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Abstract
New shrinking iterative algorithms for approximating common zeros of two infinite
families of maximal monotone operators in a real uniformly convex and uniformly
smooth Banach space are designed. Two steps of multiple choices can be made in
the new iterative algorithms, two groups of interactive containment sets Cn and Qn

are constructed and computational errors are considered, which are different from
the previous ones. Strong convergence theorems are proved under mild assumptions
and some new proof techniques can be found. Computational experiments for some
special cases are conducted to show the effectiveness of the iterative algorithms and
meanwhile some inequalities are proved to guarantee the strong convergence.
Moreover, the applications of the abstract results on convex minimization problems
and variational inequalities are exemplified.
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1 Introduction
Throughout this paper, suppose E is a real Banach space with E∗ being its dual space. Let C
be a non-empty closed and convex subset of E. The symbols “〈x, f 〉”, “→” and “⇀” denote
the values of f ∈ E∗ at x ∈ E, the strong convergence and the weak convergence either in
E or E∗, respectively.

For a nonlinear mapping S : D(S) ⊂ E → 2E , we use F(S) to denote the set of fixed points
of S, that is, F(S) = {x ∈ D(S) : x ∈ Sx}. For a nonlinear mapping S : D(S) ⊂ E → 2E∗ , we use
S–10 to denote the set of zeros of S, that is, S–10 = {x ∈ D(S) : 0 ∈ Sx}.

The normalized duality mapping JE : E → 2E∗ is defined as follows [1]:

JE(x) =
{

x∗ ∈ E∗ :
〈
x, x∗〉 = ‖x‖2 =

∥∥x∗∥∥2}, ∀x ∈ E.

An operator A : E → 2E∗ is said to be monotone [1] if 〈x1 – x2, y1 – y2〉 ≥ 0, ∀yi ∈ Axi,
i = 1, 2. The monotone operator A is called maximal monotone if R(JE + λA) = E∗, ∀λ > 0.
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The Lyapunov functional ϕ : E × E → R+ is defined as follows [2]:

ϕ(x, y) = ‖x‖2 – 2
〈
x, jE(y)

〉
+ ‖y‖2, ∀x, y ∈ E, jE(y) ∈ JE(y).

If E is a real reflexive and strictly convex Banach space, then for each x ∈ E there exists
a unique element x0 ∈ C such that ‖x – x0‖ = inf{‖x – y‖ : y ∈ C}. Such an element x0 is
denoted by PCx and PC is called the metric projection of E onto C (see [2]).

If E is a real reflexive, smooth and strictly convex Banach space, then, for ∀x ∈ E, there
exists a unique element x0 ∈ C satisfying ϕ(x0, x) = inf{ϕ(z, x) : z ∈ C}. In this case, ∀x ∈ E,
define ΠC : E → C by ΠCx = x0, and then ΠC is called the generalized projection from E
onto C (see [2]).

A mapping B : C → C is called generalized non-expansive [3] if F(B) �= ∅ and ϕ(Bx, y) ≤
ϕ(x, y), ∀x ∈ C and y ∈ F(B). A point p ∈ C is said to be a strong asymptotic fixed point of B
[4] if there exists a sequence {xn} ⊂ C with xn – Bxn → 0 such that xn → p, as n → ∞. We
use F̃(B) to denote the set of strong asymptotic fixed points of B. A mapping B is called
weakly relatively non-expansive [4] if F̃(B) = F(B) �= ∅ and ϕ(p, Bx) ≤ ϕ(p, x) for x ∈ C and
p ∈ F(B).

A mapping S : E → C is said to be sunny [3] if S(S(x) + t(x – S(x))) = S(x), ∀x ∈ E and
t ≥ 0. A mapping S : E → C is said to be a retraction [3] if S(z) = z for ∀z ∈ C. If E is a real
smooth and strictly convex Banach space, then there exists a unique sunny generalized
non-expansive retraction of E onto C, which is denoted by RC .

Maximal monotone operator is a kind of important nonlinear mappings which draws
much attention of mathematicians since it has rich practical background [5–8]. Some
problems in nonlinear equations, minimization problems, variational inequalities and
split problems and some others can be reduced to the problems for finding zeros of max-
imal monotone operators. Designing iterative algorithms to approximate zeros of maxi-
mal monotone operators is a hot topic, which can be seen in [9–13] and the references
therein.

It is a natural idea to extend the study on designing iterative algorithms to approximate
zeros of a maximal monotone operator to that for approximating common zeros of finite
or infinite families of maximal monotone operators for the purpose of describing a com-
plicated system in practical problems. Some related work can be found in [14–18] and the
references therein.

Recall that in 2014 Wei et al. [15] introduced two composite operators Un := J–1
E [a0JE +

∑m
i=1 aiJE(JE + rn,iAi)–1JE] and Wn := J–1

E {b0JE +
∑l

j=1 bjJE[(JE + sn,jBj)–1JE(JE + sn,j–1Bj–1)–1 ×
JE · · · (JE + sn,1B1)–1JE]}, where Ai : E → E∗ and Bj : E → E∗ are maximal monotone op-
erators, for i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , l}. And the following iterative algorithm is
presented for approximating the common zeros of {Ai}m

i=1 and {Bj}l
j=1:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 ∈ E,

un = J–1
E [(1 – αn)JExn],

vn = J–1
E [(1 – βn)JExn + βnJEUnun],

xn+1 = J–1
E [γnJExn + (1 – γn)JEWnvn], n ∈ N .

(1.1)

Under the strong assumptions that the normalized duality mappings JE and J–1
E are

weakly sequentially continuous, the result that xn ⇀ v0 = limn→∞ Π(
⋂m

i=1 A–1
i 0)∩(

⋂l
j=1 B–1

j 0)(xn)
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is proved, as n → ∞. Though only weak convergence is obtained, the idea of constructing
composite operators is quite interesting.

In 2015, Wei et al. [16] deleted the strong assumptions imposed on both JE and J–1
E and

obtained the result of strong convergence instead of weak convergence by constructing a
sequence of shrinking projection sets. The iterative algorithm is presented in a real smooth
and uniformly convex Banach space E as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ E, u ∈ E,

un = J–1
E {αnJExn

+ (1 – αn)JE[(JE + rn,mAm)–1JE(JE + rn,m–1Am–1)–1JE · · · (JE + rn,1A1)–1JExn]},
vn = J–1

E [βnJEu + (1 – βn)
∑l

j=1 ajJE(JE + sn,jBj)–1JEun],

C1 = E,

Cn+1 = {p ∈ Cn : ϕ(p, un) ≤ ϕ(p, xn),ϕ(p, vn) ≤ βnϕ(p, u) + (1 – βn)ϕ(p, un)},
xn+1 = ΠCn+1 (x1), n ∈ N .

(1.2)

Under mild conditions, the result that xn → Π(
⋂m

i=1 A–1
i 0)∩(

⋂l
j=1 B–1

j 0)(u), as n → ∞, is
proved, where Ai : E → E∗ and Bj : E → E∗ are maximal monotone mappings for i ∈
{1, 2, . . . , m} and j ∈ {1, 2, . . . , l}. Moreover, the iterative algorithm is applied to one kind
p-Laplacian-like equation.

In 2015, Wei et al. [17] studied the maximal operators Ai : E∗ → E and Bj : E∗ → E,
for i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , l}. Since the domain of the operators is E∗ not E, the
sunny generalized non-expansive retraction RCn+1 is employed in the iterative construc-
tion instead of the generalized projection ΠCn+1 . The iterative algorithm is presented as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ E, u ∈ E,

yn = αnxn + (1 – αn)(I + rn,mAmJE)–1(I + rn,m–1Am–1JE)–1 · · · (I + rn,1A1JE)–1xn,

zn = βnu + (1 – βn)
∑l

j=1 aj(I + sn,jBjJE)–1yn,

C1 = E,

Cn+1 = {p ∈ Cn : ϕ(yn, p) ≤ ϕ(xn, p),ϕ(zn, p) ≤ βnϕ(u, v) + (1 – βn)ϕ(yn, p)},
xn+1 = RCn+1 (x1), n ∈ N .

(1.3)

Under the assumption that JE is weakly sequentially continuous, the result that xn →
R(

⋂m
i=1(AiJE)–10)∩(

⋂l
j=1(BjJE)–10)(x1) is proved, as n → ∞. The application of the iterative algo-

rithm is applied to a kind of curvature systems.
In 2018, Wei et al. [18] extended the topic to the case for infinite family of maximal

monotone operators Ai : E → E∗ and infinite family of weakly relatively non-expansive
mappings Bi : E → E, for i ∈ N . In each iterative step n, two groups of subsets of E are
constructed and multi-choice of the iterative element can be made avoiding the calculation
of the generalized projection, which is different but contains the traditional projection
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iterative algorithm. The iterative algorithm can be seen as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ E, e1 ∈ E,

vn,i = (JE + sn,iAi)–1JE(xn + en),

wn,i = J–1
E [αnJExn + (1 – αn)JEBivn,i],

C1 = E = Q1,

Cn+1,i = {z ∈ E : 〈vn,i – z, JE(xn + en) – JEvn,i〉 ≥ 0},
Cn+1 = (

⋂∞
i=1 Cn+1,i) ∩ Cn,

Qn+1,i = {z ∈ Cn+1,i : ϕ(z, wn,i) ≤ αnϕ(z, un) + (1 – αn)ϕ(z, vn,i)},
Qn+1 = (

⋂∞
i=1 Qn+1,i) ∩ Qn,

Un+1 = {z ∈ Qn+1 : ‖x1 – z‖2 ≤ ‖PQn+1 (x1) – x1‖2 + τn+1},
xn+1 ∈ Un+1, n ∈ N ,

(1.4)

where {en} ⊂ E is the error sequence and PQn+1 is the metric projection from E onto Qn+1.
The result that xn → P⋂∞

n=1 Qn (x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 F(Bi)) is proved, as n → ∞.

Later, in [14], the iterative algorithm (1.4) was simplified in the sense that the evaluation
of the sets Cn+1,i and Qn+1,i for i ∈ N are replaced by that of Cn+1 and Qn+1 directly. The
iterative algorithm is stated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ E, e1 ∈ E,

yn = J–1
E [αnJExn + (1 – αn)

∑∞
i=1 an,iJE(JE + rn,iAi)–1JE(xn + en)],

zn = J–1
E [βnJExn + (1 – βn)JEBiyn],

C1 = E = Q1,

Cn+1 = {v ∈ Cn : ϕ(v, yn) ≤ αnϕ(v, xn) + (1 – αn)ϕ(v, xn + en),

ϕ(v, zn) ≤ βnϕ(v, xn) + (1 – βn)ϕ(v, yn)},
Qn+1 = {v ∈ Cn+1 : ‖x1 – v‖2 ≤ ‖PCn+1 (x1) – x1‖2 + λn+1},
xn+1 ∈ Qn+1, n ∈ N .

(1.5)

The result that xn → P⋂∞
n=1 Qn (x1) ∈ (

⋂∞
i=1 A–1

i 0) ∩ (
⋂∞

i=1 F(Bi)) is proved, as n → ∞.
Computational experiments are conducted for some special cases.

In this paper, our purpose is to extend the topic from two finite families of maximal
monotone operators (e.g. [17]) to that for the infinite case. Two steps of multiple choices
can be made in the new iterative algorithms and two groups of interactive containment
sets Cn and Qn are constructed, which are different from the previous ones(e.g. [18]). Some
new proof techniques can be found, especially the wide use of inequalities. Computational
experiments are conducted and the applications on convex minimization problems and
variational inequalities are exemplified.

2 Preliminaries
A Banach space E is said to be uniformly convex [19] if, for any two sequences {xn} and
{yn} in E with ‖xn‖ = ‖yn‖ = 1 and limn→∞ ‖xn + yn‖ = 2, one has limn→∞ ‖xn – yn‖ = 0.
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Let λE : [0, +∞) → [0, +∞) be a function. Then λE is called the modulus of smoothness
of E if it is defined as follows [19]:

λE(t) = sup

{
1
2
(‖x + y‖ + ‖x – y‖) – 1 : x, y ∈ E,‖x‖ = 1,‖y‖ ≤ t

}
.

A Banach space E is said to be uniformly smooth [19] if λE(t)
t → 0, as t → 0.

A uniformly convex and uniformly smooth Banach space E has Property (H) in the sense
that, if for every sequence {xn} ⊂ E with xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, one has xn → x, as
n → ∞.

Lemma 2.1 ([19, 20]) If E is real uniformly convex and uniformly smooth Banach space,
then (1) JE is single-valued, surjective and for x ∈ E and k ∈ (0, +∞), JE(kx) = kJE(x);
(2) J–1

E = JE∗ is the normalized duality mapping from E∗ to E; (3) both JE and J–1
E are uni-

formly continuous on each bounded subset of E or E∗, respectively.

Lemma 2.2 ([1]) Let A : E → 2E∗ be a maximal monotone operator, then
(1) A–10 is a closed and convex subset of E;
(2) if xn → x and yn ∈ Axn with yn ⇀ y, or xn ⇀ x and yn ∈ Axn with yn → y, then

x ∈ D(A) and y ∈ Ax.

Definition 2.3 ([21]) Let {Cn} be a sequence of non-empty closed and convex subsets of
E, then

(1) s-lim inf Cn, which is called strong lower limit of {Cn}, is defined as the set of all
x ∈ E such that there exists xn ∈ Cn for almost all n and it tends to x as n → ∞ in the
norm.

(2) w-lim sup Cn, which is called weak upper limit of {Cn}, is defined as the set of all
x ∈ E such that there exists a subsequence {Cnm} of {Cn} and xnm ∈ Cnm for every nm

and it tends to x as nm → ∞ in the weak topology.
(3) If s-lim inf Cn = w-lim sup Cn, then the common value is denoted by lim Cn.

Lemma 2.4 ([21]) Let {Cn} be a decreasing sequence of closed and convex subsets of E, i.e.
Cn ⊂ Cm if n ≥ m. Then {Cn} converges in E and lim Cn =

⋂∞
n=1 Cn.

Lemma 2.5 ([22]) Suppose E is a real uniformly smooth and uniformly convex Banach
space. If lim Cn exists and is not empty, then {PCn x} converges strongly to Plim Cn x for every
x ∈ E.

Lemma 2.6 ([23]) Let E be a real uniformly smooth and uniformly convex Banach space,
and let {xn} and {yn} be two sequences in E. If either {xn} or {yn} is bounded and ϕ(xn, yn) →
0 as n → ∞, then xn – yn → 0 as n → ∞.

Lemma 2.7 ([23]) Suppose E is a real uniformly convex and uniformly smooth Banach
space and A : E → 2E∗ is a maximal monotone operator such that A–10 �= ∅. Then ∀x ∈ E,
y ∈ A–10 and r > 0, one has ϕ(y, (JE + rA)–1JEx) + ϕ((JE + rA)–1JEx, x) ≤ ϕ(y, x).

Lemma 2.8 ([23]) Let E be a real strictly convex and smooth Banach space and C is a non-
empty closed and convex subset of E. Then ∀x ∈ E, ∀y ∈ C, one has ϕ(y,ΠCx) + ϕ(ΠCx, x) ≤
ϕ(y, x).
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Lemma 2.9 ([24]) Let E be a real uniformly convex Banach space and r ∈ (0, +∞). Then
there exists a continuous, strictly increasing and convex function g : [0, 2r] → [0, +∞) with
g(0) = 0 such that

∥∥αx + (1 – α)y
∥∥2 ≤ α‖x‖2 + (1 – α)‖y‖2 – α(1 – α)g

(‖x – y‖),

for α ∈ [0, 1], x, y ∈ E with ‖x‖ ≤ r and ‖y‖ ≤ r.

3 Iterative algorithms and computational experiments
3.1 Iterative algorithms
Theorem 3.1 Suppose E is a real uniformly convex and uniformly smooth Banach space
and JE : E → E∗ is the normalized duality mapping. Let Ai, Bi : E → 2E∗ be maximal mono-
tone operators, for each i ∈ N . Denote Un = J–1

E [a0JE +
∑∞

i=1 aiJEQAi
rn,i ] and Wn = J–1

E [b0JE +
∑∞

j=1 bjJEQBj
sn,j Q

Bj–1
sn,j–1 · · ·QB1

sn,1 ], where QAi
rn,i = (JE + rn,iAi)–1JE and QBj

sn,j = (JE + sn,jBj)–1JE , for
i, j, n ∈ N . Let {en} and {εn} be two error sequences in E, {rn,i}, {sn,j}, {δn} and {ϑn} be real
number sequences in (0, +∞), for i, j, n ∈ N . Suppose {ai}∞i=0 and {bi}∞i=0 are real number se-
quences in (0, 1) such that

∑∞
i=0 ai =

∑∞
i=0 bi = 1, {αn} and {βn} are real number sequences

in [0, 1), for n ∈ N . Let {xn} be generated by the following iterative algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1, e1, ε1 ∈ E chosen arbitrarily,

yn = J–1
E [αnJExn + (1 – αn)JEUn(xn + en)],

C1 = E = X1, Q1 = E = Y1,

Cn+1 = {v ∈ Qn : ϕ(v, yn) ≤ αnϕ(v, xn) + (1 – αn)ϕ(v, xn + en)},
Xn+1 = {v ∈ Cn+1 : ‖x1 – v‖2 ≤ ‖PCn+1 (x1) – x1‖2 + δn},
wn ∈ Xn+1,

zn = J–1
E [βnJExn + (1 – βn)JEWn(wn + εn)],

Qn+1 = {v ∈ Cn+1 : ϕ(v, zn) ≤ βnϕ(v, xn) + (1 – βn)ϕ(v, wn + εn)},
Yn+1 = {v ∈ Qn+1 : ‖x1 – v‖2 ≤ ‖PQn+1 (x1) – x1‖2 + ϑn},
xn+1 ∈ Yn+1, n ∈ N .

(3.1)

Under the assumptions that (i) (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0) �= ∅; (ii) infn rn,i > 0, infn sn,i > 0
for i ∈ N ; (iii) 0 ≤ supn αn < 1, 0 ≤ supn βn < 1; (iv) δn → 0, ϑn → 0; (v) en → 0 and εn → 0,
as n → ∞, one has

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

wn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

yn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

zn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞.

Proof The proof is split into ten steps.
Step 1. (

⋂∞
i=1 A–1

i 0) ∩ (
⋂∞

i=1 B–1
i 0) ⊂ Cn ∩ Qn, for n ∈ N .

For this purpose, we shall use the inductive method.
If n = 1, it is obvious that (

⋂∞
i=1 A–1

i 0) ∩ (
⋂∞

i=1 B–1
i 0) ⊂ C1 ∩ Q1 = E. Suppose the result

is true for n = k, that is, (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0) ⊂ Ck ∩ Qk . Then ∀p ∈ (
⋂∞

i=1 A–1
i 0) ∩
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(
⋂∞

i=1 B–1
i 0), it follows from the definition of the Lyapunov functional, the convexity of

‖ · ‖2 and Lemma 2.7 that

ϕ(p, yk) = ‖p‖2 – 2

〈

p,αkJExk + (1 – αk)

[

a0JE(xk + ek) +
∞∑

i=1

aiJEQAi
rk,i

(xk + ek)

]〉

+

∥∥∥∥∥
αkJExk + (1 – αk)

[

a0JE(xk + ek) +
∞∑

i=1

aiJEQAi
rk,i

(xk + ek)

]∥∥∥∥∥

2

≤ ‖p‖2 – 2αk〈p, JExk〉 + αk‖xk‖2 – 2(1 – αk)a0
〈
p, JE(xk + ek)

〉

– 2(1 – αk)
∞∑

i=1

ai
〈
p, JEQAi

rk,i
(xk + ek)

〉

+ (1 – αk)a0‖xk + ek‖2 + (1 – αk)
∞∑

i=1

ai
∥∥QAi

rk,i
(xk + ek)

∥∥2

= αkϕ(p, xk) + (1 – αk)a0ϕ(p, xk + ek) + (1 – αk+1)
∞∑

i=1

aiϕ
(
p, QAi

rk,i
(xk + ek)

)

≤ αkϕ(p, xk) + (1 – αk)ϕ(p, xk + ek).

Thus p ∈ Ck+1. By induction, p ∈ Cn for n ∈ N .
And, using Lemma 2.7 repeatedly, one has

ϕ(p, zk) ≤ ‖p‖2 – 2βk〈p, JExk〉 + βk‖xk‖2 – 2(1 – βk)b0
〈
p, JE(wk + εk)

〉

– 2(1 – βk)
∞∑

j=1

bj
〈
p, JEQBj

sk,j · · ·QB1
sk,1

(wk + εk)
〉
+ (1 – βk)b0‖wk + εk‖2

+ (1 – βk)
∞∑

j=1

bj
∥∥QBj

sk,j · · ·QB1
sk,1

(wk + εk)
∥∥2

= βkϕ(p, xk) + (1 – βk)b0ϕ(p, wk + εk)

+ (1 – βk)
∞∑

j=1

bjϕ
(
p, QBj

sk,j · · ·QB1
sk,1

(wk + εk)
)

≤ βkϕ(p, xk) + (1 – βk)ϕ(p, wk + εk).

Thus p ∈ Qk+1. By induction (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0) ⊂ Qn, for n ∈ N , which implies
that (

⋂∞
i=1 A–1

i 0) ∩ (
⋂∞

i=1 B–1
i 0) ⊂ Cn ∩ Qn, for n ∈ N .

Step 2. Cn and Qn are non-empty closed and convex subsets of E, for each n ∈ N .
It follows from Step 1 that both Cn and Qn are non-empty subsets of E for n ∈ N .
It is obvious that both C1 and Q1 are closed and convex subsets of E. Suppose that both

Ck and Qk are closed and convex subsets of E, then noticing the fact that

ϕ(v, yk) ≤ αkϕ(v, xk) + (1 – αk)ϕ(v, xk + ek)

⇔ 〈
v,αkJExk + (1 – αk)JE(xk + ek) – JEyk

〉 ≤ (1 – αk)‖xk + ek‖2 + αk‖xk‖2 – ‖yk‖2

2
,
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one sees that Ck+1 is closed and convex. Therefore, by induction, Cn is closed and convex
for each n ∈ N .

Notice that

ϕ(v, zk) ≤ βkϕ(v, xk) + (1 – βk)ϕ(v, wk + εk)

⇔ 〈
p,βkJExk + (1 – βk)JE(wk + εk) – JEzk

〉

≤ (1 – βk)‖wk + εk‖2 + βk‖xk‖2 – ‖zk‖2

2
.

Combining with the fact that Cn is closed and convex for n ∈ N , one sees that Qk+1 is
closed and convex. By induction, Qn is closed and convex, for each n ∈ N .

Step 3. PCn (x1) → P⋂∞
n=1 Cn (x1), PQn (x1) → P⋂∞

n=1 Qn (x1), as n → ∞.
Since (

⋂∞
i=1 A–1

i 0) ∩ (
⋂∞

i=1 B–1
i 0) �= ∅, from Steps 1 and 2 and (3.1), we know that Cn is

a non-empty closed, convex and decreasing subset of E. Using Lemmas 2.4 and 2.5, we
know that PCn (x1) → P⋂∞

n=1 Cn (x1), as n → ∞.
Similarly, we have PQn (x1) → P⋂∞

n=1 Qn (x1), as n → ∞.
Step 4. P⋂∞

n=1 Cn (x1) = P⋂∞
n=1 Qn (x1).

It suffices to show that
⋂∞

n=1 Cn =
⋂∞

n=1 Qn.
In fact, from (3.1), Qn ⊂ Cn, then

⋂∞
n=1 Qn ⊂ ⋂∞

n=1 Cn. On the other hand, since C1 = E
and Cn+1 ⊂ Qn, then

⋂∞
n=1 Cn+1 =

⋂∞
n=1 Cn ⊂ ⋂∞

n=1 Qn, which ensures that P⋂∞
n=1 Cn (x1) =

P⋂∞
n=1 Qn (x1).

Step 5. {wn} and {xn} are well-defined.
In fact, we only need to show that Xn �= ∅ and Yn �= ∅, for each n ∈ N .
Since ‖PCn+1 (x1) – x1‖ = infq∈Cn+1 ‖q – x1‖, for δn there exists kn ∈ Cn+1 such that

‖x1 – kn‖2 ≤
(

inf
q∈Cn+1

‖q – x1‖
)2

+ δn =
∥∥PCn+1 (x1) – x1

∥∥2 + δn.

Then Xn �= ∅, which implies that {wn} is well-defined.
Similarly, Yn �= ∅, which implies that {xn} is well-defined.
Step 6. Both {wn} and {xn} are bounded.
Since wn ∈ Xn+1,

‖x1 – wn‖2 ≤ ∥∥PCn+1 (x1) – x1
∥∥2 + δn.

Since {PCn (x1)} is convergent from Step 3 and δn → 0, {wn} is bounded.
Similarly, {xn} is bounded.
Step 7. wn → P⋂∞

n=1 Cn (x1) = P⋂∞
n=1 Qn (x1) and xn → P⋂∞

n=1 Qn (x1) = P⋂∞
n=1 Cn (x1), as n → ∞.

Since wn ∈ Xn+1 ⊂ Cn+1 and Cn is convex, for ∀t ∈ (0, 1), tPCn+1 (x1) + (1 – t)wn ∈ Cn+1.
Thus ‖PCn+1 (x1) – x1‖ ≤ ‖tPCn+1 (x1) + (1 – t)wn – x1‖. Using Lemma 2.9, we have

∥∥PCn+1 (x1) – x1
∥∥2

≤ ∥∥tPCn+1 (x1) + (1 – t)wn – x1
∥∥2

≤ t
∥∥PCn+1 (x1) – x1

∥∥2 + (1 – t)‖wn – x1‖2 – t(1 – t)g
(∥∥PCn+1 (x1) – wn

∥∥).
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Therefore, tg(‖PCn+1 (x1) – wn‖) ≤ ‖wn – x1‖2 – ‖PCn+1 (x1) – x1‖2 ≤ δn → 0, as n → ∞.
Then wn – PCn+1 (x1) → 0, as n → ∞. Combining with Steps 3 and 4, we have wn →
P⋂∞

n=1 Cn (x1) = P⋂∞
n=1 Qn (x1), as n → ∞.

Since xn+1 ∈ Yn+1 ⊂ Qn+1 and Qn is convex, for ∀t ∈ (0, 1), tPQn+1 (x1) + (1 – t)xn+1 ∈ Qn+1.
Thus ‖PQn+1 (x1) – x1‖ ≤ ‖tPQn+1 (x1) + (1 – t)xn+1 – x1‖. Using Lemma 2.9 again, we have

∥∥PQn+1 (x1) – x1
∥∥2

≤ ∥∥tPQn+1 (x1) + (1 – t)xn+1 – x1
∥∥2

≤ t
∥∥PQn+1 (x1) – x1

∥∥2 + (1 – t)‖xn+1 – x1‖2 – t(1 – t)g
(∥∥PQn+1 (x1) – xn+1

∥∥).

Therefore, tg(‖PQn+1 (x1) – xn+1‖) ≤ ‖xn+1 – x1‖2 –‖PQn+1 (x1) – x1‖2 ≤ ϑn → 0, as n → ∞.
Combining with Steps 3 and 4, we have xn → P⋂∞

n=1 Qn (x1) = P⋂∞
n=1 Cn (x1), as n → ∞.

Step 8. yn → P⋂∞
n=1 Cn (x1) = P⋂∞

n=1 Qn (x1) and zn → P⋂∞
n=1 Cn (x1) = P⋂∞

n=1 Qn (x1), as n → ∞.
Since wn ∈ Xn+1 ⊂ Cn+1 ⊂ Qn, for n ≥ 2,

ϕ(wn, yn) ≤ αnϕ(wn, xn) + (1 – αn)ϕ(wn, xn + en)

and

ϕ(wn, zn–1) ≤ βn–1ϕ(wn, xn–1) + (1 – βn–1)ϕ(wn, wn–1 + εn–1).

Since en → 0 and εn → 0, from Lemma 2.6 and Steps 6 and 7, we have wn – yn → 0
and wn – zn–1 → 0, as n → ∞. Therefore, yn → P⋂∞

n=1 Cn (x1) = P⋂∞
n=1 Qn (x1) and zn →

P⋂∞
n=1 Cn (x1) = P⋂∞

n=1 Qn (x1), as n → ∞.
Step 9. P⋂∞

n=1 Cn (x1) = P⋂∞
n=1 Qn (x1) ∈ (

⋂∞
i=1 A–1

i 0) ∩ (
⋂∞

i=1 B–1
i 0).

For ∀q ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), using Lemma 2.7 and (3.1), we have

ϕ(q, yn) ≤ αnϕ(q, xn) + (1 – αn)ϕ
(
q, Un(xn + en)

)

≤ αnϕ(q, xn) + (1 – αn)

[

a0ϕ(q, xn + en) +
∞∑

i=1

aiϕ
(
q, QAi

rn,i
(xn + en)

)
]

= αnϕ(q, xn) + (1 – αn)

[

a0ϕ(q, xn + en) +
∞∑

i=1,i�=i0

aiϕ
(
q, QAi

rn,i
(xn + en)

)

+ ai0ϕ
(
q, Q

Ai0
rn,i0

(xn + en)
)
]

≤ αnϕ(q, xn) + (1 – αn)
[
(1 – ai0 )ϕ(q, xn + en) + ai0ϕ

(
q, Q

Ai0
rn,i0

(xn + en)
)]

≤ αnϕ(q, xn) + (1 – αn)
{

(1 – ai0 )ϕ(q, xn + en) + ai0
[
ϕ(q, xn + en)

– ϕ
(
Q

Ai0
rn,i0

(xn + en), xn + en
)]}

= αnϕ(q, xn) + (1 – αn)ϕ(q, xn + en) – (1 – αn)ai0ϕ
(
Q

Ai0
rn,i0

(xn + en), xn + en
)
.

Thus

(1 – αn)ai0ϕ
(
Q

Ai0
rn,i0

(xn + en), xn + en
) ≤ αnϕ(q, xn) + (1 – αn)ϕ(q, xn + en) – ϕ(q, yn),

which ensures that xn + en – Q
Ai0
rn,i0

(xn + en) → 0, as n → ∞, since 0 ≤ supn αn < 1.
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Repeating the above process, xn + en – QAi
rn,i (xn + en) → 0, for each ∀i ∈ N , as n → ∞.

Thus, QAi
rn,i (xn + en) → P⋂∞

n=1 Cn (x1), for ∀i ∈ N , as n → ∞.
Let un,i = QAi

rn,i (xn + en), then JEun,i + rn,iAiun,i = JE(xn + en). Note that un,i → P⋂∞
n=1 Cn (x1),

xn → P⋂∞
n=1 Cn (x1), en → 0 and infn rn,i > 0, then Aiun,i → 0, as n → ∞. In view of Lem-

mas 2.1 and 2.2, P⋂∞
n=1 Cn (x1) ∈ ⋂∞

i=1 A–1
i 0.

For ∀q ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), using Lemma 2.7 again, we have

ϕ(q, zn) ≤ βnϕ(q, xn) + (1 – βn)ϕ
(
q, Wn(wn + εn)

)

≤ βnϕ(q, xn) + (1 – βn)

[

b0ϕ(q, wn + εn)

+
∞∑

j=1

bjϕ
(
q, QBj

sn,j Q
Bj–1
sn,j–1 · · ·QB1

sn,1 (wn + εn)
)
]

≤ βnϕ(q, xn) + (1 – βn)b0ϕ(q, wn + εn)

+ (1 – βn)
∞∑

j=1

bjϕ
(
q, QBj–1

sn,j–1 · · ·QB1
sn,1 (wn + εn)

)

– (1 – βn)
∞∑

j=1

bjϕ
(
QBj

sn,j Q
Bj–1
sn,j–1 · · ·QB1

sn,1 (wn + εn), QBj–1
sn,j–1 · · ·QB1

sn,1 (wn + εn)
)
.

Then using Lemma 2.7 repeatedly and noticing the results of Steps 7 and 8, one has

(1 – βn)
∞∑

j=1

bjϕ
(
QBj

sn,j Q
Bj–1
sn,j–1 · · ·QB1

sn,1 (wn + εn), QBj–1
sn,j–1 · · ·QB1

sn,1 (wn + εn)
)

≤ βnϕ(q, xn) + (1 – βn)b0ϕ(q, wn + εn) + (1 – βn)
∞∑

j=1

bjϕ
(
q, QBj–1

sn,j–1 · · ·QB1
sn,1 (wn + εn)

)

– ϕ(q, zn)

≤ βnϕ(q, xn) + (1 – βn)ϕ(q, wn + εn) – ϕ(q, zn) → 0, as n → ∞,

which implies that ϕ(QBj
sn,j Q

Bj–1
sn,j–1 · · ·QB1

sn,1 (wn + εn), QBj–1
sn,j–1 · · ·QB1

sn,1 (wn + εn)) → 0, and then
Lemma 2.6 implies that QBj

sn,j Q
Bj–1
sn,j–1 · · ·QB1

sn,1 (wn + εn) – QBj–1
sn,j–1 · · ·QB1

sn,1 (wn + εn) → 0, as n →
∞.

Repeating the above process, by induction, we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

QBj–1
sn,j–1 · · ·QB1

sn,1 (wn + εn) – QBj–2
sn,j–2 · · ·QB1

sn,1 (wn + εn) → 0,

QBj–2
sn,j–2 · · ·QB1

sn,1 (wn + εn) – QBj–3
sn,j–3 · · ·QB1

sn,1 (wn + εn) → 0,
...

QB1
sn,1 (wn + εn) – (wn + εn) → 0,

(3.2)

as n → ∞.
Therefore, QB1

sn,1 (wn + εn) → P⋂∞
n=1 Cn (x1), as n → ∞. Imitating the proof of P⋂∞

n=1 Cn (x1) ∈
⋂∞

i=1 A–1
i 0, we know that P⋂∞

n=1 Cn (x1) ∈ B–1
1 0.

Now, set vn,1 = QB1
sn,1 (wn + εn) and vn,2 = QB2

sn,2 QB1
sn,1 (wn + εn), then JEvn,2 + sn,2B2vn,2 =

JEvn,1. Since vn,1 → P⋂∞
n=1 Cn (x1), from (3.2) we have vn,2 → P⋂∞

n=1 Cn (x1), as n → ∞. Since
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infn sn,2 > 0, by using Lemma 2.1, B2JEvn,2 → 0, as n → ∞. Lemma 2.2 implies that
P⋂∞

n=1 Cn (x1) ∈ B–1
2 0.

By induction, we easily show that P⋂∞
n=1 Cn (x1) ∈ B–1

j 0, for each j ∈ N . Therefore,
P⋂∞

n=1 Cn (x1) ∈ ⋂∞
j=1 B–1

j 0, which implies that P⋂∞
n=1 Cn (x1) = P⋂∞

n=1 Qn (x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩

(
⋂∞

i=1 B–1
i 0).

Step 10. P⋂∞
n=1 Cn (x1) = P⋂∞

n=1 Qn (x1) = P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1).
From Step 9, we see that

∥∥P⋂∞
n=1 Cn (x1) – x1

∥∥ ≥ ∥∥P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) – x1
∥∥.

From Step 1, we see that

∥∥P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) – x1
∥∥ ≥ ∥∥P⋂∞

n=1 Cn (x1) – x1
∥∥.

Therefore,

∥∥P⋂∞
n=1 Cn (x1) – x1

∥∥ =
∥∥P(

⋂∞
i=1 A–1

i 0)∩(
⋂∞

i=1 B–1
i 0)(x1) – x1

∥∥.

Since P⋂∞
n=1 Cn (x1) is unique, P⋂∞

n=1 Cn (x1) = P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1).
This completes the proof. �

Corollary 3.2 If we choose wn = PCn+1 (x1), then (3.1) reduces to the following one:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1, e1, ε1 ∈ E chosen arbitrarily,

yn = J–1
E [αnJExn + (1 – αn)JEUn(xn + en)],

C1 = E, Q1 = E = Y1,

Cn+1 = {v ∈ Qn : ϕ(v, yn) ≤ αnϕ(v, xn) + (1 – αn)ϕ(v, xn + en)},
wn = PCn+1 (x1),

zn = J–1
E [βnJExn + (1 – βn)JEWn(wn + εn)],

Qn+1 = {v ∈ Cn+1 : ϕ(v, zn) ≤ βnϕ(v, xn) + (1 – βn)ϕ(v, wn + εn)},
Yn+1 = {v ∈ Qn+1 : ‖x1 – v‖2 ≤ ‖PQn+1 (x1) – x1‖2 + ϑn},
xn+1 ∈ Yn+1, n ∈ N .

(3.3)

Under the assumptions that (i), (ii), (iii) and (v) in Theorem 3.1 and (iv)′ ϑn → 0, as
n → ∞, one has

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

wn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (∩∞
i=1A–1

i 0) ∩ (
⋂∞

i=1 B–1
i 0), as n → ∞,

yn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

zn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞.

Proof The proof can also be split into ten steps. Copy the proof of Steps 1–5 and Steps 8–
10 in Theorem 3.1 and modify Steps 6 and 7 as follows, we can still get the result.

Step 6. Both {wn} and {xn} are bounded.
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Since wn = PCn+1 (x1), we have ∀q ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0) ⊂ Cn+1, ‖wn – x1‖ ≤ ‖q –
x1‖, which implies that {wn} is bounded.

Since xn+1 ∈ Yn+1,

‖x1 – xn+1‖2 ≤ ∥∥PQn+1 (x1) – x1
∥∥2 + δn.

Since PQn (x1) → P⋂∞
n=1 Qn (x1) and δn → 0, {xn} is bounded.

Step 7. wn → P⋂∞
n=1 Cn (x1) and xn → P⋂∞

n=1 Cn (x1), as n → ∞.
It follows from Lemmas 2.4 and 2.5 that wn = PCn+1 (x1) → P⋂∞

n=1 Cn (x1), as n → ∞. Copy
Step 7 in Theorem 3.1, xn → P⋂∞

n=1 Cn (x1), as n → ∞.
This completes the proof. �

Similar to Corollary 3.2, we have the following two results:

Corollary 3.3 If we choose xn+1 = PQn+1 (x1), then (3.1) reduces to the following one:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1, e1, ε1 ∈ E chosen arbitrarily,

yn = J–1
E [αnJExn + (1 – αn)JEUn(xn + en)],

C1 = E = X1, Q1 = E,

Cn+1 = {v ∈ Qn : ϕ(v, yn) ≤ αnϕ(v, xn) + (1 – αn)ϕ(v, xn + en)},
Xn+1 = {v ∈ Cn+1 : ‖x1 – v‖2 ≤ ‖PCn+1 (x1) – x1‖2 + δn},
wn ∈ Xn+1,

zn = J–1
E [βnJExn + (1 – βn)JEWn(wn + εn)],

Qn+1 = {v ∈ Cn+1 : ϕ(v, zn) ≤ βnϕ(v, xn) + (1 – βn)ϕ(v, wn + εn)},
xn+1 = PQn+1 (x1), n ∈ N .

(3.4)

Under the assumptions of (i), (ii), (iii) and (v) in Theorem 3.1 and (iv)′′ δn → 0, one has

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

wn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

yn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

zn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞.

Corollary 3.4 If we choose wn = PCn+1 (x1) and xn+1 = PQn+1 (x1), then (3.1) reduces to the
following one:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1, e1, ε1 ∈ E chosen arbitrarily,

yn = J–1
E [αnJExn + (1 – αn)JEUn(xn + en)],

C1 = E = Q1,

Cn+1 = {v ∈ Qn : ϕ(v, yn) ≤ αnϕ(v, xn) + (1 – αn)ϕ(v, xn + en)},
wn = PCn+1 (x1),

zn = J–1
E [βnJExn + (1 – βn)JEWn(wn + εn)],

Qn+1 = {v ∈ Cn+1 : ϕ(v, zn) ≤ βnϕ(v, xn) + (1 – βn)ϕ(v, wn + εn)},
xn+1 = PQn+1 (x1), n ∈ N .

(3.5)
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Under the assumptions of (i), (ii), (iii) and (v), one has

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

wn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

yn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

zn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞.

Corollary 3.5 If we choose wn = ΠCn+1 (xn), then (3.1) reduces to the following one:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1, e1, ε1 ∈ E chosen arbitrarily,

yn = J–1
E [αnJExn + (1 – αn)JEUn(xn + en)],

C1 = E, Q1 = E = Y1,

Cn+1 = {v ∈ Qn : ϕ(v, yn) ≤ αnϕ(v, xn) + (1 – αn)ϕ(v, xn + en)},
wn = ΠCn+1 (xn),

zn = J–1
E [βnJExn + (1 – βn)JEWn(wn + εn)],

Qn+1 = {v ∈ Cn+1 : ϕ(v, zn) ≤ βnϕ(v, xn) + (1 – βn)ϕ(v, wn + εn)},
Yn+1 = {v ∈ Qn+1 : ‖x1 – v‖2 ≤ ‖PQn+1 (x1) – x1‖2 + ϑn},
xn+1 ∈ Yn+1, n ∈ N .

(3.6)

Under the assumptions that (i), (ii), (iii) and (v) in Theorem 3.1 and (iv)′ in Corollary 3.2,
one has

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

wn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

yn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

zn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞.

Proof Copy Steps 1–5 and 9 and 10 in Theorem 3.1, we are left to show the results of
Steps 6, 7 and 8 are still true.

Step 6. Both {wn} and {xn} are bounded.
Copy Theorem 3.1, {xn} is bounded. Since wn = ΠCn+1 (xn), ∀q ∈ (

⋂∞
i=1 A–1

i 0) ∩
(
⋂∞

i=1 B–1
i 0) ⊂ Cn+1, using Lemma 2.8, ϕ(q, wn) + ϕ(wn, xn) ≤ ϕ(q, xn). Thus {ϕ(q, wn)} is

bounded. Since ϕ(q, wn) ≥ (‖wn‖ – ‖q‖)2, {wn} is bounded.
Step 7. wn → P⋂∞

n=1 Cn (x1) and xn → P⋂∞
n=1 Cn (x1), as n → ∞.

Copy Theorem 3.1, xn → P⋂∞
n=1 Cn (x1), as n → ∞.

Since xn+1 ∈ Yn+1 ⊂ Qn+1 ⊂ Cn+1, using Lemma 2.8, ϕ(xn+1, wn) + ϕ(wn, xn) ≤ ϕ(xn+1,
xn) → 0, as n → ∞. Thus ϕ(wn, xn) → 0, which implies from Lemma 2.6 that wn – xn → 0
and then wn → P⋂∞

n=1 Cn (x1) as n → ∞.
Step 8. yn → P⋂∞

n=1 Cn (x1) and zn → P⋂∞
n=1 Cn (x1), as n → ∞.

Since xn+1 ∈ Yn+1 ⊂ Qn+1 ⊂ Cn+1, ϕ(xn+1, yn) ≤ αnϕ(xn+1, xn)+(1–αn)ϕ(xn+1, xn +en) → 0,
which implies from Lemma 2.6 that xn+1 – yn → 0 as n → ∞. Thus yn → P⋂∞

n=1 Cn (x1), as
n → ∞.
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Since wn = ΠCn+1 (xn) ∈ Cn+1 ⊂ Qn, we have ϕ(wn, zn–1) ≤ βn–1ϕ(wn, xn–1) + (1 – βn–1) ×
ϕ(wn, wn–1 + εn–1) → 0, as n → ∞.

Thus wn – zn–1 → 0 which implies that zn → P⋂∞
n=1 Cn (x1), as n → ∞.

This completes the proof. �

Corollary 3.6 If we choose xn+1 = ΠQn+1 (wn), then (3.1) reduces to the following one:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1, e1, ε1 ∈ E chosen arbitrarily,

yn = J–1
E [αnJExn + (1 – αn)JEUn(xn + en)],

C1 = E = X1, Q1 = E,

Cn+1 = {v ∈ Qn : ϕ(v, yn) ≤ αnϕ(v, xn) + (1 – αn)ϕ(v, xn + en)},
Xn+1 = {v ∈ Cn+1 : ‖x1 – v‖2 ≤ ‖PCn+1 (x1) – x1‖2 + δn},
wn ∈ Xn+1,

zn = J–1
E [βnJExn + (1 – βn)JEWn(wn + εn)],

Qn+1 = {v ∈ Cn+1 : ϕ(v, zn) ≤ βnϕ(v, xn) + (1 – βn)ϕ(v, wn + εn)},
xn+1 = ΠQn+1 (wn), n ∈ N .

(3.7)

Under the assumptions that (i), (ii), (iii) and (v) in Theorem 3.1 and (iv)′′ in Corollary 3.3,
one has

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

wn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

yn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

zn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞.

Proof Copy Steps 1–5 and 9 and 10 in Theorem 3.1, we are left to show the results of
Steps 6, 7 and 8 are still true.

Step 6. Both {wn} and {xn} are bounded.
Copy Theorem 3.1, {wn} is bounded. Since xn+1 = ΠQn+1 (wn), ∀q ∈ (

⋂∞
i=1 A–1

i 0) ∩
(
⋂∞

i=1 B–1
i 0) ⊂ Qn+1, Lemma 2.8 implies that ϕ(q, xn+1) + ϕ(xn+1, wn) ≤ ϕ(q, wn). Thus {xn}

is bounded.
Step 7. wn → P⋂∞

n=1 Cn (x1) and xn → P⋂∞
n=1 Cn (x1), as n → ∞.

Copy Theorem 3.1, wn → P⋂∞
n=1 Cn (x1), as n → ∞.

Since wn+1 ∈ Xn+2 ⊂ Cn+2 ⊂ Qn+1, using Lemma 2.8, we have ϕ(wn+1, xn+1)+ϕ(xn+1, wn) ≤
ϕ(wn+1, wn) → 0, as n → ∞. Thus wn+1 – xn+1 → 0 and thus xn → P⋂∞

n=1 Cn (x1) as n → ∞.
Step 8. yn → P⋂∞

n=1 Cn (x1) and zn → P⋂∞
n=1 Cn (x1), as n → ∞.

Since xn+1 ∈ Qn+1 ⊂ Cn+1, ϕ(xn+1, yn) ≤ αnϕ(xn+1, xn) + (1 –αn)ϕ(xn+1, xn + en) → 0, which
implies from Lemma 2.6 that xn+1 – yn → 0 as n → ∞. Thus yn → P⋂∞

n=1 Cn (x1), as n → ∞.
Since xn+1 ∈ Qn+1, we have ϕ(xn+1, zn) ≤ βnϕ(xn+1, xn) + (1 – βn)ϕ(xn+1, wn + εn) → 0, as

n → ∞. Thus zn → P⋂∞
n=1 Cn (x1), as n → ∞.

This completes the proof. �
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Corollary 3.7 If we choose wn = ΠCn+1 (xn) and xn+1 = PQn+1 (x1), then (3.1) becomes to (3.8).
If we choose wn = PCn+1 (x1) and xn+1 = ΠQn+1 (wn), then (3.1) becomes to (3.9).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1, e1, ε1 ∈ E chosen arbitrarily,

yn = J–1
E [αnJExn + (1 – αn)JEUn(xn + en)],

C1 = E = Q1,

Cn+1 = {v ∈ Qn : ϕ(v, yn) ≤ αnϕ(v, xn) + (1 – αn)ϕ(v, xn + en)},
wn = ΠCn+1 (xn),

zn = J–1
E [βnJExn + (1 – βn)JEWn(wn + εn)],

Qn+1 = {v ∈ Cn+1 : ϕ(v, zn) ≤ βnϕ(v, xn) + (1 – βn)ϕ(v, wn + εn)},
xn+1 = PQn+1 (x1), n ∈ N ,

(3.8)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1, e1, ε1 ∈ E chosen arbitrarily,

yn = J–1
E [αnJExn + (1 – αn)JEUn(xn + en)],

C1 = E = Q1,

Cn+1 = {v ∈ Qn : ϕ(v, yn) ≤ αnϕ(v, xn) + (1 – αn)ϕ(v, xn + en)},
wn = PCn+1 (x1),

zn = J–1
E [βnJExn + (1 – βn)JEWn(wn + εn)],

Qn+1 = {v ∈ Cn+1 : ϕ(v, zn) ≤ βnϕ(v, xn) + (1 – βn)ϕ(v, wn + εn)},
xn+1 = ΠQn+1 (wn), n ∈ N .

(3.9)

Under the assumptions that (i), (ii), (iii) and (v) in Theorem 3.1, one has

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

wn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

yn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞,

zn → P(
⋂∞

i=1 A–1
i 0)∩(

⋂∞
i=1 B–1

i 0)(x1) ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0), as n → ∞.

Remark 3.8 Compared to [15–17], we have the following differences: (1) infinite maxi-
mal monotone operators are studied instead of finite cases; (2) the limit of the iterative
sequences, P(

⋂∞
i=1 A–1

i 0)∩(
⋂∞

i=1 B–1
i 0)(x1), is easier for computation theoretically since metric

projection only involves ‖ · ‖ while generalized projection involves Lyapunov functional
ϕ; (3) computational errors are considered in each step; (4) for each given iterative step
n, multi-choice can be made on both {wn} and {xn} in (3.1); (5) the normalized duality
mappings JE or J–1

E are no longer needed to be weakly sequentially continuous.

Remark 3.9 Compared to [14] and [18], we have the following differences: (1) for each
iterative step n, multi-choice can be made on both {wn} and {xn} in (3.1); (2) four key
sets {Cn}, {Qn}, {Xn} and {Yn} are defined which permits more choices for the iterative
sequences; (3) both {Cn} and {Qn} are decreasing sets in (3.1) and satisfy the following
inter-relationship: Cn+1 ⊂ Qn ⊂ Cn ⊂ Qn–1 for n ≥ 2; (4)

⋂∞
n=1 Cn =

⋂∞
n=1 Qn can be proved

which guarantees the limit of the iterative sequences is unique.
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Remark 3.10 Corollaries 3.2–3.4 can be seen as a group of results and Corollaries 3.5
and 3.6 can be seen as another. In Corollaries 3.2–3.4, we want to say that if we take wn

or xn or both as the value of metric projections, the results are still true. In Corollaries 3.5
and 3.6, we want to say that if we take wn or xn as the value of generalized projections, the
results are still true. In this sense, Theorem 3.1 is a new and general result.

3.2 Computational experiments
Remark 3.11 If E reduces to a Hilbert space H , then the Lyapunov functional is reduced
to

ϕ(x, y) = ‖x – y‖2, ∀x, y ∈ H .

Remark 3.12 Take E = (–∞, +∞). Suppose Ai, Bi : (–∞, +∞) → (–∞, +∞) are defined as
follows: Aix = x

2i and Bix = 2ix for x ∈ (–∞, +∞) and i ∈ N . Then Ai and Bi are maximal
monotone for i ∈ N and (

⋂∞
i=1 A–1

i 0) ∩ (
⋂∞

i=1 B–1
i 0) = {0}. Let ai = 1

2i+1 = bi for i ∈ {0} ∪ N ,
βn = δn = ϑn = en = εn = 1

n and αn = 1
2n for n ∈ N . Let rn,i = (2n+i–1 – 1)2i and sn,i = 2n–1

2i for
i, n ∈ N . It is easy to check that all of the assumptions of Theorem 3.1 are satisfied for this
special case.

Corollary 3.13 Taking the example in Remark 3.12, we can choose the following iterative
sequences among infinite choices generated by iterative algorithm (3.1) in Theorem 3.1:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 1, t0 = t1 = 1,

yn = xn
2n + (1 – 1

2n )( 1
2 + 1

3×2n )(xn + 1
n ), n ∈ N ,

vn =
x2n
2n +(1– 1

2n )(xn+ 1
n )2–y2

n
2[ xn

2n +(1– 1
2n )(xn+ 1

n )–yn]
, n ∈ N ,

an = minm≤n,m∈N {vm, tm–1}, n ∈ N ,

wn = x1 –
√

(x1 – an)2 + 1
n , n ∈ N ,

zn = 1
n xn + (1 – 1

n ) 2n

2n+1–1 (wn + 1
n ), n ∈ N ,

tn =
x2n
n +(1– 1

n )(wn+ 1
n )2–z2

n
2[ xn

n +(1– 1
n )(wn+ 1

n )–zn]
, n ∈ N \ {1},

bn = minm≤n,m∈N {vm, tm}, n ∈ N ,

xn+1 = x1 –
√

(x1 – bn)2 + 1
n , n ∈ N ,

(3.10)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 1, t0 = t1 = 1,

yn = xn
2n + (1 – 1

2n )( 1
2 + 1

3×2n )(xn + 1
n ), n ∈ N ,

vn =
x2n
2n +(1– 1

2n )(xn+ 1
n )2–y2

n
2[ xn

2n +(1– 1
2n )(xn+ 1

n )–yn]
, n ∈ N ,

wn = minm≤n,m∈N {vm, tm–1}, n ∈ N ,

zn = 1
n xn + (1 – 1

n ) 2n

2n+1–1 (wn + 1
n ), n ∈ N ,

tn =
x2n
n +(1– 1

n )(wn+ 1
n )2–z2

n
2[ xn

n +(1– 1
n )(wn+ 1

n )–zn]
, n ∈ N \ {1},

bn = minm≤n,m∈N {vm, tm}, n ∈ N ,

xn+1 = x1 –
√

(x1 – bn)2 + 1
n , n ∈ N ,

(3.11)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 1, t0 = t1 = 1,

yn = xn
2n + (1 – 1

2n )( 1
2 + 1

3×2n )(xn + 1
n ), n ∈ N ,

vn =
x2n
2n +(1– 1

2n )(xn+ 1
n )2–y2

n
2[ xn

2n +(1– 1
2n )(xn+ 1

n )–yn]
, n ∈ N ,

wn = minm≤n,m∈N {vm, tm–1}, n ∈ N ,

zn = 1
n xn + (1 – 1

n ) 2n

2n+1–1 (wn + 1
n ), n ∈ N ,

tn =
x2n
n +(1– 1

n )(wn+ 1
n )2–z2

n
2[ xn

n +(1– 1
n )(wn+ 1

n )–zn]
, n ∈ N \ {1},

xn+1 = minm≤n,m∈N {vm, tm}, n ∈ N ,

(3.12)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 1, t0 = t1 = 1,

yn = xn
2n + (1 – 1

2n )( 1
2 + 1

3×2n )(xn + 1
n ), n ∈ N ,

vn =
x2n
2n +(1– 1

2n )(xn+ 1
n )2–y2

n
2[ xn

2n +(1– 1
2n )(xn+ 1

n )–yn]
, n ∈ N ,

an = minm≤n,m∈N {vm, tm–1}, n ∈ N ,

wn = x1 –
√

(x1 – an)2 + 1
n , n ∈ N ,

zn = 1
n xn + (1 – 1

n ) 2n

2n+1–1 (wn + 1
n ), n ∈ N ,

tn =
x2n
n +(1– 1

n )(wn+ 1
n )2–z2

n
2[ xn

n +(1– 1
n )(wn+ 1

n )–zn]
, n ∈ N \ {1},

xn+1 = minm≤n,m∈N {vm, tm}, n ∈ N ,

(3.13)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 1, t0 = t1 = 1,

yn = xn
2n + (1 – 1

2n )( 1
2 + 1

3×2n )(xn + 1
n ), n ∈ N ,

vn =
x2n
2n +(1– 1

2n )(xn+ 1
n )2–y2

n
2[ xn

2n +(1– 1
2n )(xn+ 1

n )–yn]
, n ∈ N ,

an = minm≤n,m∈N {vm, tm–1}, n ∈ N ,

wn = x1–
√

(x1–an)2+ 1
n +an

2 , n ∈ N ,

zn = 1
n xn + (1 – 1

n ) 2n

2n+1–1 (wn + 1
n ), n ∈ N ,

tn =
x2n
n +(1– 1

n )(wn+ 1
n )2–z2

n
2[ xn

n +(1– 1
n )(wn+ 1

n )–zn]
, n ∈ N \ {1},

bn = minm≤n,m∈N {vm, tm}, n ∈ N ,

xn+1 = x1 –
√

(x1 – bn)2 + 1
n , n ∈ N ,

(3.14)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 1, t0 = t1 = 1,

yn = xn
2n + (1 – 1

2n )( 1
2 + 1

3×2n )(xn + 1
n ), n ∈ N ,

vn =
x2n
2n +(1– 1

2n )(xn+ 1
n )2–y2

n
2[ xn

2n +(1– 1
2n )(xn+ 1

n )–yn]
, n ∈ N ,

an = minm≤n,m∈N {vm, tm–1}, n ∈ N ,

wn = x1–
√

(x1–an)2+ 1
n +an

2 , n ∈ N ,

zn = 1
n xn + (1 – 1

n ) 2n

2n+1–1 (wn + 1
n ), n ∈ N ,

tn =
x2n
n +(1– 1

n )(wn+ 1
n )2–z2

n
2[ xn

n +(1– 1
n )(wn+ 1

n )–zn]
, n ∈ N \ {1},

xn+1 = minm≤n,m∈N {vm, tm}, n ∈ N ,

(3.15)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 1, t0 = t1 = 1,

yn = xn
2n + (1 – 1

2n )( 1
2 + 1

3×2n )(xn + 1
n ), n ∈ N ,

vn =
x2n
2n +(1– 1

2n )(xn+ 1
n )2–y2

n
2[ xn

2n +(1– 1
2n )(xn+ 1

n )–yn]
, n ∈ N ,

an = minm≤n,m∈N {vm, tm–1}, n ∈ N ,

wn = x1–
√

(x1–an)2+ 1
n +an

2 , n ∈ N ,

zn = 1
n xn + (1 – 1

n ) 2n

2n+1–1 (wn + 1
n ), n ∈ N ,

tn =
x2n
n +(1– 1

n )(wn+ 1
n )2–z2

n
2[ xn

n +(1– 1
n )(wn+ 1

n )–zn]
, n ∈ N \ {1},

bn = minm≤n,m∈N {vm, tm}, n ∈ N ,

xn+1 = x1–
√

(x1–bn)2+ 1
n +bn

2 , n ∈ N ,

(3.16)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 1, t0 = t1 = 1,

yn = xn
2n + (1 – 1

2n )( 1
2 + 1

3×2n )(xn + 1
n ), n ∈ N ,

vn =
x2n
2n +(1– 1

2n )(xn+ 1
n )2–y2

n
2[ xn

2n +(1– 1
2n )(xn+ 1

n )–yn]
, n ∈ N ,

an = minm≤n,m∈N {vm, tm–1}, n ∈ N ,

wn = x1 –
√

(x1 – an)2 + 1
n , n ∈ N ,

zn = 1
n xn + (1 – 1

n ) 2n

2n+1–1 (wn + 1
n ), n ∈ N ,

tn =
x2n
n +(1– 1

n )(wn+ 1
n )2–z2

n
2[ xn

n +(1– 1
n )(wn+ 1

n )–zn]
, n ∈ N \ {1},

bn = minm≤n,m∈N {vm, tm}, n ∈ N ,

xn+1 = x1–
√

(x1–bn)2+ 1
n +bn

2 , n ∈ N ,

(3.17)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 1, t0 = t1 = 1,

yn = xn
2n + (1 – 1

2n )( 1
2 + 1

3×2n )(xn + 1
n ), n ∈ N ,

vn =
x2n
2n +(1– 1

2n )(xn+ 1
n )2–y2

n
2[ xn

2n +(1– 1
2n )(xn+ 1

n )–yn]
, n ∈ N ,

wn = minm≤n,m∈N {vm, tm–1}, n ∈ N ,

zn = 1
n xn + (1 – 1

n ) 2n

2n+1–1 (wn + 1
n ), n ∈ N ,

tn =
x2n
n +(1– 1

n )(wn+ 1
n )2–z2

n
2[ xn

n +(1– 1
n )(wn+ 1

n )–zn]
, n ∈ N \ {1},

bn = minm≤n,m∈N {vm, tm}, n ∈ N ,

xn+1 = x1–
√

(x1–bn)2+ 1
n +bn

2 , n ∈ N .

(3.18)

Then {xn} generated by (3.10)–(3.18) converges strongly to 0 ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 B–1

i 0),
as n → ∞.

Proof We shall only show that {xn} in (3.10) can be obtained by iterative algorithm (3.1)
and the result of strong convergence is true. Similarly, (3.11)–(3.18) are available.
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Compute yn and zn in (3.1) for the example, where n ∈ N .

yn = αnxn + (1 – αn)Un(xn + en)

= αnxn + (1 – αn)a0(xn + en) + (1 – αn)
∞∑

i=1

ai(I + rn,iAi)–1(xn + en)

= αnxn + (1 – αn)
xn + en

2
+ (1 – αn)

∞∑

i=1

1
4i

xn + en

2n

=
xn

2n +
(

1 –
1
2n

)(
1
2

+
1

3 × 2n

)(
xn +

1
n

)
, (3.19)

and

zn = βnxn + (1 – βn)Wn(wn + εn)

= βnxn + (1 – βn)b0(wn + εn)

+ (1 – βn)
∞∑

j=1

bj(I + sn,jBj)–1(I + sn,j–1Bj–1)–1 · · · (I + sn,1B1)–1(wn + εn)

= βnxn + (1 – βn)
wn + εn

2
+ (1 – βn)

∞∑

j=1

wn + εn

2(n+1)j+1

=
xn

n
+
(

1 –
1
n

)
2n

2n+1 – 1

(
wn +

1
n

)
. (3.20)

Compute Cn+1 and Qn+1 in (3.1) for the example, where n ∈ N :

Cn+1 = Qn ∩ {
v ∈ R : 2

[
αnxn + (1 – αn)(xn + en) – yn

]
v

≤ αnx2
n + (1 – αn)(xn + en)2 – y2

n
}

, (3.21)

and

Qn+1 = Cn+1 ∩ {
v ∈ R : 2

[
βnxn + (1 – βn)(wn + εn) – zn

]
v

≤ βnx2
n + (1 – βn)(wn + εn)2 – z2

n
}

. (3.22)

Next, we shall use inductive method to show that the following is true:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 1, t0 = t1 = 1,

C1 = Q1 = X1 = Y1 = (–∞, +∞),

C2 = (–∞, 41
24 ] = Q2, X2 = [0, 41

24 ] = Y2,

Cn+1 = (–∞, an], n ∈ N \ {1},
Xn+1 = [x1 –

√
(x1 – an)2 + 1

n , an], n ∈ N \ {1},
we may choose wn = x1 –

√
(x1 – an)2 + 1

n , n ∈ N ,

Qn+1 = (–∞, bn], n ∈ N \ {1},
Yn+1 = [x1 –

√
(x1 – bn)2 + 1

n , bn], n ∈ N \ {1},
we may choose xn+1 = x1 –

√
(x1 – bn)2 + 1

n , n ∈ N ,

0 < bn ≤ an ≤ 1, n ∈ N .

(3.23)
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In fact, if n = 1, using (3.19) and (3.10), y1 = 7
6 , v1 = 41

24 and a1 = min{v1, t0} = 1. Then from
(3.1), C2 = (–∞, 41

24 ], PC2 (x1) = x1, and then X2 = C2 ∩ [0, 2] = [0, 41
24 ]. Thus we may choose

w1 = x1 –
√

(x1 – a1)2 + 1
1 = 0. Then using (3.20), z1 = 1. Since β1x1 + (1 – β1)(w1 + ε1) – z1 =

β1x2
1 + (1 – β1)(w1 + ε1)2 – z2

1 = 0, we have Q2 = C2 ∩ (–∞, +∞) = C2 and then Y2 = X2. And
b1 = min{v1, t1} = 1, thus we may choose x2 = 1 –

√
(1 – 1)2 + 1 = 0. Therefore, (3.23) is true

for n = 1.
If n = 2, it is easy to calculate that y2 = 7

32 , v2 = 143
320 and 0 < a2 = min{v1, t0, v2, t1} =

v2 = 143
320 < 1. Then from (3.21), C3 = Q2 ∩ (–∞, v2] = (–∞, v1] ∩ (–∞, v2] = (–∞, v2] =

(–∞, a2], PC3 (x1) = a2, and then X3 = [x1 –
√

(x1 – a2)2 + 1
2 , a2]. Thus we may choose

w2 = x1 –
√

(x1 – a2)2 + 1
2 = 0.1022543. Thus z2 = 0.1720727 and t2 = 0.587915. And

then from (3.22), Q3 = C3 ∩ (–∞, t2] = (–∞, a2] ∩ (–∞, t2] = (–∞, b2], Y3 = Q3 ∩ [x1 –√
(x1 – b2)2 + 1

2 , x1 +
√

(x1 – b2)2 + 1
2 ] = [x1 –

√
(x1 – b2)2 + 1

2 , b2]. Thus we may choose

x3 = x1 –
√

(x1 – b2)2 + 1
2 . It is easy to check that 0 < b2 ≤ a2 ≤ 1. Therefore, (3.23) is true

for n = 2.
Suppose (3.23) is true for n = k (k ≥ 2), that is,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ck+1 = (–∞, ak],

Xk+1 = [x1 –
√

(x1 – ak)2 + 1
k , ak],

we may choose wk = x1 –
√

(x1 – ak)2 + 1
k ,

Qk+1 = (–∞, bk],

Yk+1 = [x1 –
√

(x1 – bk)2 + 1
k , bk],

we may choose xk+1 = x1 –
√

(x1 – bk)2 + 1
k ,

0 < bk ≤ ak ≤ 1.

Then, if n = k +1, we can easily see from definitions of an and bn that bk+1 ≤ ak+1 ≤ t0 = 1.
Since 0 < bk ≤ 1, we have 1 + 1

k+1 >
√

(x1 – bk)2 + 1
k , which implies that xk+1 + ek+1 = xk+1 +

1
k+1 > 0. Therefore,

αk+1xk+1 + (1 – αk+1)(xk+1 + ek+1) – yk+1

=
(

1 –
1

2k+1

)(
1
2

–
1

3 × 2k+1

)
(xk+1 + ek+1) > 0. (3.24)

Note that

2(1 – αk+1)
(

1
2

+
1

3 × 2k+1

)2

=
(

1 –
1

2k+1

)(
1 +

1
3 × 2k

)(
1
2

+
1

3 × 2k+1

)

=
(

1 +
1

3 × 2k –
1

2k+1 –
1

6 × 4k

)(
1
2

+
1

3 × 2k+1

)

=
(

1 –
1

6 × 2k –
1

6 × 4k

)(
1
2

+
1

3 × 2k+1

)
< 1,
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then

y2
k+1 = α2

k+1x2
k+1 + 2αk+1(1 – αk+1)

(
1
2

+
1

3 × 2k+1

)
xk+1(xk+1 + ek+1)

+ (1 – αk+1)2
(

1
2

+
1

3 × 2k+1

)2

(xk+1 + ek+1)2

≤ 2α2
k+1x2

k+1 + 2(1 – αk+1)2
(

1
2

+
1

3 × 2k+1

)2

(xk+1 + ek+1)2

≤ αk+1x2
k+1 + (1 – αk+1)(xk+1 + ek+1)2. (3.25)

Therefore, (3.24) and (3.25) imply that vk+1 > 0. Since bk > 0 and vk+1 > 0, we have ak+1 >
0. That is, 0 < ak+1 ≤ 1.

Using (3.21), Ck+2 = Qk+1 ∩ (–∞, vk+1] = (–∞, bk]∩ (–∞, vk+1] = (–∞, ak+1]. Then Xk+2 =
Ck+2 ∩ [x1 –

√
(x1 – ak+1)2 + 1

k+1 , x1 +
√

(x1 – ak+1)2 + 1
k+1 ] = [x1 –

√
(x1 – ak+1)2 + 1

k+1 , ak+1].

Thus we may choose wk+1 = x1 –
√

(x1 – ak+1)2 + 1
k+1 .

Since (1 + 1
k+1 )2 > (1 – ak+1)2 + 1

k+1 , we have wk+1 + εk+1 = 1 –
√

(1 – ak+1)2 + 1
k+1 + 1

k+1 > 0,
which ensures that

βk+1xk+1 + (1 – βk+1)(wk+1 + εk+1) – zk+1

=
(

1 –
1

k + 1

)
2k+2 – 2k+1 – 1

2k+2 – 1
(wk+1 + εk+1) > 0. (3.26)

Note that

2(1 – βk+1)2
(

2k+1

2k+2 – 1

)2

≤ 1 – βk+1

⇐⇒
(

1 –
1

k + 1

)
2k+2

2k+2 – 1
2k+1

2k+2 – 1
≤ 1

⇐⇒ (k + 1) × 8 × 2k ≤ (k + 1) + 8(k + 1) × 4k + 8 × 4k .

This last inequality above is obviously true for k ∈ N . Thus

z2
k+1 = β2

k+1x2
k+1 + 2βk+1(1 – βk+1)

2k+1

2k+2 – 1
xk+1(wk+1 + εk+1)

+ (1 – βk+1)2
(

2k+1

2k+2 – 1

)2

(wk+1 + εk+1)2

≤ 2β2
k+1x2

k+1 + 2(1 – βk+1)2
(

2k+1

2k+2 – 1

)2

(wk+1 + εk+1)2

≤ βk+1x2
k+1 + (1 – βk+1)(wk+1 + εk+1)2. (3.27)

Equation (3.26) and (3.27) imply that tk+1 > 0, which ensures that bk+1 > 0 since ak+1 > 0.
Using (3.22), Qk+2 = Ck+2 ∩ (–∞, tk+1] = (–∞, ak+1] ∩ (–∞, tk+1] = (–∞, bk+1], and Yk+2 =
Qk+2 ∩ [x1 –

√
(x1 – bk+1)2 + 1

k+1 , x1 +
√

(x1 – bk+1)2 + 1
k+1 ] = [x1 –

√
(x1 – bk+1)2 + 1

k+1 , bk+1].
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Thus we may choose xk+2 = x1 –
√

(x1 – bk+1)2 + 1
k+1 . By now, we have proved that (3.23) is

true for n ∈ N .
Therefore, {xn} defined in (3.10) is valid.
Finally, we shall show that xn → 0, as n → ∞.
From (3.10) or (3.23), we can easily see that {xn} is bounded. Let {xnj} be any subse-

quence of {xn} such that limj→∞ xnj = ξ . Then using (3.10), we may see that limj→∞ ynj = ξ

2

and limj→∞ vnj = 3ξ

4 . Since xnj+1 = x1 –
√

(x1 – bnj )2 + 1
nj

, we have limj→∞ bnj = ξ . Note that

0 < bnj ≤ vnj , then 0 ≤ ξ ≤ 3
4ξ , which implies that ξ = 0. This means that each strongly

convergent subsequence of {xn} converges strongly to 0. Therefore, xn → 0, as n → ∞.
And, it is not difficult to see that yn → 0, vn → 0, wn → 0, and zn → 0, as n → ∞.

This completes the proof. �

Remark 3.14 Do computational experiments on (3.11) in Corollary 3.13. By using codes
of Visual Basic Six, we get Table 1 and Fig. 1.

Table 1 Numerical Results of {xn} and {wn} with initial x1 = 1.0 based on (3.11)

n xn wn

1 1.000000000000000 1.000000000000000
2 0.000000000000000 0.446875
3 0.102254342463858 0.341360682151952
4 0.124135236267222 0.285370643452427
5 0.127821625331379 0.247725551310041
6 0.12483324665994 0.219411312688766
7 0.119099684740128 0.196813440416536
8 0.112325627072255 0.178149458121737
9 0.105327818032999 0.162399735334363
10 0.0985093930167346 0.148914357463224
11 0.0920645557462596 0.137245126226504
12 0.0860771021967925 0.127064722634339
13 0.080571192640345 0.118123908962632
14 0.0755387964514549 0.110227022688371
15 0.0709550481367587 0.103216987101004
16 0.0667870345463115 0.0969656052456123
17 0.0629988697395166 0.0913669545415246
18 0.0595546051413147 0.086332693840198
19 0.0564198487140243 0.0817886054753062
20 0.05356260429844 0.077671969713881

Figure 1 Convergence of {xn} and {wn} corresponding to Table 1
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4 Applications
4.1 Application to convex minimization problems
Suppose f : E → (–∞, +∞] is a proper convex and lower-semicontinuous function. Then
the subdifferential of f , ∂f , is defined as follows: ∀x ∈ E,

∂f (x) =
{

y ∈ E∗ : f (x) + 〈z – x, y〉 ≤ f (y),∀z ∈ E
}

.

Theorem 4.1 Let E, αn, βn, en, εn, δn and ϑn be the same as those in Theorem 3.1. Let
f , g : E → (–∞, +∞] be two proper convex and lower-semicontinuous functions. Let {xn} be
generated by the following iterative algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1, e1, ε1 ∈ E,

un = argminz∈E{f (z) + ‖z‖2

2rn
– 1

rn
〈z, JE(xn + en)〉},

yn = J–1
E [αnJExn + (1 – αn)a0JE(xn + en) + (1 – αn)(1 – a0)JEun],

C1 = E = X1, Q1 = E = Y1,

Cn+1 = {v ∈ Qn : ϕ(v, yn) ≤ αnϕ(v, xn) + (1 – αn)ϕ(v, xn + en)},
Xn+1 = {v ∈ Cn+1 : ‖x1 – v‖2 ≤ ‖PCn+1 (x1) – x1‖2 + δn},
wn ∈ Xn+1,

un = argminz∈E{g(z) + ‖z‖2

2sn
– 1

sn
〈z, JE(wn + εn)〉},

zn = J–1
E [βnJExn + (1 – βn)b0JE(wn + εn) + (1 – βn)(1 – b0)JEun],

Qn+1 = {v ∈ Cn+1 : ϕ(v, zn) ≤ βnϕ(v, xn) + (1 – βn)ϕ(v, wn + εn)},
Yn+1 = {v ∈ Qn+1 : ‖x1 – v‖2 ≤ ‖PQn+1 (x1) – x1‖2 + ϑn},
xn+1 ∈ Yn+1, n ∈ N .

(4.1)

Under the assumptions that (∂f )–10 ∩ (∂g)–10 �= ∅, infn rn > 0 and infn sn > 0, we have xn →
P(∂f )–10∩(∂g)–10(x1), as n → ∞.

Proof Similar to [25], un = argminz∈E{f (z) + ‖z‖2

2rn
– 1

rn
〈z, JE(xn + en)〉} is equivalent to 0 ∈

∂f (un)+ 1
rn

JEun – 1
rn

JE(xn +en). Then un = (JE +rn∂f )–1JE(xn +en). And, un = argminz∈E{g(z)+
‖z‖2

2sn
– 1

sn
〈z, JE(wn + εn)〉} is equivalent to 0 ∈ ∂g(un) + 1

sn
JEun – 1

sn
JE(wn + εn). Then un =

(JE + sn∂g)–1JE(wn + εn). Using Theorem 3.1, the result is available.
This completes the proof. �

Remark 4.2 Similarly, we can modify (4.1) and get the corresponding convergence theo-
rems with respect to Corollaries 3.2–3.7.

4.2 Application to variational inequalities
Let C be the non-empty closed and convex subset of E. Let T : C → E∗ be a single-valued,
monotone and hemi-continuous mapping. The variational inequality problem is to find
u ∈ C such that

〈y – u, Tu〉 ≥ 0, ∀y ∈ C. (4.2)

The symbol VI(C, T) denotes the set of solution of the variational inequality problem (4.2).
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It follows from [26] that A : E → 2E∗ defined by

Ax =

⎧
⎨

⎩
Tx + NCx, x ∈ C,

∅, x∈C,

is maximal monotone and A–10 = VI(C, T), where NC(x) = {z ∈ E∗ : 〈y – x, z〉 ≤ 0,∀y ∈ C}.

Theorem 4.3 Let E, αn, βn, en, εn, δn and ϑn be the same as those in Theorem 3.1. Let C
be the non-empty closed and convex subset of E. Let T1, T2 : C → E∗ be two single-valued,
monotone and hemi-continuous mappings. Let A, B : E → 2E∗ be defined as follows:

Ax =

⎧
⎨

⎩
T1x + NCx, x ∈ C,

∅, x∈C,

and

Bx =

⎧
⎨

⎩
T2x + NCx, x ∈ C,

∅, x∈C.

Let {xn} be generated by the following iterative algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1, e1, ε1 ∈ E,

un = VI(C, T1 + 1
rn

JE – 1
rn

JE(xn + en)),

yn = J–1
E [αnJExn + (1 – αn)a0JE(xn + en) + (1 – αn)(1 – a0)JEun],

C1 = E = X1, Q1 = E = Y1,

Cn+1 = {v ∈ Qn : ϕ(v, yn) ≤ αnϕ(v, xn) + (1 – αn)ϕ(v, xn + en)},
Xn+1 = {v ∈ Cn+1 : ‖x1 – v‖2 ≤ ‖PCn+1 (x1) – x1‖2 + δn},
wn ∈ Xn+1,

un = VI(C, T2 + 1
sn

JE – 1
sn

JE(wn + εn)),

zn = J–1
E [βnJExn + (1 – βn)b0JE(wn + εn) + (1 – βn)(1 – b0)JEun],

Qn+1 = {v ∈ Cn+1 : ϕ(v, zn) ≤ βnϕ(v, xn) + (1 – βn)ϕ(v, wn + εn)},
Yn+1 = {v ∈ Qn+1 : ‖x1 – v‖2 ≤ ‖PQn+1 (x1) – x1‖2 + ϑn},
xn+1 ∈ Yn+1, n ∈ N .

(4.3)

Under the assumptions that VI(C, T1) ∩ VI(C, T2) �= ∅, infn rn > 0 and infn sn > 0, we have
xn → PVI(C,T1)∩VI(C,T2)(x1), as n → ∞.

Proof

un = VI

(
C, T1 +

1
rn

JE –
1
rn

JE(xn + en)
)

⇔
〈
y – un, T1un +

1
rn

JEun –
1
rn

JE(xn + en)
〉
≥ 0, ∀y ∈ C

⇔ JE(xn + en) ∈ rnAun + JEun ⇐⇒ un = (JE + rnA)–1JE(xn + en).
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Similarly, we have un = (JE + snB)–1JE(wn + εn). Using Theorem 3.1, the result is available.
This completes the proof. �

Remark 4.4 Similarly, we can modify (4.3) and get the corresponding convergence theo-
rems with respect to Corollaries 3.2–3.7.

4.3 Approximating to common solution of both minimization problems and
variational inequalities

Theorem 4.5 Let E, αn, βn, en, εn, δn, ϑn and f be the same as those in Theorem 4.1. Let
C be the non-empty closed and convex subset of E. Suppose T : C → E∗ is a single-valued,
monotone and hemi-continuous mapping and A : E → 2E∗ is defined by

Ax =

⎧
⎨

⎩
Tx + NCx, x ∈ C,

∅, x∈C.

Let {xn} be generated by the following iterative algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1, e1, ε1 ∈ E,

un = argminz∈E{f (z) + ‖z‖2

2rn
– 1

rn
〈z, JE(xn + en)〉},

yn = J–1
E [αnJExn + (1 – αn)a0JE(xn + en) + (1 – αn)(1 – a0)JEun],

C1 = E = X1, Q1 = E = Y1,

Cn+1 = {v ∈ Qn : ϕ(v, yn) ≤ αnϕ(v, xn) + (1 – αn)ϕ(v, xn + en)},
Xn+1 = {v ∈ Cn+1 : ‖x1 – v‖2 ≤ ‖PCn+1 (x1) – x1‖2 + δn},
wn ∈ Xn+1,

un = VI(C, T + 1
sn

JE – 1
sn

JE(wn + εn)),

zn = J–1
E [βnJExn + (1 – βn)b0JE(wn + εn) + (1 – βn)(1 – b0)JEun],

Qn+1 = {v ∈ Cn+1 : ϕ(v, zn) ≤ βnϕ(v, xn) + (1 – βn)ϕ(v, wn + εn)},
Yn+1 = {v ∈ Qn+1 : ‖x1 – v‖2 ≤ ‖PQn+1 (x1) – x1‖2 + ϑn},
xn+1 ∈ Yn+1, n ∈ N .

(4.4)

Under the assumptions that (∂f )–10∩VI(C, T) �= ∅, infn rn > 0 and infn sn > 0, we have xn →
P(∂f )–10∩VI(C,T)(x1), as n → ∞.

Proof Similar to Theorems 4.1 and 4.3, the result can be easily obtained. This completes
the proof. �
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