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1 Introduction
Let m, m′, m′

1, m′
2, m′

3, M, M′, M′
1, M′

2 and M′
3 be scalars, I be the identity operator and

the other capital letters be used to represent general elements of the C∗-algebra B(H)
of all bounded linear operators acting on a Hilbert space(H, 〈·, ·〉). The operator norm is
denoted by ‖ · ‖. An operator A is said to be positive if 〈Ax, x〉 ≥ 0 for all x ∈ H and we
write it as A ≥ 0, it is said to be strictly positive if 〈Ax, x〉 > 0 for all x ∈ H \ {0} and we
write it as A > 0. A linear map Φ is positive if Φ(A) ≥ 0 whenever A ≥ 0. It is said to be
unital if Φ(I) = I . For A, B > 0 the μ-weighted arithmetic mean and μ-weighted geometric
mean of A and B are defined, respectively, by

A 	μ B = (1 – μ)A + μB, A�μB = A1/2(A–1/2BA–1/2)μA1/2,

where μ ∈ [0, 1], when μ = 1/2, we write A∇B and A�B for brevity for A∇1/2B and A�1/2B,
respectively.

For 0 < m ≤ A, B ≤ M, Tominaga [2] proved that the following operator reverse AM-GM
inequality holds:

A + B
2

≤ S(h)A�B, (1.1)

where S(h) = h
1

h–1

e log h
1

h–1
is called Specht’s ratio with h = M

m .
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The inequality (1.1) can be regarded as a counterpart of the following AM-GM inequal-
ity:

A + B
2

≥ A�B. (1.2)

Lin [3, (3.3)] observed that

S(h) ≤ K(h) ≤ S2(h) (h ≥ 1), (1.3)

where K(h) = (h+1)2

4h and h = M
m . The constant K(t, 2) = (t+1)2

4t (t > 0) is called the Kantorovich
constant, which is simply represented by K(t) satisfying the following properties:

K(1, 2) = 1,
K(t, 2) = K( 1

t , 2) ≥ 1 (t > 0),
K(t, 2) is monotone increasing on [1,∞) and monotone decreasing on (0, 1].

By inequalities (1.1) and (1.3), we have

A + B
2

≤ K(h)A�B. (1.4)

Because Φ is order preserving, (1.4) implies that

Φ

(
A + B

2

)
≤ K(h)Φ(A�B). (1.5)

For a positive linear map Φ and A, B ≥ 0. Ando [4] has proved the following inequality:

Φ(A�B) ≤ (
Φ(A)�Φ(B)

)
. (1.6)

Then, by (1.5) and (1.6), we have

Φ

(
A + B

2

)
≤ K(h)

(
Φ(A)�Φ(B)

)
. (1.7)

The studies of squaring operator inequalities start with [3, 5] and continued by a num-
ber of authors [6–10]. Lin [3] revealed that inequalities (1.5) and (1.7) can be squared as
follows:

Φ2
(

A + B
2

)
≤ K2(h)Φ2(A�B), (1.8)

Φ2
(

A + B
2

)
≤ K2(h)

(
Φ(A)�Φ(B)

)2. (1.9)

Recently, Xue [1] proved that if
√

M
m ≤ 2.314, then the following refinement of the in-

equality(1.4) holds:

(
A + B

2

)
≤ K

1
2 (h)(A�B). (1.10)
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Inspired by Lin’s idea [3] , Xue [1] also proved that if 0 < m ≤ A, B ≤ M and
√

M
m ≤ 2.314,

then

(
A + B

2

)2

≤ K(h)(A�B)2, (1.11)

Φ2
(

A + B
2

)
≤ K(h)Φ2(A�B), (1.12)

and

Φ2
(

A + B
2

)
≤ K(h)

(
Φ(A)�Φ(B)

)2, (1.13)

inequalities (1.12) and (1.13) are refinements of the inequalities (1.8) and (1.9), respec-
tively.

Moreover, she proved Lin’s conjecture [3] as follows:

Φ2
(

A + B
2

)
≤ S2(h)Φ2(A�B), (1.14)

Φ2
(

A + B
2

)
≤ S2(h)

(
Φ(A)�Φ(B)

)2. (1.15)

Recently, Ali et al. obtained more refinements of the results presented by Xue [1] by using
the relation (1.2), for comprehensive study, the reader is referred to [11]. In this article, in
Sect. 2, we shall refine the inequalities (1.10)–(1.15), when

√
M
m ≤ 2.314, with the help of

the Kantorovich constant.

2 Main results
We begin this section with the following lemmas.

Lemma 2.1 ([12]) Let A, B > 0. Then the following norm inequality holds:

‖AB‖ ≤ 1
4
‖A + B‖2. (2.1)

Remark 2.2 Lemma 2.1 is proved by Bhatia and Kittaneh in [12] for the finite dimensional
case. However, all technical results used to prove this result for operator norm are also true
for the infinite dimensional case. Here also, we mention that if A, B are compact operators,
then a stronger result can be found in [13].

Lemma 2.3 ([14]) Let A > 0. Then, for every positive unital linear map Φ ,

Φ–1(A) ≤ Φ
(
A–1). (2.2)

Lemma 2.4 ([15]) Suppose that two operators A, B and positive real numbers m, m′, M,
M′ satisfy either of the following conditions:

(1) 0 < m ≤ A ≤ m′ < M′ ≤ B ≤ M,
(2) 0 < m ≤ B ≤ m′ < M′ ≤ A ≤ M.
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Then

Kr(h′)(A–1�μB–1) ≤ A–1∇μB–1, (2.3)

for all μ ∈ [0, 1], r = min[μ, 1 – μ], h = M
m and h′ = M′

m′ .

Now, we prove the first main result in the following theorem.

Theorem 2.5 Let 0 < m ≤ M and
√

M
m ≤ 2.314, we have

(1) If 0 < m ≤ A ≤ m′
1 < M′

1 ≤ B ≤ M+m
2 , then

(
A + B

2

)2

≤ K(h)
K(h′

1)
(A�B)2, (2.4)

where K(h) = (h+1)2

4h , K(h′
1) = (h′

1+1)2

4h′
1

, h = M
m and h′

1 = M′
1

m′
1

.
(2) If 0 < M+m

2 ≤ A ≤ m′
2 < M′

2 ≤ B ≤ M, then

(
A + B

2

)2

≤ K(h)
K(h′

2)
(A�B)2, (2.5)

where K(h) = (h+1)2

4h , K(h′
2) = (h′

2+1)2

4h′
2

, h = M
m and h′

2 = M′
2

m′
2

.
(3) If 0 < m ≤ A ≤ m′

3 < M+m
2 ≤ B ≤ M, then

(
A + B

2

)2

≤ K(h)
K(h′

3)
(A�B)2, (2.6)

where K(h) = (h+1)2

4h , K(h′
3) = (h′

3+1)2

4h′
3

, h = M
m and h′

3 = M+m
2m′

3
.

(4) If 0 < m ≤ A ≤ M+m
2 < M′

3 ≤ B ≤ M, then

(
A + B

2

)2

≤ K(h)
K(h′

4)
(A�B)2, (2.7)

where K(h) = (h+1)2

4h , K(h′
4) = (h′

4+1)2

4h′
4

, h = M
m and h′

4 = 2M′
3

M+m .

Proof The operator inequality (2.4) is equivalent to

∥
∥∥
∥

A + B
2

(A�B)–1
∥
∥∥
∥ ≤ K 1

2 (h)
K 1

2 (h′
1)

.

If 0 < m ≤ A ≤ m′
1 < M′

1 ≤ B ≤ M+m
2 , we get

A +
M + m

2
mA–1 ≤ M + m

2
+ m (2.8)

and

B +
M + m

2
mB–1 ≤ M + m

2
+ m. (2.9)
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Compute

∥
∥∥
∥

A + B
2

M + m
2

.mK
1
2
(
h′

1
)
(A�B)–1

∥
∥∥
∥

≤ 1
4

∥
∥∥∥

A + B
2

+
M + m

2
.mK

1
2
(
h′

1
)
(A�B)–1

∥
∥∥∥

2 (
by (2.1)

)

=
1
4

∥∥
∥∥

A + B
2

+
M + m

2
.mK

1
2
(
h′

1
)(

A–1�B–1)
∥∥
∥∥

2

≤ 1
4

∥∥
∥∥

A + B
2

+
M + m

2
.m

A–1 + B–1

2

∥∥
∥∥

2 (
by (2.3)

)

≤ 1
4

(
M + m

2
+ m

)2 (
by (2.8), (2.9)

)
.

That is,

∥
∥∥
∥

A + B
2

(A�B)–1
∥
∥∥
∥ ≤ ( M+m

2 + m)2

4 M+m
2 .mK 1

2 (h′
1)

.

Since 1 ≤
√

M
m ≤ 2.314, it follows that

(√
M
m

– 1
)2[(√

M
m

)3

–
2M
m

+
√

M
m

– 4
]

≤ 0. (2.10)

It is easy to see that ( M+m
2 +m)2

4 M+m
2 .m

≤ M+m
2
√

Mm is equivalent to (2.10).
Thus

∥
∥∥
∥

A + B
2

(A�B)–1
∥
∥∥
∥ ≤ M + m

2
√

MmK 1
2 (h′

1)
=

K 1
2 (h)

K 1
2 (h′

1)
.

If 0 < M+m
2 ≤ A ≤ m′

2 < M′
2 ≤ B ≤ M, we get

A +
M + m

2
MA–1 ≤ M + m

2
+ M, (2.11)

B +
M + m

2
MB–1 ≤ M + m

2
+ M. (2.12)

Similarly, we have

∥∥∥
∥

A + B
2

(A�B)–1
∥∥∥
∥ ≤ ( M+m

2 + M)2

4 M+m
2 .MK 1

2 (h′
2)

. (2.13)

Since ( M+m
2 +M)2

4 M+m
2 .M

≤ ( M+m
2 +m)2

4 M+m
2 .m

≤ M+m
2
√

Mm , so (2.13) becomes

∥
∥∥
∥

A + B
2

(A�B)–1
∥
∥∥
∥ ≤ M + m

2
√

MmK 1
2 (h′

2)
=

K 1
2 (h)

K 1
2 (h′

2)
.
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If 0 < m ≤ A ≤ m′
3 < M+m

2 ≤ B ≤ M, then we compute

∥∥∥
∥

A + B
2

M + m
2

.K
1
2
(
h′

3
)√

mM(A�B)–1
∥∥∥
∥

≤ 1
4

∥
∥∥
∥

A + B
2

+
M + m

2
.K

1
2
(
h′

3
)√

mM(A�B)–1
∥
∥∥
∥

2 (
by(2.1)

)

=
1
4

∥
∥∥
∥

A + B
2

+
M + m

2
.K

1
2
(
h′

3
)√

mM
(
A–1�B–1)

∥
∥∥
∥

2

=
1
4

∥
∥∥∥

A + B
2

+
M + m

2
.K

1
2
(
h′

3
)(

mA–1�MB–1)
∥
∥∥∥

2

≤ 1
4

∥∥
∥∥

A + B
2

+
M + m

2
.
mA–1 + MB–1

2

∥∥
∥∥

2 (
by (2.3)

)

≤ 1
4

(M + m)2 (
by (2.8), (2.12)

)
, (2.14)

so we have

∥∥
∥∥

A + B
2

(A�B)–1
∥∥
∥∥ ≤ (M + m)2

4 M+m
2

√
MmK 1

2 (h′
3)

=
M + m

2
√

MmK 1
2 (h′

3)
=

K 1
2 (h)

K 1
2 (h′

3)
.

If 0 < m ≤ A ≤ M+m
2 < M′

3 ≤ B ≤ M, similarly, by (2.1), (2.3), (2.8) and (2.12), we have

∥
∥∥
∥

A + B
2

(A�B)–1
∥
∥∥
∥ ≤ M + m

2
√

MmK 1
2 (h′

4)
=

K 1
2 (h)

K 1
2 (h′

4)
.

This completes the proof. �

Remark 2.6 Because K (h)
K (h′

1) < K(h), K (h)
K (h′

2) < K(h), K (h)
K (h′

3) < K(h) and K (h)
K (h′

4) < K(h), so Theo-
rem 2.5 is a refinement of the inequality (1.11).

Remark 2.7 Since tp is operator monotone function for 0 ≤ p ≤ 1, so, by taking power 1
2

both sides of (2.4), (2.5), (2.6) and (2.7), respectively, we can easily get a refinement of the
inequality (1.10) for the condition

√
M
m ≤ 2.314.

Theorem 2.8 Let 0 < m ≤ M and
√

M
m ≤ 2.314, we have

(1) If 0 < m ≤ A ≤ m′
1 < M′

1 ≤ B ≤ M+m
2 , then

Φ2
(

A + B
2

)
≤ K(h)

K(h′
1)

Φ2(A�B), (2.15)

where K(h) = (h+1)2

4h , K(h′
1) = (h′

1+1)2

4h′
1

, h = M
m and h′

1 = M′
1

m′
1

.
(2) If 0 < M+m

2 ≤ A ≤ m′
2 < M′

2 ≤ B ≤ M, then

Φ2
(

A + B
2

)
≤ K(h)

K(h′
2)

Φ2(A�B), (2.16)

where K(h) = (h+1)2

4h , K(h′
2) = (h′

2+1)2

4h′
2

, h = M
m and h′

2 = M′
2

m′
2

.
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(3) If 0 < m ≤ A ≤ m′
3 < M+m

2 ≤ B ≤ M, then

Φ2
(

A + B
2

)
≤ K(h)

K(h′
3)

Φ2(A�B), (2.17)

where K(h) = (h+1)2

4h , K(h′
3) = (h′

3+1)2

4h′
3

, h = M
m and h′

3 = M+m
2m′

3
.

(4) If 0 < m ≤ A ≤ M+m
2 < M′

3 ≤ B ≤ M, then

Φ2
(

A + B
2

)
≤ K(h)

K(h′
4)

Φ2(A�B), (2.18)

where K(h) = (h+1)2

4h , K(h′
4) = (h′

4+1)2

4h′
4

, h = M
m and h′

4 = 2M′
3

M+m .

Proof Inequality (2.15) is equivalent to

∥
∥∥
∥Φ

(
A + B

2

)
Φ–1(A�B)

∥
∥∥
∥ ≤ K 1

2 (h)
K 1

2 (h′
1)

.

If 0 < m ≤ A ≤ m′
1 < M′

1 ≤ B ≤ M+m
2 , then we compute

∥
∥∥
∥Φ

(
A + B

2

)
M + m

2
.mK

1
2
(
h′

1
)
Φ–1(A�B)

∥
∥∥
∥

≤ 1
4

∥
∥∥
∥Φ

(
A + B

2

)
+

M + m
2

.mK
1
2
(
h′

1
)
Φ–1(A�B)

∥
∥∥
∥

2 (
by (2.1)

)

≤ 1
4

∥∥
∥∥Φ

(
A + B

2

)
+

M + m
2

.mK
1
2
(
h′

1
)
Φ

(
(A�B)–1)

∥∥
∥∥

2 (
by (2.2)

)

=
1
4

∥∥
∥∥Φ

(
A + B

2
+

M + m
2

.mK
1
2
(
h′

1
)(

A–1�B–1)
)∥∥

∥∥

2

≤ 1
4

∥∥
∥∥Φ

(
A + B

2
+

M + m
2

.m
A–1 + B–1

2

)∥∥
∥∥

2 (
by (2.3)

)

≤ 1
4

(
M + m

2
+ m

)2 (
by (2.8), (2.9)

)
, (2.19)

that is,

∥∥
∥∥Φ

(
A + B

2

)
Φ–1(A�B)

∥∥
∥∥ ≤ ( M+m

2 + m)2

4 M+m
2 .mK 1

2 (h′
1)

. (2.20)

By 1 ≤
√

M
m ≤ 2.314 and (2.10), we have

∥
∥∥
∥Φ

(
A + B

2

)
Φ–1(A�B)

∥
∥∥
∥ ≤ M + m

2
√

MmK 1
2 (h′

1)
=

K 1
2 (h)

K 1
2 (h′

1)
.



Karim et al. Journal of Inequalities and Applications         (2020) 2020:73 Page 8 of 12

If 0 < M+m
2 ≤ A ≤ m′

2 < M′
2 ≤ B ≤ M, similarly, by (2.1), (2.2), (2.3), (2.11), (2.12),

( M+m
2 +M)2

4 M+m
2 M

≤ ( M+m
2 +m)2

4 M+m
2 m

and (2.10), we obtain

∥∥
∥∥Φ

(
A + B

2

)
Φ–1(A�B)

∥∥
∥∥ ≤ M + m

2
√

MmK 1
2 (h′

2)
=

K 1
2 (h)

K 1
2 (h′

2)
.

If 0 < m ≤ A ≤ m′
3 < M+m

2 ≤ B ≤ M, then we compute

∥∥
∥∥Φ

(
A + B

2

)
M + m

2
.K

1
2
(
h′

3
)√

mMΦ–1(A�B)
∥∥
∥∥

≤ 1
4

∥∥
∥∥Φ

(
A + B

2

)
+

M + m
2

.K
1
2
(
h′

3
)√

mMΦ–1(A�B)
∥∥
∥∥

2 (
by (2.1)

)

≤ 1
4

∥∥
∥∥Φ

(
A + B

2

)
+

M + m
2

.K
1
2
(
h′

3
)√

mMΦ
(
(A�B)–1)

∥∥
∥∥

2 (
by (2.2)

)

=
1
4

∥
∥∥
∥Φ

(
A + B

2
+

M + m
2

.K
1
2
(
h′

3
)√

mM
(
A–1�B–1)

)∥
∥∥
∥

2

=
1
4

∥
∥∥
∥Φ

(
A + B

2
+

M + m
2

.K
1
2
(
h′

3
)(

mA–1�MB–1)
)∥

∥∥
∥

2

≤ 1
4

∥
∥∥
∥Φ

(
A + B

2
+

M + m
2

.
mA–1 + MB–1

2

)∥
∥∥
∥

2 (
by (2.3)

)

≤ (M + m)2

4
(
by (2.8), (2.12)

)
, (2.21)

that is, we have

∥∥
∥∥Φ

(
A + B

2

)
Φ–1(A�B)

∥∥
∥∥ ≤ (M + m)2

4 M+m
2

√
MmK 1

2 (h′
3)

=
M + m

2
√

MmK 1
2 (h′

3)
=

K 1
2 (h)

K 1
2 (h′

3)
.

If 0 < m ≤ A ≤ M+m
2 < M′

3 ≤ B ≤ M, similarly, by (2.1), (2.2), (2.3), (2.8) and (2.12), we have

∥
∥∥
∥Φ

(
A + B

2

)
Φ–1(A�B)

∥
∥∥
∥ ≤ M + m

2
√

MmK 1
2 (h′

4)
=

K 1
2 (h)

K 1
2 (h′

4)
.

It completes the proof. �

Remark 2.9 Obviously, Theorem 2.8 is a refinement of (1.12).

Theorem 2.10 Let 0 < m ≤ M and
√

M
m ≤ 2.314, we have

(1) If 0 < m ≤ A ≤ m′
1 < M′

1 ≤ B ≤ M+m
2 , then

Φ2
(

A + B
2

)
≤ K(h)

K(h′
1)

(
Φ(A)�Φ(B)

)2, (2.22)

where K(h) = (h+1)2

4h , K(h′
1) = (h′

1+1)2

4h′
1

, h = M
m and h′

1 = M′
1

m′
1

.
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(2) If 0 < M+m
2 ≤ A ≤ m′

2 < M′
2 ≤ B ≤ M, then

Φ2
(

A + B
2

)
≤ K(h)

K(h′
2)

(
Φ(A)�Φ(B)

)2, (2.23)

where K(h) = (h+1)2

4h , K(h′
2) = (h′

2+1)2

4h′
2

, h = M
m and h′

2 = M′
2

m′
2

.
(3) If 0 < m ≤ A ≤ m′

3 < M+m
2 ≤ B ≤ M, then

Φ2
(

A + B
2

)
≤ K(h)

K(h′
3)

(
Φ(A)�Φ(B)

)2, (2.24)

where K(h) = (h+1)2

4h , K(h′
3) = (h′

3+1)2

4h′
3

, h = M
m and h′

3 = M+m
2m′

3
.

(4) If 0 < m ≤ A ≤ M+m
2 < M′

3 ≤ B ≤ M, then

Φ2
(

A + B
2

)
≤ K(h)

K(h′
4)

(
Φ(A)�Φ(B)

)2, (2.25)

where K(h) = (h+1)2

4h , K(h′
4) = (h′

4+1)2

4h′
4

, h = M
m and h′

4 = 2M′
3

M+m .

Proof Inequality (2.22) is equivalent to

∥∥∥
∥Φ

(
A + B

2

)
(
Φ(A)�Φ(B)

)–1
∥∥∥
∥ ≤ K 1

2 (h)
K 1

2 (h′
1)

.

If 0 < m ≤ A ≤ m′
1 < M′

1 ≤ B ≤ M+m
2 , then we compute

∥∥
∥∥Φ

(
A + B

2

)
M + m

2
.mK

1
2
(
h′

1
)(

Φ(A)�Φ(B)
)–1

∥∥
∥∥

≤ 1
4
‖Φ

(
A + B

2

)
+

M + m
2

.mK
1
2
(
h′

1
)(

Φ(A)�ΦB
)
)–1‖2 (

by (2.1)
)

≤ 1
4

∥
∥∥∥Φ

(
A + B

2

)
+

M + m
2

.mK
1
2
(
h′

1
)
Φ–1(A�B)

∥
∥∥∥

2 (
by (1.6)

)

≤ 1
4

(
M + m

2
+ m

)2 (
by (2.19)

)
,

that is,

∥∥
∥∥Φ

(
A + B

2

)(
Φ(A)�Φ(B)

)–1
∥∥
∥∥ ≤ ( M+m

2 + m)2

4 M+m
2 .mK 1

2 (h′
1)

.

By 1 ≤
√

M
m ≤ 2.314 and (2.10), we have

∥∥
∥∥Φ

(
A + B

2

)
Φ

(
(A)�Φ(B)

)–1
∥∥
∥∥ ≤ M + m

2
√

MmK 1
2 (h′

1)
=

K 1
2 (h)

K 1
2 (h′

1)
.

Since ( M+m
2 +M)2

4 M+m
2 M

≤ ( M+m
2 +m)2

4 M+m
2 m

, by 2nd case 0 < M+m
2 ≤ A ≤ m′

2 < M′
2 ≤ B ≤ M, we can easily

obtain the inequality (2.23).
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If 0 < m ≤ A ≤ m′
3 < M+m

2 ≤ B ≤ M, then we compute
∥∥
∥∥Φ

(
A + B

2

)
M + m

2
.K

1
2
(
h′

3
)√

mM
(
Φ(A)�Φ(B)

)–1
∥∥
∥∥

≤ 1
4

∥
∥∥
∥Φ

(
A + B

2

)
+

M + m
2

.K
1
2
(
h′

3
)√

mM
(
Φ(A)�Φ(B)

)–1
∥
∥∥
∥

2 (
by (2.1)

)

≤ 1
4

∥∥
∥∥Φ

(
A + B

2

)
+

M + m
2

.K
1
2
(
h′

3
)√

mMΦ–1(A�B)
∥∥
∥∥

2 (
by (1.6)

)

≤ 1
4

(M + m)2 (
by (2.21)

)
,

thus, we have
∥∥
∥∥Φ

(
A + B

2

)(
Φ(A)�Φ(B)

)–1
∥∥
∥∥ ≤ M + m

2
√

MmK 1
2 (h′

3)
=

K 1
2 (h)

K 1
2 (h′

3)
.

The proof of (2.25) is similar to (2.24), we omit the details.
This completes the proof. �

Remark 2.11 Clearly Theorem 2.10 is a refinement of (1.13).

By (1.3) and Theorem 2.8, we obtain the following refinement of inequality (1.14).

Corollary 2.12 Let 0 < m ≤ M and
√

M
m ≤ 2.314, we have

(1) If 0 < m ≤ A ≤ m′
1 < M′

1 ≤ B ≤ M+m
2 , then

Φ2
(

A + B
2

)
≤ S2(h)

K(h′
1)

Φ2(A�B),

where S(h) = h
1

h–1

e log h
1

h–1
, K(h′

1) = (h′
1+1)2

4h′
1

, h = M
m and h′

1 = M′
1

m′
1

.

(2) If 0 < M+m
2 ≤ A ≤ m′

2 < M′
2 ≤ B ≤ M, then

Φ2
(

A + B
2

)
≤ S2(h)

K(h′
2)

Φ2(A�B),

where S(h) = h
1

h–1

e log h
1

h–1
, K(h′

2) = (h′
2+1)2

4h′
2

, h = M
m and h′

2 = M′
2

m′
2

.

(3) If 0 < m ≤ A ≤ m′
3 < M+m

2 ≤ B ≤ M, then

Φ2
(

A + B
2

)
≤ S2(h)

K(h′
3)

Φ2(A�B),

where S(h) = h
1

h–1

e log h
1

h–1
, K(h′

3) = (h′
3+1)2

4h′
3

, h = M
m and h′

3 = M+m
2m′

3
.

(4) If 0 < m ≤ A ≤ M+m
2 < M′

3 ≤ B ≤ M, then

Φ2
(

A + B
2

)
≤ S2(h)

K(h′
4)

Φ2(A�B),

where S(h) = h
1

h–1

e log h
1

h–1
, K(h′

4) = (h′
4+1)2

4h′
4

, h = M
m and h′

4 = 2M′
3

M+m .
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By (1.3) and Theorem 2.10, we obtain the following refinement of the inequality (1.15).

Corollary 2.13 Let 0 < m ≤ M and
√

M
m ≤ 2.314, we have

(1) If 0 < m ≤ A ≤ m′
1 < M′

1 ≤ B ≤ M+m
2 , then

Φ2
(

A + B
2

)
≤ S2(h)

K(h′
1)

(
Φ(A)�Φ(B)

)2,

where S(h) = h
1

h–1

e log h
1

h–1
, K(h′

1) = (h′
1+1)2

4h′
1

, h = M
m and h′

1 = M′
1

m′
1

.

(2) If 0 < M+m
2 ≤ A ≤ m′

2 < M′
2 ≤ B ≤ M, then

Φ2
(

A + B
2

)
≤ S2(h)

K(h′
2)

(
Φ(A)�Φ(B)

)2,

where S(h) = h
1

h–1

e log h
1

h–1
, K(h′

2) = (h′
2+1)2

4h′
2

, h = M
m and h′

2 = M′
2

m′
2

.

(3) If 0 < m ≤ A ≤ m′
3 < M+m

2 ≤ B ≤ M, then

Φ2
(

A + B
2

)
≤ S2(h)

K(h′
3)

(
Φ(A)�Φ(B)

)2,

where S(h) = h
1

h–1

e log h
1

h–1
, K(h′

3) = (h′
3+1)2

4h′
3

, h = M
m and h′

3 = M+m
2m′

3
.

(4) If 0 < m ≤ A ≤ M+m
2 < M′

3 ≤ B ≤ M, then

Φ2
(

A + B
2

)
≤ S2(h)

K(h′
4)

(Φ(A)�Φ(B)2,

where S(h) = h
1

h–1

e log h
1

h–1
, K(h′

4) = (h′
4+1)2

4h′
4

, h = M
m and h′

4 = 2M′
3

M+m .
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