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1 Introduction

Assumingthatp > 1, - +— =1,amb, >0,0<Y > a, <coand0< Y o2 b < 0o, we have
the following Hardy—Hllbert inequality with the best poss1ble constant factor - /p (ct.
[1], Theorem 315):
[o.slaNe o} oo 1 oo q
amby, T » ’ 1
— bl . 1
;§m+n<sin(n/p) ;am ; " @

In 2006, by introducing the parameters A; € (0,2] (i = 1,2), A1 + A3 = A € (0,4], an extension
of (1) was provided by [2] as follows:

1 1
p[ oo q
a
ZZ mbn <B(A1,A2) Zmp b an(l_h)_lbz , (2)
m=1 n=1 n=1
where the constant factor B(Al,kz) is the best possible (B fo (1iut);+v t (u,v>0)is

the beta function). For A = 1, A; = ;I, Ay = 1—7, inequality (2 ) reduces to(1);forp=g=2,11 =
Ap = & ,(2) reduces to Yang’s work in [3]. Recently, applying (2), [4] gave a new inequality

with the kernel )A involving partial sums.
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If f(x),g(y) = 0, 0 < [;°fP(x)dx < 00, and 0 < [, g7(y)dy < oo, then we still have the
following Hardy—Hilbert integral inequality (cf. [1], Theorem 316):

f 1/p o) 1/q
/ / x+y xdy < mn(n/p)(f f”(x)dx) (/0 g’f(y)dy) , 3)

where the constant factor 7/ sin(%) is the best possible. Inequalities (1) and (3) with their
extensions and reverses are important in analysis and its applications (cf. [5-15]).

In 1934, a half-discrete Hilbert-type inequality was given as follows (cf. [1], Theo-
rem 351): If K(¢) (¢ > 0) is decreasing, p > 1, }7 + }1 =1,0<¢(s) = [, K@)t dt < 00,a, >0,
0< Y % al < 0o, then we have

/mxp’2<i1<(nx)u ) dx<¢"< >Za” (4)
0 n=1

In the last ten years, some extensions of (4) with their applications and the reverses were
provided by [16-20].

In 2016, by means of the techniques of real analysis, Hong et al. [21] considered some
equivalent statements of the extensions of (1) with the best possible constant factor related
to a few parameters. Similar work about Hilbert-type integral inequalities is in [22—26].

In this paper, following the way of [2, 21], by the use of the weight coefficients, the idea
of introduced parameters and Euler—Maclaurin summation formula, a reverse extended
Hardy—Hilbert inequality as well as the equivalent forms are given in Lemma 2 and The-
orem 1. The equivalent statements of the best possible constant factor related to a few

parameters and some particular cases are considered in Theorem 2 and Remark 1-2.

2 Some lemmas
In what follows, we assume that 0 < p <1 (g < 0), 117 + % =1,N={1,2,...}, A €(0,6], A; €
(0,21 N (0,A) (i=1,2),

0 LI A+0p)" 1 €0,1) (6,¢€ 01 eN
m*2 | AaB(ha, A — Ag) M2 " ) '

We also assume that a,,, b, > 0, such that

AAI Az

- 'a? <oo, and 0< anll a - 'p? < 0. (5)
n=1
Lemma 1 Define the following weight coefficient:
i e n)\z—l
w'()\.z, WZ) =m" " Z m (I’I’l S N) (6)

We have the following inequality:

B()\.z,)\ )\.2)(1 O( 1 )) < a)’()\.z, Vl’l) <B()\.2,)\. )\2) (m € N). (7)



Huang et al. Journal of Inequalities and Applications (2020) 2020:68 Page 3 of 14

Proof For fixed m € N, we set function g(m, t) := % (t > 0). Using the Euler—Maclaurin
1

summation formula (cf. (2, 3]), for p(¢) := £ — [¢] - 5, we have

o0

o0 1 o0
S gmn) = /1 gOmD)dt+ Jgm 1)+ fl p(0)g (m,0)dt

n=1

- / " gOm, t)de — him),
0

o0

1
h(m) ::/0 g(m,t)dt—%g(m, 1)—/1 ot)g (m,t)dt.

We obtain —3g(m,1) = 5 —

2(m+1)*’
1
f g(m,t)dt
0

/1 -1 5 1 /1 d* 1 2 P oAb Prdr

= —dt=— = — + — _
o (m+it) A Jo m+t)r km+t) |, ArJo (m+ie)+!
1 1 A Lo gprart

= +
)\2 (Wl + 1))‘ )\.2()\2 + 1) 0 (m + l'))‘Jrl
1 1 A Rt b AL+ 1 1

> — + + ( ) / 2l gy
)\.2 (}’I’l + 1)>‘ }\.2()\.2 + 1) (I’I’l + t))”+1 0 )\.2()\.2 + 1)(m + 1))“+2 0
11 A 1 AA+1) 1

= — + + .
)\2 (Wl + 1))‘ )\.2()\2 + 1) (l’l’l + 1)}‘+1 )\2()\2 + 1)()\.2 + 2) (Wl + 1))‘+2

We find
om 1) (Ay — 1)tP272 A2l (1 - rg)th272  pph22 Amth2
— m, = — = + —
£ (m + t)* (m + )1 (m + £)* (m+t)  (m+p)r!
(1= amt?
- (m + £)* (m + £y

and for 0 < Ay <2, Ay < A < 6, it follows that

AT pa? d P2
pE o, DA |50 (1=0,1,2,3).
( )dt‘|:(m+t)’\]> ( )dtl|:(m+t)“1i|> ( )

Still by the Euler—Maclaurin summation formula (cf. [2, 3]), we obtain

)\+1—)\2
12(m + 1)*’

[e%e) t)\z—Z
()\+1—A2)/; p(t)(m_”)k dt >
and

e8] Ao—2
A /1 e d

m + t)+1

mA mA 22 "
" 12(m+ )1 720 [(m + t)“]”
(m+1A—-1  (m+1)Ar [(A +1D(A+2) 20 +1)(2-4)  (2-A)(3- ?»2)]

T Rm+ 1yt 720 | (me 1y (m + 1)+ (m + 11
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A A

T120m+ 1) 12(m+ 1)1

L[(A+1)()\+2) 21 +1)(2 - Ag) (2—A2)(3—)L2):|

T 720 (m+ 12 (m + 1)*+1 (m+1)*
Hence, we have h(m) > (m}j-ll))‘ (mii’fm + (A,:,ﬁ%i]?z , where

1 1 1-4 AQ-A)B-1i)

h1 === - y 1’12 .
Ay 2 12 720
. 1 242
and /13 := MO0+ 730
For A €(0,6], 7’\% < ﬁ, Ay € (0,2], we find

1 1 1-2% (2-2)B-2) 24-204+703—-A3

h1>————

Ay 2 12 24 24,

In fact, setting g(0) := 24 — 200 + 762 — o3 (o € (0,2]), we obtain

/ 2 7 2 11
(6)=-20+140 -30°=-3|c—-= ) - — <0,
£ 3 3

and then

g()"2) > g(z) — 4 > O (}\.2 S (O; 2])

h1> = =
240y T 24Xy 244y

. 11 18 1 1 _ 10
1_1_18 _ 1 > L=
We obtain /4, > 36 > 0,and 13 = 37 — =755

6 127 360
and then setting ¢ = mu, it follows that

@ (Ao, m) = w2 Zg(m, n) < 2 / g(m,t)dt
n=1 0

% > 0. Hence, we have k(m) > 0,

o0 t)qfl 00 M)‘271
=m' / ———dt = / ———du =By, A — Ay).
0 0

(m+t) 1 +u)*

On the other hand, we also have
o0

n=1

= /Oog(m, t)dt + H(m),
1

H(m) := %g(m,l)+/1 p(t)g (m,t)dt.

We have obtained 1g(m,1) = m and

—(A+1 -2t Amth2?
+ .
(m + £)* (m + )1

g/(Wl, t) =

o0 1 o0
S glmn) = / gom )i+ Zglm 1)+ f p(0g (m, )t

Page 4 of 14
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For A, € (0,2] N (0, 1), 0 < A < 6, by the Euler—Maclaurin summation formula, we obtain

o] t}q—Z
—A+1-2 t)——dt
(h+ »/1 o)
A+1=2y ,\+1—)\2[ th22 }”
> —
12(m + 1) 720 (m+t)* ],
o+ 1l-1
C12(m + 1)
Chtl-dy [(2 - )3 - Ag)tkz_z 20(2 = 12) a3 AL +1) t*ﬂ]
720 (m +1t)* (m + )21 (m + t)*+2 1
_ A+1—2o A+1-2Xy (2—)\.2)(3—)\.2) 2)\.(2—)\2) )\.()L+1)
T 12(m+ 1) 720 (m +1)* (m+ 1)1 (m+1)22 |
o0 t)\272
A f)——————
m /1 o)
m (m+1r—-2 - A

>— =- = + .
2m+ D)1 12m+ 1M1 12m+1)*  12(m + 1)1

Hj AHo (m)

(m+1)*  (m+1) 17 where

Hence, we have H(m) >

H, o= 7—)&2 ()\+ 1—)»2)(2—)»2)(3—)»2)
D) 720 ’

tymy e L G 1= R) (i 1-2)0 )
AT 720 T 7200m+ 1)

For A, € (0,2] N (0,A), 0 < A < 6, we find H; > %—% >0, and

1 14 49 15
Hym)> ———-——=——>0.
12 360 1440 1440

It follows that H(m) > 0, and then

w2 (m,n) > m* 2 /00 (m,t)dt
D¢ e

n=1

00 1
=m 2 / g(m,t)dt — m* 2 / g(m,t)dt
0 0

1 L ya-1 p
=Bk —Ay)|1- 0.
(A 2)[ B(Az,k—kz)/o (1+u) u]>

By the integral mid-value theorem, we find

15 1
fm we du = L /mu“’lduz;; Om € 0,l ,
o (1+u 1+6,,)* Jo (1 +6,,)* Aom?2 m

namely, (7) follows. O
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Lemma 2 We have the following reverse extended Hardy—Hilbert inequality

1 1
> B? (hy, A — A2)B7 (A1, A — A1)

1
° 1 /\AZ )»1 )»)\1 )»2 a
AZ[-o(m) s }{an“ Pyl @
m=1

Proof In the same way as obtaining (7), for n € N, we obtain the following inequality of
the weight coefficient:

r1-1

w(hy, ) = 1M 3 L CBOGA—A). )
1 ; (m+ 1) 1 1

By the reverse Holder inequality (cf. [27]), we obtain

0o 00 pr2-1ip m*1-Dlq
Yy ] m][ ]

(-1-Dlq nGa-Dip
n=1 m=1

1

S -2, |7
Z @ Ay, m)ym’"" T gk Z w(Ay, mn
m=1 n=1

Then, by (7) and (9), in view of 0 < p < 1, g < 0, we have (8)

00 00 - Iz w1 %
NS> e }{zz i ]

n=1 m=1
1
) g
*p”lbz} .

=1,2), we find

Remark 1 By (8),for Ay + o =1 €(0,4],0<A; <2 (i

Cl)()\l, Vl) < B()\.l, )\.2),

B()\.l,)\z)<1—o<%)> <w(k2,m)<B(A1,A2) (Wl,}’lGN),
1 (1+86,,)* 1 1
O(mT> 3aBles, i) i < O (9’” © (0’ Z))

o0
0< E mPU=A=1gp oo, 0< E ni1=271p0 o0
m=1 n=1

and the following reverse inequality:

mbn
;;(WI+H))‘

1
[e¢]

1
p [ > q
>B()\1,}\.2)!Z[l—o(%)}mp(l—kl)—la{;} iznq(l—lz)—lbz} . (10)
m=1
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Lemma 3 For any ¢ >0, we have

. 1

m=1

Proof There exists a constant M > 0, such that

S | S |
m=1 m=2

By the decreasing property of the series, it follows that

© 1 1
IL| <M 1+/ —orerl ———dx 1+ —)<oo.
1 xh2 +e+1 )"2

Hence, Eq. (11) follows. d
Lemma 4 For A1 + Ay = X € (0,4], the constant factor B(A1,X3) in (10) is the best possible.
Proof For any 0 < & < pA;, we set

Ap—E-1

£_
a Mmpt 1 (m,n e N).

Ay =M , b,:=n

If there exists a constant M > B(A1, A3), such that (10) is valid when replacing B(A;, A2) by

M, then in particular, substitution of a,, = a,, and b, = b, in (10), we have

>M=il|:1—0(ﬁ>]m” )= aP} {an ) lbq}.

By (11) and the decreasing property of series, we obtain

- © 1 5[ oo 7
I>M Z [1 — O(m> ] mp(l—)»l)—lmp)»l—s—p Z nq(l—kg)—lnqkz—a—q
n=1

m=1
1 1
o0 oo p S . q
=M 1 &
(L -el)) (2
~ 1 o 1
—e-1 P —e-1 g
> </ dx O(l)) <1+/ dy)
1 1

Page 7 of 14
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By (9), setting A1 = 41— £ € (0,2) N (0,4) (0 < A5 = 42 + £ < 1), we find

[e¢] oo
3 _ (2+5 (-2)-1 ], —e-1
By )

n=1 m=1

Z (hy, M)t <B()»1,)L2)<1+Zn_8 1)

n=1 n=2
A oo 1
<B(AI,A2)(1 +/ yeL dy) et B(Al _E E),
1 & p p

Then we have

. 1
(e + I)B(Al —l%,kz + 1%) >el >M(1-¢0(1))7 (e + 1)%.

For ¢ — 0%, in view of the continuity of the beta function, we find B(11,1,) > M. Hence,
M = B(A1, Ay) is the best possible constant factor of (10). O

A=Ay SN A=A

Settmgkl > +7,A2: 7 +7,weﬁnd

~ o~ A—=Xy A1 A=A Ay A
AM+Ay= +—+ +— ==
p q q p p

A
+ ==X
q

and we can reduce (8) to the following:

I= ZZ(m+n)A

n=1 m=1

1 1
> BP (Ay, A — A2)B7 (A1, A — A1)

xii[l—O(%)}m gl ] {an“ 42 lbq] : (12)

m=1

1 1
Lemma5 IfX—A;— Ay € (—pA1, p(A — A1), the constant factor BP (hy, A — A2)B1 (A1, A — A1)
in (12) is the best possible, then we have A — A — Ay = 0, namely, . = A1 + A,.

Proof For A — X1 — Ay € (—pr1,p(X — 11)), we obtain

- A=A A 1-p)Ar A ~ A A—A A
i = 2+_1>( I’)1+_1:O’ i < 1+p( 1)+—1:A,
V4 q V4 q p q

0<)~\2=)\.—5\’.1<)\.

Hence, we have B(i1, ;) € R, = (0,00).
1 1
If the constant factor B? (Ay, .. —X3)B4 (A1, A — A1) in (12) is the best possible, then in view
of (10), the unique best possible constant factor must be B(k1,12) (€R,), namely,

~ ~ 1 1
B(A1,A2) = B? (A — A2, A2)B7 (A1, A — A1),
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By the reverse Holder inequality, we find

- - A=A A A—A A
B()\l,)\.z):B< 2 + —1, L + —2)
p q q p

1o 1
1 gy, P / 1 AL dy, 1
1 +u) o ([d+u?

B% (= A2y A2)BT (Ag, 2 — M), (13)

We observe that (13) keeps the form of equality if and only if there exist constants A and
B, such that they are not all zero and (cf. [27])

A2 =Byl ae. inR,.
Assuming that A # 0, it follows that

B
B

a.e.in R,
and then A — A, — A, = 0, namely, A = A; + Ay. O

3 Main results and some particular cases
Theorem 1 Inequality (8) is equivalent to the following inequalities:

A/\l A2 it 1 i }7
(5

>Bé(xz,x_xz)35(xl,x_x{ [ (A>]
m2

= mq(k_r}z*%l)‘l ad
]12: :;[l_o(ﬁ)]qq[z m+n)* :| }

n=1

xxz Al

1
|
a (14)

(15)

1

q
> BP (hgy & — A)B1 (Ag, A — kl){Zn N “bq}.

n=1

If the constant factor in (8) is the best possible, then so is the constant factor in (14) and
(15).

Proof Suppose that (14) is valid. By the Holder inequality, we have

0 o1 ,\1 gy 1 A=k Ay
I = 7 * 7 (77 +7)bn
; |:n 21 (m + n)A :| ]
° A }‘1 A2 )-1 %
>] an it . (16)

Page 9 of 14
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Then, by (14), we obtain (8). On the other hand, assuming that (8) is valid, we set

—1
b e TR i ! ’ €N
= a » n .
" — (m+n) "

If] = 0o, then (14) is naturally valid; if / = 0, then it is impossible to make (14) valid, namely,
J > 0. Suppose that 0 < J < co. By (8), we have

)] lbq

1 1
>B? (Ao, A — A2)Ba (A1, A — Ap)

X{i[l O< )}mpn(”z 41 a{n}p{inq[l“l +22) bq}a’

m=1
1
p
A— A] )»2 -1
bq

5

o 1
1 1 1 Ay M ’

1 L 3 (-(32224 21y
>BP()\2,)\—)\,2)BQ()\,1,)\,—)\,1){ [I—O(W>:|mp r q ﬂl:n} ;

m=1

namely, (14) follows. Hence, inequality (8) is equivalent to (14).
Suppose that (15) is valid. By the Holder inequality, we have

ad 1 Il’ 1 A=k M m%Jr(%J'%) s 1
I= 1-0o| — ) by
S (1-0)) m e o
1
s 1 oG24y, | °
> Z 1-0 p—ry T R/ B I (17)

Then, by (15), we obtain (8). On the other hand, assuming that (8) is valid, we set

Ay M

q( )-1 00 q-1
m 1
A = ’ ! E bn , meN.
(1 - O(ﬁ))q71 ' (Vl’l + I’l))‘

=1

If J; = oo, then (15) is naturally valid; if /; = 0, then it is impossible to make (15) valid,
namely, /1 > 0. Suppose that 0 < J; < 0. By (8), we have

X

m=1

=Ji=1

1

>B;(A2,A—A2)B;(AI,A_M):Z(l_ < >)m"“ (2, lam}

m=1

Page 10 of 14
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1

i = Al xz 1
x {an[l - lbq )

n=

1
D

m=1

1

1 1 i a
>BP(A2,A—Az)Bq(Al,A—Al){an[l 7 EUM},

n=1

namely, (15) follows. Hence, inequality (8) is equivalent to (15) and then inequalities (8),
(14) and (15) are equivalent.

If the constant factor in (8) is the best possible, then so is the constant factor in (14) and
(15). Otherwise, by (16) (or (17)), we would reach a contradiction that the constant factor
in (8) is not the best possible. O

Theorem 2 The following statements (i), (ii), (iii) and (iv) are equivalent:
(i) BP (Ao, A — )\Z)Bq(kl,k A1) is independent of p, q;
(ii) BP (A, A — Az)Bq (A1, X — A1) is expressible as a single integral;
(iii) BP (A, A — Ag)B‘i (A1, A — A1) in (8) is the best possible constant factor;
(iv) ifx — A1 —Ag € (—pAL,p(A = X1)), then X = Ay + Ag.
If the statement (iv) follows, namely, . = A1 + Ly, then we have (10) and the following
equivalent inequalities with the best possible constant factor B(A1, 13):

00 ) 00 1 r }7
{Znﬁkz 1[; (m—+ n)kamj| }

n=1

>B()\.1,)\.2)[Z[l—o(%)]mﬂl—ll)—laﬁq}p, (18)

m=1

e mar1-1 1 ‘li 0 . %
{Z[l Ol [Z (m + ny" } } >B(“’*2)[;”ql ’ lbz} .9

Proof (i) = (ii). By (i), we have
1 1
BP (A, h = A2)B7 (A1, A — A1)
= lim lim Bll’ ()\.2,)\ - )\.2)3‘17 ()\1,)\. - )\1) = B()xz,)\. - )\2),
p—>1"g—>-00

1 1
namely, B? (A3, A — X3)B4 (A1, — A1) is expressible as a single integral

W du.

B(hg, A —Ay) = /
0

(1 +u)*

(ii) = (iv). IfBll’ (A, A — )»2)3% (A1, X — A1) is expressible as a convergent single integral

<A—A2 AA—Ag kz)
B +—, +— ),
p 9 4 p
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then (13) keeps the form of equality. In view of the proof of Lemma 5, it follows that A =
)\.1 + )\2.
(iv) = (i). If A = A + Ao, then

1 1
BP (A, A — Ag)B1 (A1, A — A1) = B(A1, X2),

which is independent of p, g. Hence, it follows that (i) < (ii) < (iv).
(iii) = (iv). By Lemma 5, we have A = A1 + X;.
(iv) = (iii). By Lemma 4, for A = 41 + Ao,

1 1
B? (A, A = A2)Bi (A1, A — A1) (= B(h1, 1))

is the best possible constant factor of (8). Therefore, we have (iii) < (iv).
Hence, the statements (i), (ii), (iii) and (iv) are equivalent. a

Remark 2 For Ay = Ay = % €(0,2] (0 <A <4)in (10), (18) and (19), we have the following
equivalent inequalities with the best possible constant factor B(%, % :

YRR 1 A e : 7
>B<—,—>{Z|:1—O<—M2>j|mp(17)1afn} [an“%“bz} , (20)
2°2 m —~
1

1
o0 1 p
> [1-0(k) i) @

3 't N oS i
{Z [1 O( )\/2 |:Z (Wl+}’1))” :| } >B<§,§> [Zlnq(l_Z)_le:| . (22)

In particular, (i) for A = 2, we have the following equivalent inequalities:

0o 00 ambn o 1 ﬂ[:n 1% %) bz %

sz -Gl (55
00 ) 00 1 1 . dfn

:;HM{;(W”) ” >{2[1 O( )]E} (24)
o) mq—l o9 1 q % ~ bZ %

(i) for A = 4, we have the following equivalent inequalities:

S5 o L] ] (5 ).

n=1 m=1 m=1 n=1
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oo oo p 1 oo i

1 | 1 a, |7

2p-1 m
2 Z(m+n)4am "6 Z[I_O(WIQ)]W’“ ' @)
n=1 m=1 m=1
i m*a1 > 1 77 1/ bl 7
b, - . 28

; [1-0(5)]e! ;(Wl+l’l)4 "6 ;n‘l‘d (28)

4 Conclusions

In this paper, by the use of the weight coefficients, the idea of introducing parameters and
the Euler—Maclaurin summation formula, a reverse extended Hardy—Hilbert inequality as
well as the equivalent forms are given in Lemma 2 and Theorem 1. The equivalent state-
ments of the best possible constant factor related to a few parameters and some particular
cases are considered in Theorem 2 and Remark 1, 2. The lemmas and theorems provide
an extensive account of this type of inequalities.
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