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Abstract
Structured frames such as wavelet and Gabor frames in L2(R) have been extensively
studied. But L2(R+) cannot admit wavelet and Gabor systems due to R+ being not a
group under addition. In practice, L2(R+) models the causal signal space. The
function-valued inner product-based Fa-frame for L2(R+) was first introduced by
Hasankhani Fard and Dehghan, where an Fa-frame was called a function-valued
frame. In this paper, we introduce the notions of Fa-equivalence and unitary
Fa-equivalence between Fa-frames, and present a characterization of the
Fa-equivalence and unitary Fa-equivalence. This characterization looks like that of
equivalence and unitary equivalence between frames, but the proof is nontrivial due
to the particularity of Fa-frames.
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1 Introduction
An at most countable sequence {ei}i∈I in a separable Hilbert Space H is called a frame for
H if there exist constants 0 < A ≤ B < ∞ such that

A‖f ‖2 ≤
∑

i∈I

∣∣〈f , fi〉
∣∣2 ≤ B‖f ‖2

for f ∈ H. It was first introduced by Duffin and Schaeffer in [5] to study nonharmonic
Fourier series, but had not attracted much attention until Daubechies, Grossman and
Meyer published their joint work [4] in 1986. Now the theory of frames has seen great
achievements in abstract spaces as well as in function spaces ([3, 10, 11, 13, 14, 18, 25]).
In particular, structured frames in L2(R) such as wavelet and Gabor frames have been ex-
tensively studied. However, structured frames in L2(R+) with R+ = (0,∞) have not. It is
because R is a group under addition but R+ is not. This results in nonexistence of wavelet
and Gabor systems in L2(R+). In practice, the time variable is nonnegative, and L2(R+)
models the causal signal space. Motivated by this observation, some mathematicians stud-
ied Walsh series-based wavelet analysis in L2(R+) using Cantor group operation on R+

([1, 6–9, 16, 17]). Recently, Hasankhani Fard and Dehghan in [12] introduced the notion
of function-valued frame in L2(R+) which is referred to as “Fa-frame” in our papers. Let
us first recall and extend some related notions.
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Given a > 1, a measurable function f on R+ is said to be a-dilation periodic if f (a·) = f (·)
a.e. on R+, and a sequence {fk}k∈Z of measurable functions on R+ is said to be a-dilation
periodic if every fk is a-dilation periodic. Let L2(Z× [1, a)) denote the Hilbert space

L2(
Z× [1, a)

)
=

{
f = {fk}k∈Z :

∫ a

1

∑

k∈Z

∣∣fk(x)
∣∣2 dx < ∞, {fk}k∈Z is a-dilation periodic

}

equipped with the inner product

〈f , g〉L2(Z×[1,a)) =
∫ a

1

∑

k∈Z
fk(x)gk(x) dx for f , g ∈ L2(

Z× [1, a)
)
.

The following definition is an extension of [12, Definition 2.1], and that in [23] which
only dealt with functions in L2(R+). It is slightly different from [12, Definition 2.1], even
for functions in L2(R+), but it is more convenient for our purpose. By [12, Theorem 2.2],
the Fa-inner product herein has many properties similar to those of inner products.

Definition 1.1 Given a > 1, for f , g ∈ L2(R+) (L2(Z× [1, a))), the Fa-inner product 〈f , g〉a

of f and g is defined as the a-dilation periodic function on R+ given by

〈f , g〉a(·) =
∑

j∈Z
ajf

(
aj·)g

(
aj·)

(
〈f , g〉a(·) =

∑

k∈Z
fk(·)gk(·)

)
(1.1)

a.e. on [1, a). The Fa-norm ‖f ‖a of f is defined as ‖f ‖a(·) =
√〈f , f 〉a(·). And f and g are

said to be Fa-orthogonal if 〈f , g〉a(·) = 0 a.e. on [1, a). In symbols, f ⊥Fa g . It is to distinguish
from the orthogonality “⊥” with respect to inner products.

Write

Ba =
{

f ∈ L∞(R+) : f is a-dilation periodic
}

,

and let {Λm}m∈Z denote the a-dilation periodic function sequence on R+ satisfying

Λm(·) =
1√

a – 1
e2π i m·

a–1 on [1, a). (1.2)

The following proposition is taken from [23, Lemma 2.3] which dealt with L2(R+). A sim-
ilar argument shows that it is true for L2(Z× [1, a)).

Proposition 1.1
(i)

∫
[1,a) |f (x)|2 dx =

∑
m∈Z |〈f ,Λm〉L2[1,a)|2 for f ∈ L1[1, a).

(ii) For f , g ∈ L2(R+) (L2(Z× [1, a))) and ϕ ∈ Ba, we have

〈f , g〉a ∈ L1[1, a), 〈f ,ϕg〉a = ϕ〈f , g〉a, (1.3)

〈f , g〉L2(R+) =
∫ a

1
〈f , g〉a(x) dx if f , g ∈ L2(R+), (1.4)

〈f , g〉L2(Z×[1,a)) =
∫ a

1
〈f , g〉a(x) dx if f , g ∈ L2(

Z× [1, a)
)
, (1.5)

‖f + g‖2
a(·) = ‖f ‖2

a(·) + ‖g‖2
a(·) a.e. on [1, a) if f ⊥Fa g. (1.6)
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(iii)
∑

m∈Z |〈f ,Λmg〉L2(R+)|2 =
∫ a

1 |〈f , g〉a(x)|2 dx for f , g ∈ L2(R+), and
∑

m∈Z |〈f ,Λmg〉L2(Z×[1,a))|2 =
∫ a

1 |〈f , g〉a(x)|2 dx for f , g ∈ L2(Z× [1, a)).
(iv) For f , g ∈ L2(R+) (L2(Z× [1, a))), f ⊥Fa g if and only if f ⊥ Λmg for m ∈ Z.
(v) For f , g ∈ L2(R+) (L2(Z× [1, a))), if f ⊥Fa g , then f ⊥ ϕΛmg for m ∈ Z and ϕ ∈ Ba.

The following definition is taken from [12, Definition 4.5] or [23, Definition 1.5].

Definition 1.2 A sequence {fk}k∈Z in L2(R+) is called an Fa-frame for L2(R+) if there exist
constants 0 < A ≤ B < ∞ such that, for each f ∈ L2(R+),

A‖f ‖2
a(·) ≤

∑

k∈Z

∣∣〈f , fk〉a(·)∣∣2
a ≤ B‖f ‖2

a(·) a.e. on [1, a), (1.7)

where A and B are called frame bounds. It is called a Parseval (tight) Fa-frame for L2(R+)
if A = B = 1 (A = B) in (1.7). And it is called an Fa-Bessel sequence in L2(R+) with Bessel
bound B if the right-hand side inequality of (1.7) holds.

For a sequence {fk}k∈Z in L2(R+), its Fa-span is defined by

Fa-span{fn} =
{ ∑

k,m∈Z
ck,mΛmfk : c = {ck,m}k,m∈Z ∈ l0

(
Z

2)
}

, (1.8)

and Fa-span{fk} denotes the closure of Fa-span{fk} in L2(R+), where l0(Z2) is the set of
finitely supported sequences onZ

2. We say {fk}k∈Z is Fa-complete in L2(R+) if Fa-span{fn} =
L2(R+). By [23, Lemma 2.6], {fk}k∈Z is Fa-complete in L2(R+) if and only if f = 0 is a unique
solution to

〈f , fk〉a(·) = 0 a.e. on [1, a) for k ∈ Z

in L2(R+). And {fk}k∈Z is called an Fa-orthonormal system in L2(R+) if 〈fk , fk′ 〉a(·) = δk,k′ a.e.
on [1, a) for k, k′ ∈ Z, and called an Fa-orthonormal basis if it is an Fa-orthonormal system
and Fa-complete in L2(R+).

Recall from [23, Theorem 2.2] and [12, Theorem 4.8] that a sequence {fk}k∈Z in L2(R+) is
an Fa-Bessel sequence (Fa-frame sequence, Fa-frame) in L2(R+) if and only if {Λmfk}m,k∈Z
is a Bessel sequence (frame sequence, frame) in L2(R+) with the same bounds. Also by
a standard argument, a sequence {fk}k∈Z in L2(R+) is an Fa-orthonormal system (Fa-
orthonormal basis) in L2(R+) if and only if {Λmfk}m,k∈Z is an orthonormal system (or-
thonormal basis) in L2(R+). According to this, using “Fa”-language we can say that Fa-
frames {fk}k∈Z of the form fk(·) = a k

2 ψ(ak·) with ψ ∈ L2(R+) have been studied more. Li
and Zhang in [22] characterized Fa-frames, Fa-dual frames and Parseval Fa-frames for
L2(R+) of the form {a k

2 ψ(ak·)}k∈Z, and as a special case, Li and Wang studied Fa-frame
sets in [21]. Its multi-window and vector-valued cases and another variation were studied
in [20, 23, 24, 27]. By [22, Corollary 3.1], for 0 �= ψ ∈ L2(R+), the following are equivalent:

(i) {a k
2 ψ(ak·)}k∈Z is a Parseval Fa-frame for L2(R+).

(ii) {a k
2 ψ(ak·)}k∈Z is an Fa-orthonormal basis.

(iii) {a k
2 ψ(ak·)}k∈Z is an Fa-orthonormal system.
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Obviously, we do not have a similar result for frames. On the other hand, recall from
[3, Theorem 5.4.7] that removing one vector from a frame leaves either a frame or an
incomplete set. Example 2.1 below in Sect. 2 tells us that a similar conclusion does not
hold for Fa-frames. It shows that removing one vector from an Fa-frame possibly leaves
an Fa-complete set which is not an Fa-frame.

From the above discussion, there exist essential differences between frames and Fa-
frames. This paper focuses on general Fa-frames. Two frames {fi}i∈I and {̃fi}i∈I for a sepa-
rable Hilbert space H are said be equivalent (unitarily equivalent) if there exists a bounded
and invertible linear operator (unitary operator) T on H such that f̃i = Tfi for i ∈ I . The
following proposition is taken from [2, 11, 15].

Proposition 1.2 Let {fi}i∈I and {̃fi}i∈I be frames for a separable Hilbert space H. Then
(i) {fi}i∈I and {̃fi}i∈I are equivalent if and only if their analysis operators have the same

range, i.e.,

{{〈f , fi〉
}

i∈I : f ∈H
}

=
{{〈f , f̃i〉

}
i∈I : f ∈H

}
.

(ii) {fi}i∈I and {̃fi}i∈I are unitarily equivalent if and only if

∥∥∥∥
∑

i∈I

cifi

∥∥∥∥ =
∥∥∥∥
∑

i∈I

cĩfi

∥∥∥∥ for c ∈ l2(I).

A natural question is whether Proposition 1.2 can be extended to “Fa-frame” setting.
This paper gives an affirmative answer. For this purpose, we first need to introduce “(uni-
tary) equivalence” between Fa-frames. It is different from that of frames due to the partic-
ularity of Fa-frames.

Definition 1.3 Let H, K = L2(R+) or L2(Z× [1, a)), a bounded linear operator T : H →K
is said to be a-factorable if

T(ϕf ) = ϕT(f ) for all f ∈H and ϕ ∈ Ba.

Definition 1.4 Two Fa-frames F = {fk}k∈Z and F̃ = {f̃k}k∈Z for L2(R+) are said to be Fa-
equivalent (unitarily Fa-equivalent) if there exists an a-factorable, bounded and invertible
linear operator (a-factorable and unitary operator) T on L2(R+) such that

Tfk = f̃k for k ∈ Z.

Let F = {fk}k∈Z be an Fa-Bessel sequence in L2(R+). Define the Fa-analysis operator DF :
L2(R+) → L2(Z× [1, a)) and the Fa-synthesis operator RF : L2(Z× [1, a)) → L2(R+) by

DF f =
{〈f , fk〉a

}
k∈Z for f ∈ L2(R+) (1.9)

and

RF g =
∑

k∈Z
gkfk for g ∈ L2(

Z× [1, a)
)
, (1.10)
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respectively. By [23, Theorem 2.1] they are well defined and bounded, and D∗
F = RF . The

Fa-frame operator SF of F is defined by SF = RF DF . Obviously, these three operators are all
a-factorable. The main result of this paper is as follows.

Theorem 1.1 Let F = {fk}k∈Z and F̃ = {f̃k}k∈Z be Fa-frames for L2(R+). Then
(i) F and F̃ are Fa-equivalent if and only if

range(DF ) = range(DF̃ ). (1.11)

(ii) F and F̃ are unitarily Fa-equivalent if and only if

‖RF g‖L2(R+) = ‖RF̃ g‖L2(R+) for g ∈ L2(
Z× [1, a)

)
. (1.12)

The rest of this paper is organized as follows. Section 2 makes preparation for Theo-
rem 1.1. Section 3 is devoted to proving Theorem 1.1.

2 Some preliminaries
This section is an auxiliary one. On one hand, we give an example that is an Fa-frame, but
when removing some element, it leaves an Fa-complete set which is not an Fa-frame for
L2(R+). It is well known that removing an element from a frame leaves either a frame or an
incomplete set. This demonstrates that Fa-frames are very different from frames. On the
other hand, we give some lemmas for later use. For this purpose, we first introduce some
notations which are frequently used through the paper.

For a set E, we denote by XE the characteristic function of E. Given f0 ∈ L2(R+)
(L2(Z × [1, a))), a nonempty subset V of L2(R+) (L2(Z × [1, a))) and an a-dilation peri-
odic measurable function ϕ on R+, f0⊥Fa V means that f0⊥Fa g for each g ∈ V , ϕV , V (ϕ)
and V ⊥Fa denote the sets

ϕV = {ϕf : f ∈ V }, (2.1)

V (ϕ) =
{
ϕf : f ∈ V ,ϕf ∈ L2(R+)

}
if V ⊂ L2(R+), (2.2)

V (ϕ) =
{
ϕf : f ∈ V ,ϕf ∈ L2(

Z× [1, a)
)}

if V ⊂ L2(
Z× [1, a)

)
, (2.3)

V ⊥Fa = {f : f ⊥Fa g for each g ∈ V }, (2.4)

respectively. Observe that ϕV = V (ϕ) if ϕ ∈ Ba. Let H and K be Hilbert spaces, and V be
a closed linear subspace of H. We denote by V ⊥ and PV the orthogonal complement of
V in H and the orthogonal projection from H onto V , respectively. For a bounded linear
operator T from H to K, we denote by T |V , T∗, range(T) and ker(T) its restriction onto
V , its adjoint operator, its range and its kernel, respectively. If T is also of closed range, we
denote by T† the pseudo-inverse of T , i.e.,

T†(y + z) = (T |(ker(T))⊥ )–1y for y ∈ range(T) and z ∈ (
range(T)

)⊥.

Example 2.1 Let a = 2. Define {fk}k∈Z by

fk(x) =

⎧
⎪⎪⎨

⎪⎪⎩

2 k
2 X[2–k ,2–k+1)(x) if k ≥ 0;

X[ 2
3 , 4

3 )(x) + (2 – x) 1
3 X[ 4

3 ,2)(x) if k = –1;

2 k+1
2 X[2–k–1,2–k )(x) if k ≤ –2.
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Then
(i) {fk}k∈Z is an Fa-frame for L2(R+).

(ii) {fk}0 �=k∈Z is not an Fa-frame, but it is Fa-complete in L2(R+).

Proof Obviously, {fk}k∈Z is a sequence in L2(R+). By a standard computation, we have, for
each f ∈ L2(R+),

∑

0 �=k∈Z

∣∣〈f , fk〉a(·)∣∣2 =

⎧
⎪⎨

⎪⎩

‖f ‖2
a(·) a.e. on [1, 4

3 );∑
0 �=j∈Z 2j|f (2j·)|2
+ |2–1f (2–1·) + f (·)(2 – ·) 1

3 |2 a.e. on [ 4
3 , 2),

(2.5)

∑

k∈Z

∣∣〈f , fk〉a(·)∣∣2 =

{
‖f ‖2

a(·) + |f (·)|2 a.e. on [1, 4
3 );

‖f ‖2
a(·) + |2–1f (2–1·) + f (·)(2 – ·) 1

3 |2 a.e. on [ 4
3 , 2).

(2.6)

From (2.6), it follows that, for each f ∈ L2(R+),

‖f ‖2
a(·) ≤

∑

k∈Z

∣∣〈f , fk〉a(·)∣∣2 ≤ 3‖f ‖2
a(·) a.e. on [1, 2).

Thus (i) holds. Next we prove (ii). By (2.5) it follows that, for f ∈ L2(R+),

∑

0 �=k∈Z

∣∣〈f , fk〉a(·)∣∣2 = 0 a.e. on [1, a)

implies that f = 0. This shows that {fk}0 �=k∈Z is Fa-complete in L2(R+). Take f ∈ L2(R+) by

f (x) = X[ 2
3 , 4

3 )(x) – 2–1(2 – x)– 1
3 X[ 4

3 ,2)(x).

Then

‖f ‖2
a(x) = 2–1 + 2–2(2 – x)– 2

3 for x ∈ [4
3

, 2
)
.

But
∑

0 �=k∈Z |〈f , fk〉a(x)|2 = 2–1 for x ∈ [ 4
3 , 2) by (2.5). Observe that limx→2 ‖f ‖2

a(x) = ∞. It
follows that there exists no positive constant A such that

A‖f ‖2
a(·) ≤

∑

0 �=k∈Z

∣∣〈f , fk〉a(·)∣∣2 a.e. on [1, 2).

Therefore, {fk}0 �=k∈Z is not an Fa-frame for L2(R+). �

By a standard argument, we have the following.

Lemma 2.1 Let A be a bounded linear surjection from a Hilbert space H onto another
Hilbert space K. Then

A† = A∗(AA∗)–1.

By a standard argument similar to the case of frame, we have the following lemma, which
is also a special case of [19, Lemma 2.5].
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Lemma 2.2 Let {fk}k∈Z be an Fa-frame for L2(R+) with frame bounds A and B, and SF be its
frame operator. Then SF is a bounded and invertible linear operator on L2(R+), {S–1

F fk}k∈Z
is an Fa-frame for L2(R+) with frame bounds B–1 and A–1, and

f =
∑

k∈Z

〈
f , S–1

F fk
〉
afk for f ∈ L2(R+).

The following lemma demonstrates that the orthogonal complement operation pre-
serves unimodular factor product invariant property of initial sets.

Lemma 2.3 Given ϕ ∈ Ba with |ϕ| = 1 and a nonempty subset V of L2(R+) (L2(Z× [1, a))),
let ϕV = V . Then ϕV ⊥ = V ⊥.

Proof Observe that, for f ∈ L2(R+) (L2(Z × [1, a))), f ⊥ϕV if and only if ϕf ⊥V . It follows
that (ϕV )⊥ = ϕV ⊥. On the other hand, (ϕV )⊥ = V ⊥ if ϕV = V . Therefore, ϕV ⊥ = V ⊥. �

The following lemma is an extension of [19, Lemma 2.3] which dealt with the subspaces
of L2(R+). The proof herein is simpler than that of [19, Lemma 2.3].

Lemma 2.4 Let V be a closed linear subspace of L2(R+) (L2(Z× [1, a))). Then the following
are equivalent:

(i) �mV = V for m ∈ Z.
(ii) V ⊥Fa = V ⊥.
(iii) V (ϕ) ⊂ V for an arbitrary a-dilation periodic measurable function on R+.

Proof By Proposition 1.1(iv), for f ∈ L2(R+) (L2(Z× [1, a))), f ⊥Fa V if and only if f ⊥�mV
for each m ∈ Z. On the other hand, (i) is equivalent to V ⊥ = (�mV )⊥ for each m ∈ Z. It fol-
lows that (i) is equivalent to (ii). Since (i) is equivalent to �mV ⊂ V for each m ∈ Z, (iii) im-
plies (i). Next we prove (ii) implies (iii) to finish the proof. Suppose (ii) holds. Observe that
V ⊥ is a closed subspace, and V ⊥ = �mV ⊥ for each m ∈ Z by Lemma 2.3. Applying the
equivalence between (i) and (ii) to V ⊥, we obtain

V =
(
V ⊥)⊥ =

(
V ⊥)⊥Fa .

It follows that

V =
(
V ⊥Fa

)⊥Fa (2.7)

by (ii). On the other hand,

〈f ,ϕg〉a = ϕ〈f , g〉a

for g ∈ L2(R+) (L2(Z× [1, a))) and a-dilation periodic measurable functions ϕ on R+ sat-
isfying ϕg ∈ L2(R+) (L2(Z× [1, a))). It follows that V ⊥Fa ⊂ (V (ϕ))⊥Fa , and thus

[(
V (ϕ)

)⊥Fa
]⊥Fa ⊂ V

by (2.7). This leads to (iii) by the fact that V (ϕ) ⊂ [(V (ϕ))⊥Fa ]⊥Fa . The proof is completed.�
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Lemma 2.5 Let V be a closed linear subspace of L2(R+) (L2(Z× [1, a))) satisfying �mV = V
for each m ∈ Z. Then

PV (ϕf ) = ϕPV f

for f ∈ L2(R+) (L2(Z× [1, a))) and ϕ ∈ Ba.

Proof Fix ϕ ∈ Ba. Then V (ϕ) = ϕV . By Lemma 2.3, V ⊥ is also a closed linear subspace of
L2(R+) (L2(Z× [1, a))) satisfying �mV ⊥ = V ⊥ for each m ∈ Z. Applying Lemma 2.4 to V ⊥

leads to ϕV ⊥ ⊂ V ⊥. It follows that ϕPV⊥ f ∈ V ⊥ for f ∈ L2(R+) (L2(Z× [1, a))), and thus

PV (ϕPV⊥ f ) = 0 for f ∈ L2(R+)
(
L2(

Z× [1, a)
))

. (2.8)

By Lemma 2.4, we have ϕPV f ∈ V which implies that

PV (ϕPV f ) = ϕPV f

for f ∈ L2(R+) (L2(Z× [1, a))). This together with (2.8) leads to

PV (ϕf ) = PV (ϕPV f + ϕPV⊥ f )

= ϕPV f

for f ∈ L2(R+) (L2(Z× [1, a))). The proof is completed. �

Lemma 2.6 Let V and W be closed subspaces of L2(R+) or L2(Z× [1, a)) satisfying �mV =
V and �mW = W for each m ∈ Z, and T : V → W be an a-factorable bounded linear
operator from V to W . Then

(i) T∗, T∗T and TT∗ are a-factorable, and 〈Tf , g〉a = 〈f , T∗g〉a for f ∈ V , g ∈ W .
(ii) T–1 is a-factorable if T is invertible.

Proof For simplicity, for f ∈ V and g ∈ W , we use 〈Tf , g〉 and 〈f , T∗g〉 to denote the inner
products of Tf and g , and f and T∗g in the corresponding spaces, i.e.,

〈Tf , g〉 =

{
〈Tf , g〉L2(R+) if W ⊂ L2(R+);
〈Tf , g〉L2(Z×[1,a)) if W ⊂ L2(Z× [1, a))

and

〈
f , T∗g

〉
=

{
〈f , T∗g〉L2(R+) if V ⊂ L2(R+);
〈f , T∗g〉L2(Z×[1,a)) if V ⊂ L2(Z× [1, a)).

(i) If T∗ is a-factorable, so are T∗T and TT∗ since T is a-factorable. Arbitrarily fix f ∈ V ,
g ∈ W and ϕ ∈ Ba. Then ϕV ⊂ V and ϕW ⊂ W by Lemma 2.4. Since T is a-factorable,

〈
T(ϕf ), g

〉
= 〈ϕTf , g〉 = 〈Tf ,ϕg〉 =

〈
f , T∗(ϕg)

〉
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and

〈
T(ϕf ), g

〉
=

〈
ϕf , T∗g

〉
=

〈
f ,ϕT∗g

〉
.

It follows that

〈
f , T∗(ϕg)

〉
=

〈
f ,ϕT∗g

〉
,

and thus T∗(ϕg) = ϕT∗g by the arbitrariness of f . And again by the arbitrariness of ϕ and
g , T∗ is a-factorable. Next we prove that

〈Tf , g〉a =
〈
f , T∗g

〉
a for f ∈ V and g ∈ W . (2.9)

Observe that, for f ∈ V and g ∈ W , 〈Tf , g〉 = 〈f , T∗g〉. By Proposition 1.1(ii), it may be
rewritten as

∫ a

1
〈Tf , g〉a(x) dx =

∫ a

1

〈
f , T∗g

〉
a(x) dx for f ∈ V and g ∈ W . (2.10)

Given an arbitrary E ⊂ [1, a) with |E| > 0, replace f by X⋃
j∈Z ajEf in (2.10) (this can be done

by Lemma 2.4). Then we have

∫

E
〈Tf , g〉a(x) dx =

∫

E

〈
f , T∗g

〉
a(x) dx

due to the fact that T is a-factorable. It leads to (2.9) by the arbitrariness of E and [26,
Theorem 1.40].

(ii) Suppose T is invertible. For g ∈ W and ϕ ∈ Ba, we have

T
(
ϕT–1g

)
= ϕTT–1g = ϕg

Since T is a-factorable. It follows that ϕT–1g = T–1(ϕg) for g ∈ W . The proof is com-
pleted. �

3 Proof of Theorem 1.1

Proof of Theorem 1.1 (i) Necessity. Suppose F and F̃ are Fa-equivalent. Then there exists
an a-factorable, bounded and invertible linear operator T on L2(R+) such that

Tfk = f̃k for k ∈ Z.

By Lemma 2.6, it follows that, for each f ∈ L2(R+),

〈f , f̃k〉a =
〈
T∗f , fk

〉
a for k ∈ Z. (3.1)

Since T is bounded and invertible, so is T∗. This implies that range(T∗) = L2(R+). There-
fore, (3.1) implies that range(DF ) = range(DF̃ ).
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Sufficiency. Suppose range(DF ) = range(DF̃ ) = V . Obviously, �mV = V for m ∈ Z. By
Lemma 2.2 and [23, Theorem 2.1], range(RF ) = L2(R+). This implies that V is closed due
to the fact that DF = R∗

F . Let RF |V be the restriction of RF on V . We first claim that
(RF |V )∗(RF |V ) is bounded and invertible, and its inverse [(RF |V )∗(RF |V )]–1 is a-factorable.
Let us check it. For g ∈ V and f ∈ L2(R+), we have

〈
g, (RF |V )∗f

〉
L2(Z×[1,a)) =

〈
(RF |V )g, f

〉
L2(R+)

= 〈RF g, f 〉L2(R+)

=
〈
g, R∗

F f
〉
L2(Z×[1,a)).

This implies that

(RF |V )∗f = R∗
F f for f ∈ L2(R+) (3.2)

by the arbitrariness of g . Since range(RF ) = L2(R+) and R∗
F = DF ,

V = range
(
R∗

F
)

= range
(
R∗

F RF
)
. (3.3)

Also observe that

range(RF ) = RF
[(

ker(RF )
)⊥]

= RF (V ) = range(RF |V ) (3.4)

due to (ker(RF ))⊥ = V . Collecting (3.2)–(3.4) gives

V = range
[
(RF |V )∗(RF |V )

]
. (3.5)

Since RF |V is injective, so is (RF |V )∗(RF |V ). This together with (3.5) leads to (RF |V )∗(RF |V )
being a bounded bijection on V . On the other hand, RF |V is a-factorable since RF is a-
factorable and �mV = V for m ∈ Z. By Lemma 2.6, (RF |V )∗(RF |V ) and [(RF |V )∗(RF |V )]–1

are both a-factorable. We have proved the claim. Now we define T : L2(R+) → L2(R+) by

T = RF̃
[
(RF |V )∗(RF |V )

]–1DF .

Then it is well defined and bounded. Next we prove that T is an a-factorable bijection
satisfying f̃k = Tfk for k ∈ Z to finish the proof of sufficiency. By Lemma 2.2 and [23, The-
orem 2.1] and the fact that (ker(RF̃ ))⊥ = V , we have

L2(R+) = range(RF̃ ) = RF̃ (V ). (3.6)

Also observing (RF |V )∗(RF |V ) being a bijection on V leads to

V = range
([

(RF |V )∗(RF |V )
]–1DF

)
.

It follows that

L2(R+) = range(T) (3.7)
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by (3.6). Since F is an Fa-frame for L2(R+), DF is injective, and thus

[
(RF |V )∗(RF |V )

]–1DF

is injective. Also RF̃ is injective when restricted on V , and

range
([

(RF |V )∗(RF |V )
]–1DF

) ⊂ V .

It follows that T is injective. Therefore, T is bijective. Since RF̃ , DF and [(RF |V )∗(RF |V )]–1

are all a-factorable by Lemma 2.6, so is T . Finally, we prove that

f̃k = Tfk for k ∈ Z. (3.8)

For k ∈ Z, define e(k) = {e(k)
l (·)}l∈Z ∈ L2(Z× [1, a)) by

e(k)
l (·) =

{
0 if l �= k;
1 if l = k

on [1, a). Then, for k ∈ Z,

fk = RF e(k) = RF
(
PV e(k) + PV⊥e(k)) = RF PV e(k)

due to V ⊥ = ker(RF ), and thus

Tfk = RF̃
[
(RF |V )∗(RF |V )

]–1R∗
F RF PV e(k).

It follows that

Tfk = RF̃
[
(RF |V )∗(RF |V )

]–1(RF |V )∗(RF |V )PV e(k)

= RF̃ PV e(k)

by (3.2). Also observing that

f̃k = RF̃ e(k) = RF̃ PV e(k)

leads to (3.8).
(ii) Necessity. Suppose F and F̃ are unitarily Fa-equivalent. Then there exists an a-

factorable and unitary operator T on L2(R+) such that

Tfk = f̃k for k ∈ Z.

It follows that

RF̃ g =
∑

k∈Z
gkTfk = TRF g

for g ∈ L2(Z× [1, a)), and thus (1.12) holds by the unitarity of T .



Hussain and Li Journal of Inequalities and Applications         (2020) 2020:59 Page 12 of 14

Sufficiency. Suppose (1.12) holds. Then ker(RF ) = ker(RF̃ ). On the other hand, range(DF )
and range(DF̃ ) are closed by the arguments in (i). It follows that

range(DF ) = range(DF̃ )

due to the fact that R∗
F = DF and R∗

F = DF̃ . Therefore, F and F̃ are Fa-equivalent, and

T = RF̃
[
(RF |V )∗(RF |V )

]–1DF

is an a-factorable, bounded bijection on L2(R+) satisfying f̃k = Tfk for k ∈ Z by (i) and its
proof. Next we prove that T is unitary to finish the proof. Write V = range(DF ) = range(DF̃ ),
and define D̃F : L2(R+) → V by

D̃F f = DF f for f ∈ L2(R+).

Observe that D̃F is different from DF since V need not be equal to L2(Z × [1, a)) and DF

is from L2(R+) to L2(Z× [1, a)). Obviously, it is well defined. For f ∈ L2(R+) and g ∈ V , we
have

〈D̃F f , g〉L2(Z×[1,a)) = 〈DF f , g〉L2(Z×[1,a))

=
〈
f , D∗

F g
〉
L2(R+)

=
〈
f , (RF |V )g

〉
L2(R+).

It follows that

(D̃F )∗ = RF |V . (3.9)

Since D̃F is surjective, we have

(D̃F )† = (D̃F )∗
[
D̃F (D̃F )∗

]–1

by Lemma 2.1. Thus

(D̃F )† = (RF |V )
[
(RF |V )∗(RF |V )

]–1

= RF
[
(RF |V )∗(RF |V )

]–1

by (3.9). Also observe that

(D̃F )†DF f = (D̃F )†D̃F f = P(ker(D̃F ))⊥ f = P(ker(DF ))⊥ f

for f ∈ L2(R+). It follows that

RF
[
(RF |V )∗(RF |V )

]–1DF f = P(ker(DF ))⊥ f = f
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for f ∈ L2(R+) due to DF being injective. Again substituting g for

[
(RF |V )∗(RF |V )

]–1DF f

in (1.12), we obtain

‖Tf ‖L2(R+) =
∥∥RF

[
(RF |V )∗(RF |V )

]–1DF f
∥∥

L2(R+)

= ‖f ‖L2(R+).

This shows that T is norm-preserving and thus is unitary. The proof is completed. �

4 Conclusions
The space L2(R+) does not admit wavelet and Gabor systems due to R+ being not a group
under addition. This paper addresses the Fa-frame for L2(R+). We introduce the notions
of Fa-equivalence and unitary Fa-equivalence between Fa-frames, and characterize the
Fa-equivalence and unitary Fa-equivalence. This characterization looks like that of equiv-
alence and unitary equivalence between frames, but the proof is nontrivial due to the par-
ticularity of Fa-frames.
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