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Givena > 1, a measurable functionf on R+ is said to bea-dilation periodic if f (a·) = f (·)
a.e. onR+, and a sequence{fk}k� Z of measurable functions onR+ is said to bea-dilation
periodic if every fk is a-dilation periodic. Let L2(Z × [1,a)) denote the Hilbert space

L2�
Z × [1,a)

�
=

�
f = {fk}k� Z :

� a

1

�

k� Z

�
�fk(x)

�
�2 dx < � ,{fk}k� Z is a-dilation periodic

�

equipped with the inner product

� f ,g� L2(Z× [1,a)) =
� a

1

�

k� Z

fk(x)gk(x) dx for f ,g � L2�
Z × [1,a)

�
.

The following de“nition is an extension of [12, De“nition 2.1], and that in [23] which
only dealt with functions in L2(R+). It is slightly di�erent from [ 12, De“nition 2.1], even
for functions in L2(R+), but it is more convenient for our purpose. By [12, Theorem 2.2],
the Fa-inner product herein has many properties similar to those of inner products.

Definition 1.1 Givena > 1, for f , g � L2(R+) (L2(Z × [1,a))), theFa-inner product � f ,g� a

of f and g is de“ned as thea-dilation periodic function on R+ given by

� f ,g� a(·) =
�

j� Z

ajf
�
aj·

�
g
�
aj·

�
	

� f ,g� a(·) =
�

k� Z

fk(·)gk(·)



(1.1)

a.e. on [1,a). The Fa-norm � f � a of f is de“ned as� f � a(·) =
�

� f , f � a(·). And f and g are
said to beFa-orthogonal if � f ,g� a(·) = 0 a.e. on [1,a). In symbols,f � Fa g. It is to distinguish
from the orthogonality •� Ž with respect to inner products.

Write

Ba =
�

f � L� (R+) : f is a-dilation periodic


,

and let {Λm}m� Z denote thea-dilation periodic function sequence onR+ satisfying

Λm(·) =
1

	
a … 1

e2π i m·
a…1 on [1,a). (1.2)

The following proposition is taken from [23, Lemma 2.3] which dealt withL2(R+). A sim-
ilar argument shows that it is true forL2(Z × [1,a)).

Proposition 1.1
(i)

�
[1,a) |f (x)|2 dx =

�
m� Z |� f ,Λm� L2[1,a)|

2 for f � L1[1,a).
(ii) For f ,g � L2(R+) (L2(Z × [1,a))) and ϕ � Ba, we have

� f ,g� a � L1[1,a), � f ,ϕg� a = ϕ� f ,g� a, (1.3)

� f ,g� L2(R+) =
� a

1
� f ,g� a(x) dx if f ,g � L2(R+), (1.4)

� f ,g� L2(Z× [1,a)) =
� a

1
� f ,g� a(x) dx if f ,g � L2�

Z × [1,a)
�
, (1.5)

� f + g� 2
a(·) = � f � 2

a(·) + � g� 2
a(·) a.e. on [1,a) if f � Fa g. (1.6)
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(iii)
�

m� Z |� f ,Λmg� L2(R+)|
2 =

� a
1 |� f ,g� a(x)|2 dx for f ,g � L2(R+), and

�
m� Z |� f ,Λmg� L2(Z× [1,a))|

2 =
� a

1 |� f ,g� a(x)|2 dx for f ,g � L2(Z × [1,a)).
(iv) For f ,g � L2(R+) (L2(Z × [1,a))), f � Fa g if and only if f � Λmg for m � Z .
(v) For f ,g � L2(R+) (L2(Z × [1,a))), if f � Fa g , then f � ϕΛmg for m � Z and ϕ � Ba.

The following de“nition is taken from [12, De“nition 4.5] or [ 23, De“nition 1.5].

Definition 1.2 A sequence{fk}k� Z in L2(R+) is called anFa-frame for L2(R+) if there exist

constants 0 <A � B < � such that, for eachf � L2(R+),

A� f � 2
a(·) �

�

k� Z

�
�� f , fk � a(·)

�
�2
a � B� f � 2

a(·) a.e. on [1,a), (1.7)

whereA and B are called frame bounds. It is called a Parseval (tight)Fa-frame for L2(R+)

if A = B = 1 (A = B) in (1.7). And it is called anFa-Bessel sequence inL2(R+) with Bessel

bound B if the right-hand side inequality of (1.7) holds.

For a sequence{fk}k� Z in L2(R+), its Fa-span is de“ned by

Fa-span{fn} =
� �

k,m� Z

ck,mΛmfk : c = {ck,m}k,m� Z � l0
�
Z2�

�
, (1.8)

and Fa-span{fk} denotes the closure ofFa-span{fk} in L2(R+), where l0(Z2) is the set of

“nitely supported sequences onZ2. We say{fk}k� Z isFa-complete in L2(R+) if Fa-span{fn} =

L2(R+). By [23, Lemma 2.6],{fk}k� Z is Fa-complete in L2(R+) if and only if f = 0 is a unique

solution to

� f , fk � a(·) = 0 a.e. on [1,a) for k � Z

in L2(R+). And {fk}k� Z is called anFa-orthonormal system in L2(R+) if � fk, fk
 � a(·) = δk,k
 a.e.

on [1,a) for k,k
 � Z, and called anFa-orthonormal basis if it is an Fa-orthonormal system

andFa-complete inL2(R+).

Recall from [23, Theorem 2.2] and [12, Theorem 4.8] that a sequence{fk}k� Z in L2(R+) is

an Fa-Bessel sequence (Fa-frame sequence,Fa-frame) in L2(R+) if and only if {Λmfk}m,k� Z

is a Bessel sequence (frame sequence, frame) inL2(R+) with the same bounds. Also by

a standard argument, a sequence{fk}k� Z in L2(R+) is an Fa-orthonormal system (Fa-

orthonormal basis) inL2(R+) if and only if {Λmfk}m,k� Z is an orthonormal system (or-

thonormal basis) inL2(R+). According to this, using •FaŽ-language we can say thatFa-

frames{fk}k� Z of the form fk(·) = a k
2 ψ(ak·) with ψ � L2(R+) have been studied more. Li

and Zhang in [22] characterizedFa-frames,Fa-dual frames and ParsevalFa-frames for

L2(R+) of the form {a k
2 ψ(ak·)}k� Z, and as a special case, Li and Wang studiedFa-frame

sets in [21]. Its multi-window and vector-valued cases and another variation were studied

in [20, 23, 24, 27]. By [22, Corollary 3.1], for 0�= ψ � L2(R+), the following are equivalent:

(i) {a k
2 ψ(ak·)}k� Z is a Parseval Fa-frame for L2(R+).

(ii) {a k
2 ψ(ak·)}k� Z is an Fa-orthonormal basis.

(iii) {a k
2 ψ(ak·)}k� Z is an Fa-orthonormal system.
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Obviously, we do not have a similar result for frames. On the other hand, recall from

[3, Theorem 5.4.7] that removing one vector from a frame leaves either a frame or an

incomplete set. Example2.1 below in Sect.2 tells us that a similar conclusion does not

hold for Fa-frames. It shows that removing one vector from anFa-frame possibly leaves

an Fa-complete set which is not anFa-frame.

From the above discussion, there exist essential di�erences between frames andFa-

frames. This paper focuses on generalFa-frames. Two frames{fi}i� I and{�fi}i� I for a sepa-

rable Hilbert spaceH are said be equivalent (unitarily equivalent) if there exists a bounded

and invertible linear operator (unitary operator)T on H such that�fi = Tfi for i � I. The

following proposition is taken from [2, 11, 15].

Proposition 1.2 Let {fi}i� I and {�fi}i� I be frames for a separable Hilbert space H . Then
(i) {fi}i� I and {�fi}i� I are equivalent if and only if their analysis operators have the same

range, i.e.,

��
� f , fi�



i� I : f � H



=

��
� f ,�fi�



i� I : f � H



.

(ii) {fi}i� I and {�fi}i� I are unitarily equivalent if and only if

�
�
�
�
�

i� I

cifi

�
�
�
� =

�
�
�
�
�

i� I

ci�fi

�
�
�
� for c � l2(I).

A natural question is whether Proposition1.2 can be extended to •Fa-frameŽ setting.

This paper gives an a�rmative answer. For this purpose, we “rst need to introduce •(uni-

tary) equivalenceŽ betweenFa-frames. It is di�erent from that of frames due to the partic-

ularity of Fa-frames.

Definition 1.3 Let H , K = L2(R+) or L2(Z × [1,a)), a bounded linear operatorT : H � K
is said to bea-factorable if

T(ϕf ) = ϕT(f ) for all f � H andϕ � Ba.

Definition 1.4 Two Fa-frames F = {fk}k� Z and �F = {�fk}k� Z for L2(R+) are said to beFa-

equivalent (unitarilyFa-equivalent) if there exists ana-factorable, bounded and invertible

linear operator (a-factorable and unitary operator)T on L2(R+) such that

Tfk = �fk for k � Z.

Let F = {fk}k� Z be anFa-Bessel sequence inL2(R+). De“ne the Fa-analysis operator DF :

L2(R+) � L2(Z × [1,a)) and theFa-synthesis operator RF : L2(Z × [1,a)) � L2(R+) by

DF f =
�
� f , fk � a



k� Z for f � L2(R+) (1.9)

and

RF g =
�

k� Z

gkfk for g � L2�
Z × [1,a)

�
, (1.10)
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respectively. By [23, Theorem 2.1] they are well de“ned and bounded, andD

F = RF . The

Fa-frame operator SF of F is de“ned bySF = RF DF . Obviously, these three operators are all
a-factorable. The main result of this paper is as follows.

Theorem 1.1 Let F = {fk}k� Z and �F = {�fk}k� Z be Fa-frames for L2(R+). Then
(i) F and �F are Fa-equivalent if and only if

range(DF ) = range(D�F ). (1.11)

(ii) F and �F are unitarily Fa-equivalent if and only if

� RF g� L2(R+) = � R�F g� L2(R+) for g � L2�
Z × [1,a)

�
. (1.12)

The rest of this paper is organized as follows. Section2 makes preparation for Theo-
rem 1.1. Section3 is devoted to proving Theorem1.1.

2 Some preliminaries
This section is an auxiliary one. On one hand, we give an example that is anFa-frame, but
when removing some element, it leaves anFa-complete set which is not anFa-frame for
L2(R+). It is well known that removing an element from a frame leaves either a frame or an
incomplete set. This demonstrates thatFa-frames are very di�erent from frames. On the
other hand, we give some lemmas for later use. For this purpose, we “rst introduce some
notations which are frequently used through the paper.

For a set E, we denote byXE the characteristic function of E. Given f0 � L2(R+)
(L2(Z × [1,a))), a nonempty subsetV of L2(R+) (L2(Z × [1,a))) and ana-dilation peri-
odic measurable functionϕ on R+, f0� Fa V means thatf0� Fa g for eachg � V , ϕV , V (ϕ)
andV � Fa denote the sets

ϕV = {ϕf : f � V }, (2.1)

V (ϕ) =
�
ϕf : f � V ,ϕf � L2(R+)



if V � L2(R+), (2.2)

V (ϕ) =
�
ϕf : f � V ,ϕf � L2�

Z × [1,a)
�


if V � L2�
Z × [1,a)

�
, (2.3)

V � Fa = {f : f � Fa g for eachg � V }, (2.4)

respectively. Observe thatϕV = V (ϕ) if ϕ � Ba. Let H andK be Hilbert spaces, andV be
a closed linear subspace ofH . We denote byV � and PV the orthogonal complement of
V in H and the orthogonal projection fromH onto V , respectively. For a bounded linear
operator T from H to K, we denote byT |V , T 
 , range(T) and ker(T) its restriction onto
V , its adjoint operator, its range and its kernel, respectively. IfT is also of closed range, we
denote byT† the pseudo-inverse ofT , i.e.,

T†(y + z) = (T |(ker(T))� )…1y for y � range(T) andz �
�
range(T)

� �
.

Example 2.1 Leta = 2. De“ne {fk}k� Z by

fk(x) =

�
���

���

2
k
2 X[2…k ,2…k+1)(x) if k � 0;

X[ 2
3 ,4

3 )(x) + (2 …x)
1
3 X[ 4

3 ,2)(x) if k = …1;

2
k+1
2 X[2…k…1,2…k )(x) if k � …2.
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Then
(i) {fk}k� Z is an Fa-frame for L2(R+).

(ii) {fk}0�=k� Z is not an Fa-frame, but it is Fa-complete in L2(R+).

Proof Obviously,{fk}k� Z is a sequence inL2(R+). By a standard computation, we have, for
eachf � L2(R+),

�

0�=k� Z

�
�� f , fk � a(·)

�
�2

=

�
��

��

� f � 2
a(·) a.e. on [1,43);

�
0�=j� Z 2j|f (2j·)|2

+ |2…1f (2…1·) + f (·)(2 …·)
1
3 |2 a.e. on [43, 2),

(2.5)

�

k� Z

�
�� f , fk � a(·)

�
�2

=

�
� f � 2

a(·) + |f (·)|2 a.e. on [1,43);

� f � 2
a(·) + |2…1f (2…1·) + f (·)(2 …·)

1
3 |2 a.e. on [43, 2).

(2.6)

From (2.6), it follows that, for eachf � L2(R+),

� f � 2
a(·) �

�

k� Z

�
�� f , fk � a(·)

�
�2

� 3� f � 2
a(·) a.e. on [1,2).

Thus (i) holds. Next we prove (ii). By (2.5) it follows that, for f � L2(R+),

�

0�=k� Z

�
�� f , fk � a(·)

�
�2

= 0 a.e. on [1,a)

implies that f = 0. This shows that{fk}0�=k� Z is Fa-complete inL2(R+). Takef � L2(R+) by

f (x) = X[ 2
3 ,4

3 )(x) … 2…1(2 …x)…1
3 X[ 4

3 ,2)(x).

Then

� f � 2
a(x) = 2…1+ 2…2(2 …x)…2

3 for x �
� 4
3

,2
�
.

But
�

0�=k� Z |� f , fk � a(x)|2 = 2…1for x � [ 4
3, 2) by (2.5). Observe thatlimx� 2 � f � 2

a(x) = � . It
follows that there exists no positive constantA such that

A� f � 2
a(·) �

�

0�=k� Z

�
� � f , fk � a(·)

�
�2

a.e. on [1,2).

Therefore,{fk}0�=k� Z is not anFa-frame for L2(R+). �

By a standard argument, we have the following.

Lemma 2.1 Let A be a bounded linear surjection from a Hilbert space H onto another
Hilbert space K. Then

A † = A 
 �
AA 
 � …1

.

By a standard argument similar to the case of frame, we have the following lemma, which
is also a special case of [19, Lemma 2.5].
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Lemma 2.2 Let {fk}k� Z be an Fa-frame for L2(R+) with frame bounds A and B,and SF be its
frame operator. Then SF is a bounded and invertible linear operator on L2(R+), {S…1

F fk}k� Z

is an Fa-frame for L2(R+) with frame bounds B…1and A…1, and

f =
�

k� Z

�
f ,S…1

F fk
�
afk for f � L2(R+).

The following lemma demonstrates that the orthogonal complement operation pre-
serves unimodular factor product invariant property of initial sets.

Lemma 2.3 Given ϕ � Ba with |ϕ| = 1 and a nonempty subset V of L2(R+) (L2(Z × [1,a))),
let ϕV = V . Then ϕV � = V � .

Proof Observe that, forf � L2(R+) (L2(Z × [1,a))), f � ϕV if and only if ϕf � V . It follows
that (ϕV )� = ϕV � . On the other hand, (ϕV )� = V � if ϕV = V . Therefore,ϕV � = V � . �

The following lemma is an extension of [19, Lemma 2.3] which dealt with the subspaces
of L2(R+). The proof herein is simpler than that of [19, Lemma 2.3].

Lemma 2.4 Let V be a closed linear subspace of L2(R+) (L2(Z × [1,a))).Then the following
are equivalent:

(i) �mV = V for m � Z .
(ii) V � Fa = V � .
(iii) V (ϕ) � V for an arbitrary a-dilation periodic measurable function on R+.

Proof By Proposition1.1(iv), for f � L2(R+) (L2(Z × [1,a))), f � Fa V if and only if f � �mV
for eachm � Z. On the other hand, (i) is equivalent toV � = (�mV )� for eachm � Z. It fol-
lows that (i) is equivalent to (ii). Since (i) is equivalent to�mV � V for eachm � Z, (iii) im-
plies (i). Next we prove (ii) implies (iii) to “nish the proof. Suppose (ii) holds. Observe that
V � is a closed subspace, andV � = �mV � for eachm � Z by Lemma2.3. Applying the
equivalence between (i) and (ii) toV � , we obtain

V =
�
V � � �

=
�
V � � � Fa .

It follows that

V =
�
V � Fa

� � Fa (2.7)

by (ii). On the other hand,

� f ,ϕg� a = ϕ� f ,g� a

for g � L2(R+) (L2(Z × [1,a))) anda-dilation periodic measurable functionsϕ on R+ sat-
isfyingϕg � L2(R+) (L2(Z × [1,a))). It follows that V � Fa � (V (ϕ))� Fa , and thus

��
V (ϕ)

� � Fa
� � Fa � V

by (2.7). This leads to (iii) by the fact thatV (ϕ) � [(V (ϕ))� Fa ]� Fa . The proof is completed.�
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Lemma 2.5 Let V be a closed linear subspace of L2(R+) (L2(Z × [1,a))) satisfying �mV = V
for each m � Z. Then

PV (ϕf ) = ϕPV f

for f � L2(R+) (L2(Z × [1,a))) and ϕ � Ba.

Proof Fix ϕ � Ba. Then V (ϕ) = ϕV . By Lemma2.3, V � is also a closed linear subspace of

L2(R+) (L2(Z × [1,a))) satisfying�mV � = V � for eachm � Z. Applying Lemma2.4to V �

leads toϕV � � V � . It follows that ϕPV � f � V � for f � L2(R+) (L2(Z × [1,a))), and thus

PV (ϕPV � f ) = 0 for f � L2(R+)
�
L2�

Z × [1,a)
��

. (2.8)

By Lemma2.4, we haveϕPV f � V which implies that

PV (ϕPV f ) = ϕPV f

for f � L2(R+) (L2(Z × [1,a))). This together with (2.8) leads to

PV (ϕf ) = PV (ϕPV f + ϕPV � f )

= ϕPV f

for f � L2(R+) (L2(Z × [1,a))). The proof is completed. �

Lemma 2.6 Let V and W be closed subspaces of L2(R+) or L2(Z × [1,a)) satisfying �mV =

V and �mW = W for each m � Z, and T : V � W be an a-factorable bounded linear
operator from V to W . Then

(i) T 
 , T 
 T and TT 
 are a-factorable, and �Tf ,g� a = � f ,T 
 g� a for f � V , g � W .
(ii) T…1is a-factorable if T is invertible.

Proof For simplicity, for f � V and g � W , we use�Tf ,g� and � f ,T 
 g� to denote the inner

products ofTf and g, andf and T 
 g in the corresponding spaces, i.e.,

�Tf ,g� =

�
�Tf ,g� L2(R+) if W � L2(R+);

�Tf ,g� L2(Z× [1,a)) if W � L2(Z × [1,a))

and

�
f ,T 
 g

�
=

�
� f ,T 
 g� L2(R+) if V � L2(R+);

� f ,T 
 g� L2(Z× [1,a)) if V � L2(Z × [1,a)).

(i) If T 
 is a-factorable, so areT 
 T andTT 
 sinceT is a-factorable. Arbitrarily “x f � V ,

g � W andϕ � Ba. ThenϕV � V andϕW � W by Lemma2.4. SinceT is a-factorable,

�
T(ϕf ),g

�
= �ϕTf ,g� = �Tf ,ϕg� =

�
f ,T 
 (ϕg)

�
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and

�
T(ϕf ),g

�
=

�
ϕf ,T 
 g

�
=

�
f ,ϕT 
 g

�
.

It follows that

�
f ,T 
 (ϕg)

�
=

�
f ,ϕT 
 g

�
,

and thusT 
 (ϕg) = ϕT 
 g by the arbitrariness off . And again by the arbitrariness ofϕ and

g, T 
 is a-factorable. Next we prove that

�Tf ,g� a =
�
f ,T 
 g

�
a for f � V andg � W . (2.9)

Observe that, forf � V and g � W , �Tf ,g� = � f ,T 
 g� . By Proposition1.1(ii), it may be

rewritten as

� a

1
�Tf ,g� a(x) dx =

� a

1

�
f ,T 
 g

�
a(x) dx for f � V andg � W . (2.10)

Given an arbitraryE � [1,a) with |E| > 0, replacef byX�
j� Z ajEf in (2.10) (this can be done

by Lemma2.4). Then we have

�

E
�Tf ,g� a(x) dx =

�

E

�
f ,T 
 g

�
a(x) dx

due to the fact thatT is a-factorable. It leads to (2.9) by the arbitrariness ofE and [26,

Theorem 1.40].

(ii) SupposeT is invertible. Forg � W andϕ � Ba, we have

T
�
ϕT…1g

�
= ϕTT…1g = ϕg

SinceT is a-factorable. It follows thatϕT…1g = T…1(ϕg) for g � W . The proof is com-

pleted. �

3 Proof of Theorem 1.1

Proof of Theorem 1.1 (i) Necessity. SupposeF and�F areFa-equivalent. Then there exists

an a-factorable, bounded and invertible linear operatorT on L2(R+) such that

Tfk = �fk for k � Z.

By Lemma2.6, it follows that, for eachf � L2(R+),

� f ,�fk � a =
�
T 
 f , fk

�
a for k � Z. (3.1)

SinceT is bounded and invertible, so isT 
 . This implies that range(T 
 ) = L2(R+). There-

fore, (3.1) implies that range(DF ) = range(D�F ).
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Su�ciency. Supposerange(DF ) = range(D�F ) = V . Obviously,�mV = V for m � Z. By
Lemma2.2and [23, Theorem 2.1],range(RF ) = L2(R+). This implies thatV is closed due
to the fact that DF = R


F . Let RF |V be the restriction of RF on V . We “rst claim that
(RF |V )
 (RF |V ) is bounded and invertible, and its inverse [(RF |V )
 (RF |V )]…1is a-factorable.
Let us check it. Forg � V and f � L2(R+), we have

�
g, (RF |V )
 f

�
L2(Z× [1,a)) =

�
(RF |V )g, f

�
L2(R+)

= �RF g, f � L2(R+)

=
�
g,R


F f
�
L2(Z× [1,a)).

This implies that

(RF |V )
 f = R

F f for f � L2(R+) (3.2)

by the arbitrariness ofg. Sincerange(RF ) = L2(R+) andR

F = DF ,

V = range
�
R


F
�

= range
�
R


F RF
�
. (3.3)

Also observe that

range(RF ) = RF
��

ker(RF )
� � �

= RF (V ) = range(RF |V ) (3.4)

due to (ker(RF ))� = V . Collecting (3.2)…(3.4) gives

V = range
�
(RF |V )
 (RF |V )

�
. (3.5)

SinceRF |V is injective, so is (RF |V )
 (RF |V ). This together with (3.5) leads to (RF |V )
 (RF |V )
being a bounded bijection onV . On the other hand,RF |V is a-factorable sinceRF is a-
factorable and�mV = V for m � Z. By Lemma2.6, (RF |V )
 (RF |V ) and [(RF |V )
 (RF |V )]…1

are botha-factorable. We have proved the claim. Now we de“neT : L2(R+) � L2(R+) by

T = R�F
�
(RF |V )
 (RF |V )

� …1DF .

Then it is well de“ned and bounded. Next we prove thatT is an a-factorable bijection
satisfying�fk = Tfk for k � Z to “nish the proof of su�ciency. By Lemma 2.2and [23, The-
orem 2.1] and the fact that (ker(R�F ))� = V , we have

L2(R+) = range(R�F ) = R�F (V ). (3.6)

Also observing (RF |V )
 (RF |V ) being a bijection onV leads to

V = range
��

(RF |V )
 (RF |V )
� …1DF

�
.

It follows that

L2(R+) = range(T) (3.7)
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by (3.6). SinceF is anFa-frame for L2(R+), DF is injective, and thus

�
(RF |V )
 (RF |V )

� …1DF

is injective. AlsoR�F is injective when restricted onV , and

range
��

(RF |V )
 (RF |V )
� …1DF

�
� V .

It follows that T is injective. Therefore,T is bijective. SinceR�F , DF and [(RF |V )
 (RF |V )]…1

are alla-factorable by Lemma2.6, so isT . Finally, we prove that

�fk = Tfk for k � Z. (3.8)

For k � Z, de“ne e(k) = {e(k)
l (·)}l� Z � L2(Z × [1,a)) by

e(k)
l (·) =

�
0 if l �= k;

1 if l = k

on [1,a). Then, for k � Z,

fk = RF e(k) = RF
�
PV e(k) + PV � e(k)� = RF PV e(k)

due to V � = ker(RF ), and thus

Tfk = R�F
�
(RF |V )
 (RF |V )

� …1R

F RF PV e(k).

It follows that

Tfk = R�F
�
(RF |V )
 (RF |V )

� …1
(RF |V )
 (RF |V )PV e(k)

= R�F PV e(k)

by (3.2). Also observing that

�fk = R�F e(k) = R�F PV e(k)

leads to (3.8).
(ii) Necessity. SupposeF and �F are unitarily Fa-equivalent. Then there exists ana-

factorable and unitary operatorT on L2(R+) such that

Tfk = �fk for k � Z.

It follows that

R�F g =
�

k� Z

gkTfk = TRF g

for g � L2(Z × [1,a)), and thus (1.12) holds by the unitarity ofT .
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Su�ciency. Suppose (1.12) holds. Thenker(RF ) = ker(R�F ). On the other hand,range(DF )

and range(D�F ) are closed by the arguments in (i). It follows that

range(DF ) = range(D�F )

due to the fact thatR

F = DF and R


F = D�F . Therefore,F and�F areFa-equivalent, and

T = R�F
�
(RF |V )
 (RF |V )

� …1DF

is ana-factorable, bounded bijection onL2(R+) satisfying�fk = Tfk for k � Z by (i) and its

proof. Next we prove thatT is unitary to “nish the proof. Write V = range(DF ) = range(D�F ),

and de“ne �DF : L2(R+) � V by

�DF f = DF f for f � L2(R+).

Observe that�DF is di�erent from DF sinceV need not be equal toL2(Z × [1,a)) and DF

is from L2(R+) to L2(Z × [1,a)). Obviously, it is well de“ned. Forf � L2(R+) andg � V , we

have

� �DF f ,g� L2(Z× [1,a)) = �DF f ,g� L2(Z× [1,a))

=
�
f ,D


F g
�
L2(R+)

=
�
f , (RF |V )g

�
L2(R+).

It follows that

(�DF )
 = RF |V . (3.9)

Since�DF is surjective, we have

(�DF )† = (�DF )
 �
�DF (�DF )
 � …1

by Lemma2.1. Thus

(�DF )† = (RF |V )
�
(RF |V )
 (RF |V )

� …1

= RF
�
(RF |V )
 (RF |V )

� …1

by (3.9). Also observe that

(�DF )†DF f = (�DF )†�DF f = P(ker(�DF ))� f = P(ker(DF ))� f

for f � L2(R+). It follows that

RF
�
(RF |V )
 (RF |V )

� …1DF f = P(ker(DF ))� f = f
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for f � L2(R+) due toDF being injective. Again substitutingg for

�
(RF |V )
 (RF |V )

� …1DF f

in (1.12), we obtain

� Tf � L2(R+) =
�
� RF

�
(RF |V )
 (RF |V )

� …1DF f
�
�

L2(R+)

= � f � L2(R+).

This shows thatT is norm-preserving and thus is unitary. The proof is completed. �

4 Conclusions
The spaceL2(R+) does not admit wavelet and Gabor systems due toR+ being not a group

under addition. This paper addresses theFa-frame for L2(R+). We introduce the notions

of Fa-equivalence and unitaryFa-equivalence betweenFa-frames, and characterize the

Fa-equivalence and unitaryFa-equivalence. This characterization looks like that of equiv-

alence and unitary equivalence between frames, but the proof is nontrivial due to the par-

ticularity of Fa-frames.
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