

f ′
L,0,p(x) + 1 ≥ hL,p(x)

p
(1–p)2(L–p) , (2.8)

where

hL,p(x) :=
(

1 +
(

L
p

– 2
)

x
)L–2p(

1 + (L – 1)x
)p(1+p)(2–L)(1 + Lx)–p(1+p–pL).
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Calculation shows that

h′
L,p(x) =

(

1 +
(

L
p

– 2
)

x
)L–2p–1(

1 + (L – 1)x
)p(1+p)(2–L)–1(1 + Lx)–p(1+p–pL)–1vL,p(x),

where

vL,p(x) = (L – 2p)
(

L
p

– 2
)

(
1 + (L – 1)x

)
(1 + Lx)

– p(1 + p)(2 – L)(1 – L)
(

1 +
(

L
p

– 2
)

x
)

(1 + Lx)

– p(1 + p – pL)L
(

1 +
(

L
p

– 2
)

x
)

(
1 + (L – 1)x

)
.

One checks that vL,p(x) is a quadratic polynomial of x with a negative leading coefficient
when L ≥ 2p. It follows that vL,p(x) ≥ min{vL,p(0), vL,p(1)} for 0 < x ≤ 1 and one checks that
vL,p(0) = puL,p(0), where uL,p(0) is defined in (2.6). Similar to our discussions for the case
L > 1, one checks that uL,p(0) is convex in L such that

u4p,p(0) ≥ 0,
∂uL,p(0)

∂L

∣
∣
∣
∣
L=4p

≥ 0,

with uL,p(0) ≥ 0 when L ≥ 4p. On the other hand, we have vL,p(1) = a2(L, p) ≥ 0 by our
assumption, where a2(L, p) is defined in (1.9). It follows that h′

L,p(x) ≥ 0, hence hL,p(x) ≥
hL,p(0) ≥ 1. It follows from this and (2.8) that f ′

L,0,p(x) ≥ 1 for 0 < x ≤ 1. Now, since fL,0,p(x) =
0, this implies that fL,0,p(x) ≥ 0 for 0 < x ≤ 1, which then completes the proof for the case
0 < Lλ < 1 of the second assertion of Theorem 1.1.

3 Proof of Theorem 1.2
First, we assume that (1.6) is valid and we set L = Lλ in this case. It suffices to find a value
of p such that a2(L, p) ≥ 0 by Theorem 1.1. Note that limp→0+ a2(ap, p)/p < 0 when a > 1,
it is therefore not possible to show a2(L, p) ≥ 0 by assuming that p ≤ L/a for any a > 1. We
therefore seek to show a2(L, p) ≥ 0 for p ≤ L2/4. We first note that

a2(L, p)
1 – p

≥ 1
p

L4 +
1 – 2p

p
L3 – (3 – p)L2 +

(

p –
2

1 – p

)

L +
2p(1 + p)

1 – p

≥ 4L2 + 4(1 – 2p)L – (3 – p)L2 +
(

p –
2

1 – p

)

L +
2p(1 + p)

1 – p
L

≥ 4(1 – 2p)L +
(

p –
2

1 – p

)

L + 2pL

=
(

4 – 5p –
2

1 – p

)

L ≥ 0,

where the last inequality follows from the observation that the function p �→ 4 – 5p –
2

1–p is non-negative for 0 < p ≤ 1/4. This completes the proof for the first assertion of
Theorem 1.2.
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To prove the second assertion of Theorem 1.2, we see from the proof of Theorem 1.1
that it suffices to show the right-hand side expression of (2.7) is ≥ 1 for 0 < x ≤ 1. We
simplify it to see that it is equivalent to showing that

(

1 +
(

L
p

– 2
)

x
)L–2p(

1 –
2Mx
1 – L

)(1–p2)(1–L)(

1 +
2Mx

L

)p(1–p)L

· (1 + (L – 1)x + Mx2)p(1+p)(2–L)(1 + Lx + Mx2)–p(1+p–pL) ≥ 1. (3.1)

We assume that

L
p

– 2 ≥ 0. (3.2)

This implies that the function

(

1 +
(

L
p

– 2
)

x
)(

1 –
2Mx
1 – L

)

is a concave function of x, hence is minimized at x = 0 or 1. When x = 0, the above function
takes the value 1. We further assume that the above function takes a value ≥ 1 when x = 1.
That is,

(
L
p

– 1
)(

1 –
2M

1 – L

)

≥ 1. (3.3)

We then deduce that

1 –
2Mx
1 – L

≥
(

1 +
(

L
p

– 2
)

x
)–1

.

We apply the above estimation and the estimation that 1 + 2Mx/L ≥ 1 in (3.1) to see that
it suffices to show that, for 0 < x ≤ 1,

hL,M,p(x) :=
(

1 +
(

L
p

– 2
)

x
)L–2p–(1–p2)(1–L)

× (
1 + (L – 1)x + Mx2)p(1+p)(2–L)(1 + Lx + Mx2)–p(1+p–pL)

≥ 1.

We now assume that

L – 2p –
(
1 – p2)(1 – L) > 0. (3.4)

Then calculation shows that

h′
L,M,p(x) :=

(

1 +
(

L
p

– 2
)

x
)L–2p–(1–p2)(1–L)–1

· (1 + (L – 1)x + Mx2)p(1+p)(2–L)–1(1 + Lx + Mx2)–p(1+p–pL)–1uL,M,p(x),
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where

uL,M,p(x) =
(
L – 2p –

(
1 – p2)(1 – L)

)
(

L
p

– 2
)

(
1 + (L – 1)x + Mx2)(1 + Lx + Mx2)

– p(1 + p)(2 – L)(1 – L)
(

1 +
(

L
p

– 2
)

x
)(

1 –
2Mx
1 – L

)
(
1 + Lx + Mx2)

– p(1 + p – pL)L
(

1 +
(

L
p

– 2
)

x
)(

1 +
2Mx

L

)
(
1 + (L – 1)x + Mx2)

≥ (
L – 2p –

(
1 – p2)(1 – L)

)
(

L
p

– 2
)

(
1 + (L – 1)x

)
(1 + Lx)

– p(1 + p)(2 – L)(1 – L)
(

1 +
(

L
p

– 2
)

x
)

(
1 + (L + M)x

)

– p(1 + p – pL)L
(

1 +
(

L
p

– 2
)

x
)(

1 +
2M
L

)
(
1 + (L + M – 1)x

)

:= vL,M,p(x).

It is easy to see that vL,M,p(x) is a quadratic polynomial of x with negative leading coefficient
when

(
L – 2p –

(
1 – p2)(1 – L)

)
(

L
p

– 2
)

(L – 1)L – p(1 + p)(2 – L)(1 – L)
(

L
p

– 2
)

(L + M)

– p(1 + p – pL)
(

L
p

– 2
)

(L + 2M)(L + M – 1) ≤ 0.

The above inequality is certainly valid when L/p = 2. We may thus assume that L/p > 2 to
see that the above inequality is a consequence of the following inequality:

(
L – 2p –

(
1 – p2)(1 – L)

)
(1 – L)L + p(1 + p)(2 – L)(1 – L)(L + M)

– p(1 + p – pL)(L + 2M)(1 – L – M) ≥ 0. (3.5)

Assuming the above inequality, we see that vL,M,p(x) ≥ min{vL,M,p(0), vL,M,p(1)} for 0 < x ≤ 1
and we have

vL,M,p(0) =
(
L – 2p –

(
1 – p2)(1 – L)

)
(

L
p

– 2
)

– p(1 + p)(2 – L)(1 – L) – p(1 + p – pL)(L + 2M),

vL,M,p(1) =
(
L – 2p –

(
1 – p2)(1 – L)

)
(

L
p

– 2
)

L(L + 1)

– p(1 + p)(2 – L)(1 – L)
(

L
p

– 1
)

(1 + L + M)

– p(1 + p – pL)
(

L
p

– 1
)

(L + 2M)(L + M).
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We note that, when M < 1,

p(1 + p)(2 – L)(1 – L) + p(1 + p – pL)(L + 2M) ≤ 2p(1 + p)(1 + L + M),

p(1 + p)(2 – L)(1 – L)
(

L
p

– 1
)

(1 + L + M) + p(1 + p – pL)
(

L
p

– 1
)

(L + 2M)(L + M)

≤ (1 + p)L(1 + L + M) + (1 + p)L(L + 2M)(L + M)

≤ (1 + p)L(1 + L + M) + (1 + p)L(1 + L + M)(L + M) = (1 + p)L(1 + L + M)2.

We then deduce that vL,M,p(0) ≥ 0 when

(
L – 2p –

(
1 – p2)(1 – L)

)
(

L
p

– 2
)

≥ 2p(1 + p)(1 + L + M), (3.6)

and that vL,M,p(1) ≥ 0 when

(
L – 2p –

(
1 – p2)(1 – L)

)
(

L
p

– 2
)

≥ 2(1 + p)(1 + L + M). (3.7)

Thus, one just needs to find values of p to satisfy inequalities (3.2)–(3.7). Indeed, if (3.2)–
(3.7) hold, then vL,M,p(x) ≥ 0 for 0 < x ≤ 1, which implies that h′

L,M,p(x) ≥ 0 for 0 < x ≤ 1.
Now, since hL,M,p(0) = 1, we get hL,M,p(x) ≥ 1 for 0 < x ≤ 1 as desired.

We note that

p(1 + p)(2 – L)(1 – L)(L + M) ≥ 0,

p(1 + p – pL)(L + 2M)(1 – L – M) ≤ p(1 + p)(1 – L)(1 + L + M).

We apply the above estimates to see that inequality (3.5) is a consequence of the following
inequality:

(
L – 2p –

(
1 – p2)(1 – L)

)L
p

≥ (1 + p)(1 + L + M). (3.8)

As inequality (3.7) implies inequalities (3.6) and (3.8), we first find values of p so that
inequality (3.7) holds. To do so, we first simply inequality (3.7) by noting that

L – 2p –
(
1 – p2)(1 – L) ≥ 2L – 1 – 2p.

Using this, we see that it suffices to find values of p that satisfy

(2L – 1 – 2p)
(

L
p

– 2
)

≥ 2(1 + p)(1 + L + M).

We recast the above as

(2L – 1)L – 2(4L + M)p + 2(1 – L – M)p2 ≥ 0.

Note as 1 – L – M > 0, we have (1 – L – M)p2 ≥ 0, so that the above inequality follows from

(2L – 1)L – 2(4L + M)p ≥ 0,
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which is equivalent to

p ≤ L(2L – 1)
2(4L + M)

. (3.9)

One checks that the above inequality implies inequalities (3.2) and (3.4). One further
notes that inequality (3.3) is equivalent to

p ≤ L(1 – L – 2M)
2(1 – L – M)

. (3.10)

Combining inequalities (3.9) and (3.10), one readily deduces the second assertion of
Theorem 1.2 and this completes the proof of Theorem 1.2.
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