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Abstract
In this paper we have derived the fractional integral inequalities by defining
exponentially (s,m)-convex functions. These inequalities provide upper bounds,
boundedness, continuity, and Hadamard type inequality for fractional integrals
containing an extended Mittag-Leffler function. The results about fractional integral
operators for s-convex,m-convex, (s,m)-convex, exponentially convex, exponentially
s-convex, and convex functions are direct consequences of presented results.
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1 Introduction
Convex functions are very useful in mathematical analysis due to their fascinating prop-
erties and convenient characterizations.

Definition 1 A function f : I →R is said to be convex function if the following inequality
holds:

f
(
ta + (1 – t)b

) ≤ tf (a) + (1 – t)f (b) (1.1)

for all a, b ∈ I and t ∈ [0, 1]. If inequality (1.1) holds in reverse order, then the function f is
called concave function.

A graphical interpretation of a convex function f over an interval [a, b] provides at a
glance the following well-known Hadamard inequality:

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
. (1.2)

This inequality has been studied extensively, and a lot of its versions have been published
by defining new functions obtained from inequality (1.1). Next we define some of these
definitions.
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Definition 2 ([10]) Let s ∈ [0, 1]. A function f : [0,∞) →R is said to be s-convex function
in the second sense if

f
(
ta + (1 – t)b

) ≤ tsf (a) + (1 – t)sf (b)

holds for all a, b ∈ [0,∞) and t ∈ [0, 1].

In [22], Toader gave the following definition of m-convex function.

Definition 3 A function f : [0, b] →R, b > 0, is said to be m-convex if

f
(
tx + m(1 – t)y

) ≤ tf (x) + m(1 – t)f (y)

holds, where m ∈ [0, 1], x, y ∈ [0, b], and t ∈ [0, 1].

In [4], Awan et al. gave the following definition of exponentially convex function.

Definition 4 A function f : K → R, where K is an interval, is said to be an exponentially
convex function if

f
(
ta + (1 – t)b

) ≤ t
f (a)
eαa + (1 – t)

f (b)
eαb (1.3)

holds for all a, b ∈ K , t ∈ [0, 1], and α ∈ R. If the inequality in (1.3) is reversed, then f is
called exponentially concave.

In [12], Mehreen and Anwar gave the following definition of exponentially s-convex
function.

Definition 5 ([12]) Let s ∈ (0, 1] and K ⊆ [0,∞) be an interval. A function f : K → R is
said to be exponentially s-convex in the second sense if

f
(
ta + (1 – t)b

) ≤ ts f (a)
eαa + (1 – t)s f (b)

eαb (1.4)

holds for all a, b ∈ K , t ∈ [0, 1], and α ∈ R. If the inequality in (1.4) is reversed, then f is
called exponentially s-concave function.

In [1], Anastassiou gave the following definition of (s, m)-convex function.

Definition 6 ([1]) A function f : [0, b] →R is said to be an (s, m)-convex function, where
(s, m) ∈ [0, 1]2 and b > 0, if for every x, y ∈ [0, b] and t ∈ [0, 1] we have

f
(
ta + m(1 – t)b

) ≤ tsf (a) + m
(
1 – ts)f (b).

The aim of this paper is to define a further generalization named exponentially (s, m)-
convex function (Definition 9) and explore the bounds of generalized fractional integral
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operators containing Mittag-Leffler functions in their kernels. The Mittag-Leffler function
Eσ (t) was introduced by Gosta [13] in 1903:

Eσ (t) =
∞∑

n=0

tn

Γ (σn + 1)
,

where t,σ ∈C,�(σ ) > 0 and Γ (·) is the gamma function.
The Mittag-Leffler function is a direct generalization of the exponential function to

which it reduces for σ = 1. In the solution of fractional integral equations and frac-
tional differential equations, the Mittag-Leffler function arises naturally. Due to its im-
portance, the Mittag-Leffler function has been further generalized and extended by many
researchers, we refer the reader to [3, 9, 19, 20]. Recently in [2], Andrić et al. introduced a
generalized Mittag-Leffler function defined as follows.

Definition 7 Let μ,σ , l,γ , c ∈ C, �(μ),�(σ ),�(l) > 0, �(c) > �(γ ) > 0 with p ≥ 0, δ > 0,
and 0 < k ≤ δ + �(μ). Then the extended generalized Mittag-Leffler function is defined by

Eγ ,δ,k,c
μ,σ ,l (t; p) =

∞∑

n=0

βp(γ + nk, c – γ )
β(γ , c – γ )

(c)nk

Γ (μn + σ )
tn

(l)nδ

, (1.5)

where βp is the generalized beta function defined as follows:

βp(x, y) =
∫ 1

0
tx–1(1 – t)y–1e– p

t(1–t) dt

and (c)nk is the Pochhammer symbol defined by (c)nk = Γ (c+nk)
Γ (c) .

Remark 1 The function given in (1.5) is a generalization of the following Mittag-Leffler
functions:

(i) If p = 0 in (1.5), then it reduces to the Salim–Faraj function defined in [19].
(ii) If l = δ = 1 in (1.5), then it reduces to the function defined by Rahman et al. in [15].

(iii) If p = 0 and l = δ = 1 in (1.5), then it reduces to the Shukla–Prajapati function
defined in [20], see also [21].

(iv) If p = 0 and l = δ = k = 1 in (1.5), then it reduces to the Prabhakar function defined
in [14].

Derivative property of the generalized Mittag-Leffler function is given in following
lemma.

Lemma 1 ([2]) If m ∈ N,ω,μ,σ , l,γ , c ∈ C,�(μ),�(σ ),�(l) > 0,�(c) > �(γ ) > 0 with p ≥
0, δ > 0 and 0 < k < δ + �(μ), then

(
d
dt

)m[
tσ–1Eγ ,δ,k,c

μ,σ ,l
(
ωtμ; p

)]
= tσ–m–1Eγ ,δ,k,c

μ,σ–m,l
(
ωtμ; p

)
, �(σ ) > m. (1.6)

Fractional integral operators are very useful in advancement of mathematical inequal-
ities. Many researchers have established fractional integral inequalities due to different
kinds of fractional and conformable integral operators, see [1, 2, 5, 6, 8, 11, 16–18, 23].
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The Mittag-Leffler function is used to define generalized fractional integral operators. The
left-sided and right-sided fractional integral operators containing Mittag-Leffler function
(1.5) are defined as follows.

Definition 8 ([2]) Let ω,μ,σ , l,γ , c ∈ C, �(μ),�(σ ),�(l) > 0, �(c) > �(γ ) > 0 with p ≥ 0,
δ > 0 and 0 < k ≤ δ + �(μ). Let f ∈ L1[a, b] and x ∈ [a, b]. Then the generalized fractional
integral operators containing Mittag-Leffler function are defined by

(
ε

γ ,δ,k,c
μ,σ ,l,ω,a+ f

)
(x; p) =

∫ x

a
(x – t)σ–1Eγ ,δ,k,c

μ,σ ,l
(
ω(x – t)μ; p

)
f (t) dt, (1.7)

(
ε

γ ,δ,k,c
μ,σ ,l,ω,b– f

)
(x; p) =

∫ b

x
(t – x)σ–1Eγ ,δ,k,c

μ,σ ,l
(
ω(t – x)μ; p

)
f (t) dt, (1.8)

where Eγ ,δ,k,c
μ,σ ,l (·) is the Mittag-Leffler function given in (1.5).

Remark 2 Integral operators given in (1.7) and (1.8) are the generalization of the following
fractional integral operators containing Mittag-Leffler function:

(i) If we take p = 0, it reduces to the fractional integral operators defined by Salim and
Faraj in [19].

(ii) If we take l = δ = 1, it reduces to the fractional integral operators defined by
Rahman et al. in [15].

(iii) If we take p = 0 and l = δ = 1, it reduces to the fractional integral operators defined
by Srivastava and Tomovski in [21].

(iv) If we take p = 0 and l = δ = k = 1, it reduces to the fractional integral operators
defined by Prabhakar in [14].

(v) If we take p = ω = 0, it reduces to the right-sided and left-sided Riemann–Liouville
fractional integrals.

In [8], Farid et al. proved that

(
ε

γ ,δ,k,c
μ,σ ,l,ω,a+ 1

)
(x; p) = (x – a)σ Eγ ,δ,k,c

μ,σ+1,l
(
w(x – a)μ; p

)
(1.9)

and

(
ε

γ ,δ,k,c
μ,τ ,l,ω,b– 1

)
(x; p) = (b – x)τ Eγ ,δ,k,c

μ,τ+1,l
(
w(b – x)μ; p

)
. (1.10)

We will follow the upcoming notations in the main results:

Dσ ,ω,a+ (x; p) =
(
ε

γ ,δ,k,c
μ,σ ,l,ω,a1

)
(x; p), (1.11)

Dτ ,ω,b– (x; p) =
(
ε

γ ,δ,k,c
μ,τ ,l,ω,b– 1

)
(x; p). (1.12)

In the upcoming section we define a new definition named exponentially (s, m)-convex
function which generalizes convex, s-convex, m-convex, exponentially convex, and expo-
nentially s-convex functions. Further this definition is used to establish the upper bounds
of left-sided and right-sided generalized fractional integral operators (1.7) and (1.8). The
upper bounds provide the continuity of these operators. A modulus inequality is obtained
for differentiable functions which in absolute value are exponentially (s, m)-convex. Fur-
thermore a fractional version of the Hadamard inequality is proved.
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2 Main results
Definition 9 Let s ∈ [0, 1] and K ⊆ [0,∞) be an interval. A function f : K → R is said to
be exponentially (s, m)-convex function in the second sense if

f
(
ta + m(1 – t)b

) ≤ ts f (a)
eαa + m(1 – t)s f (b)

eαb

holds for all a, b ∈ K , m ∈ [0, 1], and α ∈R.

Remark 3
(i) For m = 1, one can get an exponentially s-convex function.

(ii) For α = 0, one can get an (s, m)-convex function.
(iii) For α = 0, m = 1, one can get an s-convex function in the second sense.
(iv) For α = 0, s = 1, m = 1, one can get a convex function.

Theorem 1 Let f : K ⊆ [0,∞) −→ R be a real-valued function. If f is positive and exponen-
tially (s, m)-convex, then for a, b ∈ K , a < b, and σ , τ ≥ 1, the following fractional integral
inequality for generalized integral operators (1.7) and (1.8) holds:

(
ε

γ ,δ,k,c
μ,σ ,l,ω,a+ f

)
(x; p) +

(
ε

γ ,δ,k,c
μ,τ ,l,ω,b– f

)
(x; p)

≤
(

f (a)
eαa +

mf ( x
m )

e αx
m

)
(x – a)Dσ–1,a+ (x; p)

s + 1

+
(

f (b)
eβb +

mf ( x
m )

e
βx
m

)
(b – x)Dτ–1,b– (x; p)

s + 1
, x ∈ [a, b]α,β ∈ R. (2.1)

Proof Let x ∈ [a, b]. Then, for t ∈ [a, x) and σ ≥ 1, one can have the following inequality:

(x – t)σ–1Eγ ,δ,k,c
μ,σ ,l

(
ω(x – t)μ; p

) ≤ (x – a)σ–1Eγ ,δ,k,c
μ,σ ,l

(
ω(x – a)μ; p

)
. (2.2)

As f is exponentially (s, m)-convex, therefore one can obtain

f (t) ≤
(

x – t
x – a

)s f (a)
eαa + m

(
t – a
x – a

)s f ( x
m )

e αx
m

, α ∈R. (2.3)

By multiplying (2.2) and (2.3) and then integrating over [a, x], we get

∫ x

a
(x – t)σ–1Eγ ,δ,k,c

μ,α,l
(
ω(x – t)μ; p

)
f (t) dt

≤ (x – a)α–1Eγ ,δ,k,c
μ,σ ,l (ω(x – a)μ; p)
(x – a)s

×
(

f (a)
eαa

∫ x

a
(x – t)s dt +

mf ( x
m )

e αx
m

∫ x

a
(t – a)s dt

)
,

that is, the left integral operator satisfies the following inequality:

(
ε

γ ,δ,k,c
μ,σ ,l,ω,a+ f

)
(x; p) ≤ (x – a)Dσ–1,a+ (x; p)

s + 1

(
f (a)
eαa + m

f ( x
m )

e αx
m

)
. (2.4)
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On the other hand, for t ∈ (x, b] and τ ≥ 1, one can have the following inequality:

(t – x)τ–1Eγ ,δ,k,c
μ,τ ,l

(
ω(t – x)μ; p

) ≤ (b – x)τ–1Eγ ,δ,k,c
μ,τ ,l

(
ω(b – x)μ; p

)
. (2.5)

Again from exponential (s, m)-convexity of f , we have

f (t) ≤
(

t – x
b – x

)s f (b)
eβb + m

(
b – t
b – x

)s f ( x
m )

e
βx
m

, β ∈R. (2.6)

By multiplying (2.5) and (2.6) and then integrating over [x, b], we get

∫ b

x
(t – x)τ–1Eγ ,δ,k,c

μ,τ ,l
(
ω(t – x)μ; p

)
f (t) dt

≤ (b – x)τ–1Eγ ,δ,k,c
μ,τ ,l (ω(b – x)μ; p)
(b – x)s

×
(

f (b)
eβb

∫ b

x
(t – x)s dt +

mf ( x
m )

e
βx
m

∫ b

x
(b – t)s dt

)
,

that is, the right integral operator satisfies the following inequality:

(
ε

γ ,δ,k,c
μ,τ ,l,ω,b– f

)
(x; p) ≤ (b – x)Dτ–1,b– (x; p)

s + 1

(
f (b)
eβb +

mf ( x
m )

e
βx
m

)
. (2.7)

By adding (2.4) and (2.7), the required inequality (2.1) can be obtained. �

The following special cases are considered.

Corollary 1 If we set σ = τ in (2.1), then the following inequality is obtained:

(
ε

γ ,δ,k,c
μ,σ ,l,ω,a+ f

)
(x; p) +

(
ε

γ ,δ,k,c
μ,σ ,l,ω,b– f

)
(x; p)

≤
(

f (a)
eαa +

mf ( x
m )

e αx
m

)
(x – a)Dσ–1,a+ (x; p)

s + 1

+
(

f (b)
eβb +

mf ( x
m )

e
βx
m

)
(b – x)Dσ–1,b– (x; p)

s + 1
, x ∈ [a, b]. (2.8)

Corollary 2 Along with the assumption of Theorem 1, if f ∈ L∞[a, b], then the following
inequality is obtained:

(
ε

γ ,δ,k,c
μ,σ ,l,ω,a+ f

)
(x; p) +

(
ε

γ ,δ,k,c
μ,τ ,l,ω,b– f

)
(x; p)

≤ ‖f ‖∞
s + 1

((
1

eαa +
m

e αx
m

)
(x – a)Dσ–1,a+ (x; p)

+
(

1
eβb +

m

e
βx
m

)
(b – x)Dτ–1,b– (x; p)

)
. (2.9)

Corollary 3 For σ = τ in (2.9), we get the following result:

(
ε

γ ,δ,k,c
μ,σ ,l,ω,a+ f

)
(x; p) +

(
ε

γ ,δ,k,c
μ,σ ,l,ω,b– f

)
(x; p)
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≤ ‖f ‖∞
s + 1

((
1

eαa +
m

e αx
m

)
(x – a)Dσ–1,a+ (x; p)

+
(

1
eβb +

m

e
βx
m

)
(b – x)Dσ–1,b– (x; p)

)
. (2.10)

Corollary 4 For s = 1 in (2.9), we get the following result:

(
ε

γ ,δ,k,c
μ,σ ,l,ω,a+ f

)
(x; p) +

(
ε

γ ,δ,k,c
μ,τ ,l,ω,b– f

)
(x; p)

≤ ‖f ‖∞
2

((
1

eαa +
m

e αx
m

)
(x – a)Dα–1,a+ (x; p)

+
(

1
eβb +

m

e
βx
m

)
(b – x)Dβ–1,b– (x; p)

)
. (2.11)

Theorem 2 With the assumptions of Theorem 1, if f ∈ L∞[a, b], then operators defined in
(1.7) and (1.8) are continuous.

Proof If f ∈ L∞[a, b], then from (2.4) we have

∣∣(εγ ,δ,k,c
μ,σ ,l,ω,a+ f

)
(x; p)

∣∣ ≤ 2‖f ‖∞(x – a)Dσ–1,a+ (x; p)
s + 1

(
1

eαa +
m

e αx
m

)

≤ 2(b – a)Dσ–1,a+ (b; p)
s + 1

(
1

eαa +
m

e αa
m

)
‖f ‖∞, (2.12)

that is, |(εγ ,δ,k,c
μ,σ ,l,ω,a+ f )(x; p)| ≤ M‖f ‖∞, where M = 2(b–a)Dσ–1,a+ (b;p)

s+1 ( 1
eαa + m

e
αa
m

). Therefore

(εγ ,δ,k,c
μ,σ ,l,ω,a+ f )(x; p) is bounded, also it is easy to see that it is linear, hence this is a contin-

uous operator. On the other hand, from (2.7) one can obtain

∣∣(εγ ,δ,k,c
μ,τ ,l,ω,b– f

)
(x; p)

∣∣ ≤ K‖f ‖∞,

where K = 2(b–a)Dτ–1,b– (a;p)
s+1 ( 1

eβa + m

e
βa
m

). Therefore (εγ ,δ,k,c
μ,τ ,l,ω,b– f )(x; p) is bounded, also it is lin-

ear, hence continuous. �

The next result provides the boundedness of a sum of left and right integrals at an ar-
bitrary point for functions whose derivatives in absolute values are exponentially (s, m)-
convex.

Theorem 3 Let f : K ⊆ [0,∞) −→R be a real-valued function. If f is differentiable and |f ′|
is exponentially (s, m)-convex, then for a, b ∈ K , a < b, and σ , τ ≥ 1, the following fractional
integral inequality for generalized integral operators (1.7) and (1.8) holds:

∣
∣(εγ ,δ,k,c

μ,σ+1,l,ω,a+ f
)
(x; p) +

(
ε

γ ,δ,k,c
μ,τ+1,l,ω,b– f

)
(x; p)

–
(
Dσ–1,a+ (x; p)f (a) + Dτ–1,b– (x; p)f (b)

)∣∣

≤
( |f ′(a)|

eαa +
m|f ′( x

m )|
e αx

m

)
(x – a)Dσ–1,a+ (x; p)

s + 1

+
( |f ′(b)|

eβb +
m|f ′( x

m )|
e

βx
m

)
(b – x)Dτ–1,b– (x; p)

s + 1
, x ∈ [a, b],α,β ∈R. (2.13)
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Proof Let x ∈ [a, b] and t ∈ [a, x), by using exponential (s, m)-convexity of |f ′|, we have

∣∣f ′(t)
∣∣ ≤

(
x – t
x – a

)s |f ′(a)|
eαa + m

(
t – a
x – a

)s |f ′( x
m )|

e αx
m

. (2.14)

From (2.14), one can have

f ′(t) ≤
(

x – t
x – a

)s |f ′(a)|
eαa + m

(
t – a
x – a

)s |f ′( x
m )|

e αx
m

. (2.15)

The product of (2.2) and (2.15) gives the following inequality:

(x – t)σ–1Eγ ,δ,k,c
μ,σ ,l

(
ω(x – t)μ; p

)
f ′(t) dt

≤ (x – a)σ–1–sEγ ,δ,k,c
μ,σ ,l

(
ω(x – a)μ; p

)( |f ′(a)|
eαa (x – t)s +

m|f ′( x
m )|

e αx
m

(t – a)s
)

. (2.16)

After integrating the above inequality over [a, x], we get

∫ x

a
(x – t)σ–1Eγ ,δ,k,c

μ,σ ,l
(
ω(x – t)μ; p

)
f ′(t) dt

≤ (x – a)σ–1–sEγ ,δ,k,c
μ,σ ,l

(
ω(x – a)μ; p

)

×
( |f ′(a)|

eαa

∫ x

a
(x – t)s dt +

m|f ′( x
m )|

e αx
m

∫ x

a
(t – a)s dt

)

=
(x – a)σ Eγ ,δ,k,c

μ,σ ,l (ω(x – t)μ; p)
s + 1

( |f ′(a)|
eαa +

m|f ′( x
m )|

e αx
m

)
. (2.17)

The left-hand side of (2.17) is calculated as follows:
∫ x

a
(x – t)σ–1Eγ ,δ,k,c

μ,σ ,l
(
ω(x – t)μ; p

)
f ′(t) dt. (2.18)

Put x – t = z, that is, t = x – z, also using the derivative property (1.6) of Mittag-Leffler
function, we have

∫ x–a

0
zσ–1Eγ ,δ,k,c

μ,σ ,l
(
ωzμ; p

)
f ′(x – z) dz

= (x – a)σ–1Eγ ,δ,k,c
μ,σ ,l

(
ω(x – a)μ; p

)
f (a) –

∫ x–a

0
zσ–2Eγ ,δ,k,c

μ,σ ,l
(
ωzμ; p

)
f (x – z) dz.

Now putting x – z = t in the second term of the right-hand side of the above equation and
then using (1.7), we get

∫ x–a

0
zσ–1Eγ ,δ,k,c

μ,σ ,l
(
ωzμ; p

)
f ′(x – z) dz

= (x – a)σ–1Eγ ,δ,k,c
μ,σ ,l

(
ω(x – a)μ; p

)
f (a) –

(
ε

γ ,δ,k,c
μ,σ+1,l,ω,a+ f

)
(x; p).

Therefore (2.17) takes the following form:

(
Dσ–1,a+ (x; p)

)
f (a) –

(
ε

γ ,δ,k,c
μ,σ+1,l,ω,a+ f

)
(x; p)
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≤ (x – a)Dσ–1,a+ (x; p)
s + 1

( |f ′(a)|
eαa +

m|f ′( x
m )|

e αx
m

)
. (2.19)

Also from (2.14) one can have

f ′(t) ≥ –
((

x – t
x – a

)s |f ′(a)|
eαa + m

(
t – a
x – a

)s |f ′( x
m )|

e αx
m

)
. (2.20)

Following the same procedure as we did for (2.15), one can obtain

(
ε

γ ,δ,k,c
μ,σ+1,l,ω,a+ f

)
(x; p) – Dσ–1,a+ (x; p)f (a)

≤ (x – a)Dσ–1,a+ (x; p)
s + 1

( |f ′(a)|
eαa +

m|f ′( x
m )|

e αx
m

)
. (2.21)

From (2.19) and (2.21), we get

∣
∣(εγ ,δ,k,c

μ,σ+1,l,ω,a+ f
)
(x; p) – Dσ–1,a+ (x; p)f (a)

∣
∣

≤ (x – a)Dσ–1,a+ (x; p)
s + 1

( |f ′(a)|
eαa +

m|f ′( x
m )|

e αx
m

)
. (2.22)

Now we let x ∈ [a, b] and t ∈ (x, b]. Then, by exponential (s, m)-convexity of |f ′|, we have

∣
∣f ′(t)

∣
∣ ≤

(
t – x
b – x

)s |f ′(b)|
eβb + m

(
b – t
b – x

)s |f ′( x
m )|

e
βx
m

, β ∈R. (2.23)

On the same lines as we have done for (2.2), (2.15), and (2.20), one can get from (2.5) and
(2.23) the following inequality:

∣
∣(εγ ,δ,k,c

μ,τ+1,l,ω,b– f
)
(x; p) – Dτ–1,b– (x; p)f (b)

∣
∣

≤ (b – x)Dτ–1,b– (x; p)
s + 1

( |f ′(b)|
eβb +

m|f ′( x
m )|

e
βx
m

)
. (2.24)

From inequalities (2.22) and (2.24) via the triangular inequality, (2.13) can be obtained. �

Corollary 5 If we put σ = τ in (2.13), then the following inequality is obtained:

∣
∣(εγ ,δ,k,c

μ,σ+1,l,ω,a+ f
)
(x; p) +

(
ε

γ ,δ,k,c
μ,σ+1,l,ω,b– f

)
(x; p)

–
(
Dσ–1,a+ (x; p)f (a) + Dσ–1,b– (x; p)f (b)

)∣∣

≤
( |f ′(a)|

eαa +
m|f ′( x

m )|
e αx

m

)
(x – a)Dσ–1,a+ (x; p)

s + 1

+
( |f ′(b)|

eβb +
m|f ′( x

m )|
e

βx
m

)
(b – x)Dσ–1,b– (x; p)

s + 1
, x ∈ [a, b],α,β ∈ R. (2.25)

Definition 10 Let f : [a, b] → R be a function, we will say that f is exponentially m-
symmetric about a+b

2 if

f (x)
eαx =

f ( a+b–x
m )

eα( a+b–x
m )

, α ∈R. (2.26)
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It is required to give the following lemma which will be helpful to produce Hadamard
type estimations for the generalized fractional integral operators.

Lemma 2 Let f : K ⊆ [0,∞) −→ R, a, b ∈ K , a < b, be an exponentially (s, m)-convex func-
tion. If f is exponentially m-symmetric about a+b

2 , then the following inequality holds:

f
(

a + b
2

)
≤ (1 + m)

f (x)
2seαx , α ∈R. (2.27)

Proof Since f is exponentially (s, m)-convex, so

f
(

a + b
2

)
≤ f (at + (1 – t)b)

2seα(at+(1–t)b) +
mf ( a(1–t)+bt

m )

2seα( a(1–t)+bt
m )

, t ∈ [0, 1]. (2.28)

Let x = at + (1 – t)b, where x ∈ [a, b]. Then we have a + b – x = bt + (1 – t)a, and we get

f
(

a + b
2

)
≤ f (x)

2seαx + m
f ( a+b–x

m )

2seα( a+b–x
m )

. (2.29)

Now, using that f is exponentially m-symmetric, we will get (2.27). �

Theorem 4 Let f : K ⊆ [0,∞) −→ R, a, b ∈ K , a < b, be a real-valued function. If f is
positive, exponentially (s, m)-convex and exponentially m-symmetric about a+b

2 , then for
σ , τ > 0, the following fractional integral inequality for generalized integral operators (1.7)
and (1.8) holds:

2sh(α)
1 + m

f
(

a + b
2

)
[
Dτ+1,b– (a; p) + Dσ+1,a+ (b; p)

]

≤ (
ε

γ ,δ,k,c
μ,τ+1,l,ω,b– f

)
(a; p) +

(
ε

γ ,δ,k,c
μ,σ+1,l,ω,a+ f

)
(b; p)

≤ [
Dτ–1,b– (a; p) + Dσ–1,a+ (b; p)

] (b – a)2

s + 1

( f ( a
m )

e αa
m

+
f (b)
eβb

)
, α,β ∈ R, (2.30)

where h(α) = eαb for α < 0 and h(α) = eαa for α ≥ 0.

Proof For x ∈ [a, b], we have

(x – a)τ Eγ ,δ,k,c
μ,τ ,l

(
ω(x – a)μ; p

) ≤ (b – a)τ Eγ ,δ,k,c
μ,τ ,l

(
ω(b – a)μ; p

)
, τ > 0. (2.31)

As f is exponentially (s, m)-convex, so for x ∈ [a, b], we have

f (x) ≤
(

x – a
b – a

)s f (b)
eαb + m

(
b – x
b – a

)s f ( a
m )

e αa
m

, α ∈R. (2.32)

By multiplying (2.31) and (2.32) and then integrating over [a, b], we get

∫ b

a
(x – a)τ Eγ ,δ,k,c

μ,τ ,l
(
ω(x – a)μ; p

)
f (x) dx

≤ (b – a)τ–sEγ ,δ,k,c
μ,τ ,l

(
ω(b – a)μ; p

)( f (b)
eαb

∫ b

a
(x – a)s dx +

mf ( a
m )

e αa
m

∫ b

a
(b – x)s dx

)
,
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from which we have

(
ε

γ ,δ,k,c
μ,τ+1,l,ω,b– f

)
(a; p) ≤ (b – a)τ+1Eγ ,δ,k,c

μ,τ ,l (ω(b – a)μ; p)
s + 1

(
f (b)
eαb +

mf ( a
m )

e αa
m

)
, (2.33)

(
ε

γ ,δ,k,c
μ,τ+1,l,ω,b– f

)
(a; p) ≤ (b – a)2

s + 1
Dτ–1,b– (a; p)

(
f (b)
eαb +

mf ( a
m )

e αa
m

)
. (2.34)

On the other hand, for x ∈ [a, b], we have

(b – x)σ Eγ ,δ,k,c
μ,σ ,l

(
ω(b – x)μ; p

) ≤ (b – a)σ Eγ ,δ,k,c
μ,σ ,l

(
ω(b – a)μ; p

)
, α > 0. (2.35)

By multiplying (2.32) and (2.35) and then integrating over [a, b], we get

∫ b

a
(b – x)σ Eγ ,δ,k,c

μ,σ ,l
(
ω(b – x)μ; p

)
f (x) dx

≤ (b – a)σ–sEγ ,δ,k,c
μ,σ ,l

(
ω(b – a)μ; p

)( f (b)
eαb

∫ b

a
(x – a)s dx +

mf ( a
m )

e αa
m

∫ b

a
(b – x)s dx

)
,

from which we have

(
ε

γ ,δ,k,c
μ,σ+1,l,ω,a+ f

)
(b; p) ≤ (b – a)σ+1Eγ ,δ,k,c

μ,σ ,l (ω(b – a)μ; p)
s + 1

(
f (b)
eαb +

mf ( a
m )

e αa
m

)
, (2.36)

(
ε

γ ,δ,k,c
μ,σ+1,l,ω,a+ f

)
(b; p) ≤ (b – a)2

s + 1
Dσ–1,a+ (b; p)

(
f (b)
eαb +

mf ( a
m )

e αa
m

)
. (2.37)

Adding (2.34) and (2.37), we get

(
ε

γ ,δ,k,c
μ,τ+1,l,ω,b– f

)
(a; p) +

(
ε

γ ,δ,k,c
μ,σ+1,l,ω,a+ f

)
(b; p)

≤ [
Dτ–1,b– (a; p) + Dσ–1,a+ (b; p)

] (b – a)2

s + 1

(
f (b)
eαb +

mf ( a
m )

e αa
m

)
. (2.38)

Multiplying (2.27) with (x – a)τ Eγ ,δ,k,c
μ,τ ,l (ω(x – a)μ; p) and integrating over [a, b], we get

f
(

a + b
2

)∫ b

a
(x – a)τ Eγ ,δ,k,c

μ,τ ,l
(
ω(x – a)μ; p

)
dx

≤ m + 1
2s

∫ b

a
(x – a)τ Eγ ,δ,k,c

μ,τ ,l
(
ω(x – a)μ; p

) f (x)
eαx dx. (2.39)

By using (1.8) and (1.12), we get

f
(

a + b
2

)
Dτ+1,b– (a; p) ≤ m + 1

2seαx

(
ε

γ ,δ,k,c
μ,τ+1,l,ω,b– f

)
(a; p). (2.40)

Multiplying (2.27) with (b – x)σ Eγ ,δ,k,c
μ,σ ,l (ω(b – x)μ; p) and integrating over [a, b], also using

(1.7) and(1.11), we get

f
(

a + b
2

)
Dσ+1,a+ (b; p) ≤ m + 1

2sh(α)
(
ε

γ ,δ,k,c
μ,σ+1,l,ω,a+ f

)
(b; p). (2.41)
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By adding (2.40) and (2.41), we get

2sh(α)
1 + m

f
(

a + b
2

)
[
Dτ+1,b– (a; p) + Dσ+1,a+ (b; p)

]

≤ (
ε

γ ,δ,k,c
μ,τ+1,l,ω,b– f

)
(a; p) +

(
ε

γ ,δ,k,c
μ,σ+1,l,ω,a+ f

)
(b; p). (2.42)

By combining (2.38) and (2.42), inequality (2.30) can be obtained. �

Corollary 6 If we put σ = τ in (2.30), then the following inequality is obtained:

2seαx

1 + m
f
(

a + b
2

)[
Dσ+1,b– (a; p) + Dσ+1,a+ (b; p)

]

≤ (
ε

γ ,δ,k,c
μ,σ+1,l,ω,b– f

)
(a; p) +

(
ε

γ ,δ,k,c
μ,σ+1,l,ω,a+ f

)
(b; p)

≤ (
Dσ–1,b– (a; p) + Dσ–1,a+ (b; p)

) (b – a)2

s + 1

(
f (b)
eαb +

mf ( a
m )

e αa
m

)
. (2.43)

3 Concluding remarks
This paper has investigated generalized fractional integral inequalities which provide the
bounds of fractional integral operators containing Mittag-Leffler functions in their ker-
nels. By setting different values of parameters involved in the Mittag-Leffler function, the
results for various known fractional operators can be obtained. For example, by setting
p = 0, fractional integral inequalities for fractional operators defined by Salim and Faraj
in [19] can be obtained; by setting l = δ = 1, fractional integral inequalities for fractional
operators defined by Rahman et al. in [15] can be deduced, by setting p = 0 and l = δ = 1,
fractional integral inequalities for fractional operators defined by Shukla and Prajapati in
[20] (see also [21]) can be deduced, by setting p = 0 and l = δ = k = 1, fractional integral in-
equalities for fractional operators defined by Prabhakar in [14] can be deduced, by setting
p = ω = 0 fractional integral inequalities for Riemann–Liouville fractional integrals can be
deduced. Also all the results of this paper hold for s-convex, m-convex, exponentially con-
vex, exponentially s-convex, and convex functions. In particular results for (s, m)-convex
functions, which are proved in [7], can be obtained.
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