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Abstract
In this paper, we consider the following kind of fractional evolution equation driven
by measure with nonlocal conditions:

{
CDα

0+x(t) = Ax(t)dt + (f (t, x(t)) + Bu(t))dg(t), t ∈ (0,b],

x(0) + p(x) = x0.

The regulated proposition of fractional equation is obtained for the first time. By
noncompact measure method and fixed point theorems, we obtain some sufficient
conditions to ensure the existence and nonlocal controllability of mild solutions.
Finally, an illustrative example is given to show practical usefulness of the analytical
results.
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1 Introduction
Measure driven equations were investigated firstly in [1, 2], and they can permit an infi-
nite number of discontinuous points in a finite time interval, so it is convenient to model
discontinuous dynamical systems. Differential equations and difference equations are spe-
cial cases of measure differential equations. One can refer to [3, 4] for the applications of
measure differential equations such as modeling the quantum. Some recent papers have
investigated the existence of solutions for measure differential equations (see [5–8]).

In recent years, along with multiple phenomena arising in physics, biophysics, engineer-
ing, science, etc., fractional calculus as an important tool has been used in different areas
(see [9–15] and the references therein). Fractional derivative is simple in modeling, clear
in physical meaning of parameters, and accurate in description. Fractional derivative op-
erators can concisely and accurately describe mechanical and physical processes with his-
torical memory and spatial global correlation, which has attracted the attention of many
scholars. Referring to [16–31], we will obtain more details about theory and application
of fractional differential equations.

Recently the theory of controllability has attracted many authors, e.g., [32–34]. Wan and
Sun considered the approximate controllability for abstract measure differential systems
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(see [35]), Cao and Sun in [36] discussed the complete controllability of measure differ-
ential equations by using Monch fixed point theorem and noncompact measure. Measure
differential equation has developed rapidly, but it mainly focuses on integer order, there
are few results on fractional order.

Inspired by the above discussion, in this paper, we investigate a kind of fractional evo-
lution equations driven by measure with nonlocal conditions. If g is an absolutely contin-
uous function, then Eq. (1.1) becomes a fractional evolution equation; if g is the sum of
an absolutely continuous function with a step function, then Eq. (1.1) becomes an impul-
sive fractional evolution equation. So fractional evolution equations driven by measure
are more general. Since fractional measure differential equations are not as continuous
or smooth as ordinary differential equations, they are only right continuous and bounded,
this brings some difficulties to the further study of them. In order to solve this problem, we
prove the regulated proposition of fractional equation for the first time. By noncompact
measure method and fixed point theorems, we obtain some sufficient conditions to ensure
the existence and nonlocal controllability of mild solutions. If the infinitesimal generator
operator is noncompact, similar results can also be derived.

In this paper, we consider the following fractional measure evolution differential equa-
tion with nonlocal conditions:⎧⎨

⎩
CDα

0+x(t) = Ax(t) dt + (f (t, x(t)) + Bu(t)) dg(t), t ∈ (0, b],

x(0) + p(x) = x0,
(1.1)

where 0 < α < 1, CDα
0+ is a Caputo derivative of order α, A is a closed densely defined

linear operator, f : [0, b]×X → X, X is a Banach space, p(x) : G([0, b]; X) → X is a specified
function. The set G([0, b]; X) is a space of regulated functions on [0, b], which will be given
later. The control function u(·) takes values in Uad , where Uad is a control set. g : [0, b] →R

is a left continuous nondecreasing function.
The rest of the paper is organized as follows. Section 2 introduces some fundamentals

that will be used later. In Sect. 3, we derive the existence result for fractional measure
evolution Eq. (1.1) by means of Darbo–Sadovskii’s fixed point theorem and noncompact
measure. In Sect. 4, by Krasnoselskii’s fixed point theorem, we obtain the controllability
results for fractional measure evolution Eq. (1.1); if the infinitesimal generator operator is
noncompact, similar results can also be derived. An illustrative example is given to show
the practical usefulness of the analytical results in Sect. 5.

2 Preliminaries
In this section, we recall some basic concepts which will be used in what follows.

Let K = [0, b]. A finite collection of system {(ξi, Ii) : i = 1, 2, . . . , n} is called a partition of
[0, b) if

⋃n
i=1 Ii = [0, b), where the intervals Ii are nonoverlapping, ξi ∈ Ii. For a given gauge

δ on [0, b), we say that a partition {(ξi, Ii) : i = 1, 2, . . . , n} is δ-fine if Ii ⊂ [ξi – δ(ξi), ξi + δ(ξi)),
i = 1, 2, . . . , n.

Definition 2.1 (Regulated function, see [8]) If a function f : K → X satisfies the limits

lim
s→t– f (s) = f

(
t–)

, t ∈ (0, b] and lim
s→t+

f (s) = f
(
t+)

, t ∈ [0, b),

then the function f is called regulated function on K .
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By G(K ; X) we denote the Banach space of all regulated functions with the norm ‖f ‖∞ =
supt∈K ‖f (t)‖, and the set of discontinuous points of a regulated function is at most count-
able.

Definition 2.2 (Henstock–Lebesgue–Stieltjes integration, see [8]) A function f : [0, b] →
X is called Henstock–Lebesgue–Stieltjes integrable over [0, b) if there is a function denoted
by (HLS)

∫ ·
0 : [0, b] → X such that, given ε > 0, there exists a gauge δε on [0, b) with

n∑
i=1

∥∥∥∥f (ξi)
(
g(ti) – g(ti–1)

)
–

(
(HLS)

∫ ti

0
f (s) dg(s) – (HLS)

∫ ti–1

0
f (s) dg(s)

)∥∥∥∥ < ε

for every δε-fine partition {(ξi, [ti–1, ti)) : i = 1, 2, . . . , n} of [0, b).

Let HLSp
g (K ; X) (p > 1) be a space of all p-ordered Henstock–Lebesgue–Stieltjes integral

regulated functions from K to X with respect to g , with the norm ‖ · ‖HLSp
g

defined by

‖f ‖HLSp
g

=
(

(HLS)
∫ b

0

∥∥f (s)
∥∥p dg(s)

) 1
p

.

Let Y be another separable reflexive Banach space where control function u takes values.
Let E ⊂ Y be bounded, and the admissible control set Uad = HLSp

g (K ; E), p > 1.

Proposition 2.3 Consider the functions f ∈ HLSp
g (K ; X) (p > 1) and g : K → R satisfying

that g is regulated. Then the function

j(t) = (HLS)
∫ t

0
(t – s)α–1f (s) dg(s), t ∈ K

is regulated and satisfies

j(t) – j
(
t–) ≤

(∫ t

t–

[
(t – s)α–1]q dg(s)

) 1
q

f (t)
(�–g(t)

) 1
p , t ∈ (0, b],

j
(
t+)

– j(t) ≤
(∫ t+

t

[(
t+ – s

)α–1]q dg(s)
) 1

q
f (t)

(�+g(t)
) 1

p , t ∈ [0, b),

where q > 1, 1
p + 1

q = 1, �+g(t) = g(t+) – g(t), �–g(t) = g(t) – g(t–), g(t+) and g(t–) denote the
right and left limits of function g at point t.

Proof Claim I: We prove that the function j(t) is regulated, i.e., limτ→t– j(τ ) = j(t–), t ∈
(0, b]. The other direction can be proved in a similar way. For this purpose, we consider

∣∣j(t) – j
(
t–)∣∣

=
∣∣∣∣(HLS)

∫ t

0
(t – s)α–1f (s) dg(s) – (HLS)

∫ t–

0

(
t– – s

)α–1f (s) dg(s)
∣∣∣∣

≤
∣∣∣∣(HLS)

∫ t

t–
(t – s)α–1f (s) dg(s)

∣∣∣∣
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+
∣∣∣∣(HLS)

∫ t–

0

(
(t – s)α–1 –

(
t– – s

)α–1)f (s) dg(s)
∣∣∣∣

≤
(∫ t

t–

[
(t – s)α–1]q dg(s)

) 1
q
(∫ t

t–

(
f (s)

)p dg(s)
) 1

p

+
∣∣∣∣(HLS)

∫ t–

0

(
(t – s)α–1 –

(
t– – s

)α–1)f (s) dg(s)
∣∣∣∣.

By the definition of Henstock–Lebesgue–Stieltjes integration, we have

(∫ t

t–

(
f (s)

)p dg(s)
) 1

p
= f (t)

(
g(t) – g

(
t–)) 1

p .

In terms of the regulated proposition of g and dominated convergence theorem, one has

∣∣j(t) – j
(
t–)∣∣ ≤

(∫ t

t–

[
(t – s)α–1]q dg(s)

) 1
q

f (t)
(
g(t) – g

(
t–)) 1

p .

Claim II: As the proof of Claim I, we can easily derive the following inequality:

j
(
t+)

– j(t) ≤
(∫ t+

t

[(
t+ – s

)α–1]q dg(s)
) 1

q
f (t)

(�+g(t)
) 1

p , t ∈ [0, b).

This completes the proof. �

Definition 2.4 (Equiregulated set, see [8]) A set D ⊂ G(K ; X) is called equiregulated if
there is ν > 0; for every t0 ∈ K and ε > 0, we have

(i) If x ∈ D, t ∈ K and t0 – ν < t < t0, then ‖x(t–
0 ) – x(t)‖ < ε;

(ii) If x ∈ D, t ∈ K and t0 < t < t0 + ν , then ‖x(t) – x(t+
0 )‖ < ε.

Lemma 2.5 (Uniform convergence, see [8]) Let {xn}∞n=1 be a sequence of functions from K
to X. If the sequence {xn}∞n=1 is equiregulated and xn converges pointwisely to x0 as n → ∞,
then xn converges uniformly to x0.

Definition 2.6 (Riemann–Liouville integral and derivative) The Riemann–Liouville frac-
tional integral and derivative are defined respectively by

Iα
0+x(t) = lα(t) ∗ x(t) =

∫ t

0
lα(t – s)x(s) ds, t > 0,

and

LDα
0+x(t) =

dn

dtn

(
ln–α(t) ∗ x(t)

)
,

where ∗ denotes the convolution,

lα(t) =
tα–1

Γ (α)
,

x ∈ C([0,∞), X), α > 0, n = [α] + 1.
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Definition 2.7 (Caputo derivative) The Caputo derivative of order α > 0 for a function
x ∈ C([0,∞], X) is defined as

CDα
0+x(t) = ln–α(t) ∗ dnx(t)

dtn ,

where n = [α] + 1.

Now, we introduce the Hausdorff noncompact measure σ (·) defined on each bounded
subset Ω of Banach space X by

σ (Ω) = inf{ε > 0,Ω has a finite ε-net in X}.

ε-net: Let M ⊂ (X,ρ), ε > 0, N ⊂ M, if for all x ∈ M, ∃y ∈ N satisfies ρ(x, y) < ε, then N is a
ε-net of M. If N is finite, then N is a finite ε-net of M, where (X,ρ) is a metric space. For
more details, see [37]. Some basic properties of σ (·) are given in the following lemmas.

Lemma 2.8 (see [37]) The noncompact measure σ (·) satisfies:
(i) σ (B) = 0 if and only if B is relatively compact in X ;

(ii) if σ ({x} ∪ B) = σ (B) for every x ∈ X and every nonempty subset B ⊆ X ;
(iii) σ (λB) ≤ |λ|σ (B) for any λ ∈R;
(iv) σ (B1 + B2) ≤ σ (B1) + σ (B2), where B1 + B2 = {x + y : x ∈ B1, y ∈ B2};
(v) σ (B1 ∪ B2) ≤ max{σ (B1),σ (B2)}.

Since the Lebesgue–Stieltjes measure is a regular Borel measure, then we refer to The-
orem 3.1 in [38], the following result can be derived.

Theorem 2.9 Let R0 ⊂ HLS1
g (K , X) be a countable set. Assume that there is a positive func-

tion ν ∈ HLS1
g (K ,R+) such that ‖r(t)‖ ≤ ν(t) holds for all r(t) ∈ R0. Then we have

σ

(∫
K

R0(t) dg(t)
)

≤ 2
∫

K
σ
(
R0(t)

)
dg(t).

Theorem 2.10 (Darbo–Sadovskii fixed point, see [37]) If D ⊂ X is a convex bounded and
closed set, the continuous mapping Z : D → D is a σ -contraction, then Z has at least one
fixed point in D.

Theorem 2.11 (Krasnoselskii fixed point, see [39]) If B ⊂ X is bounded closed and con-
vex, where X is a Banach space, operators P : D → X and Q : D → X satisfy the following
conditions:

(i) Px + Qy ∈ D whenever x, y ∈ D;
(ii) P is a compact and continuous mapping;

(iii) Q is a contraction operator.
Then P + Q has a fixed point in D.

Referring to the definition of mild solution given in [21, 40], we define the mild solution
for fractional measure evolution Eq. (1.1) in the space of regulated function G(K ; X) as
follows.
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Definition 2.12 A function x ∈ G(K ; X) is said to be a mild solution of problem (1.1) if it
satisfies

x(t) = Tα(t)
(
x0 – p(x)

)
+

∫ t

0
(t – s)α–1Sα(t – s)

(
f
(
s, x(s)

)
+ Bu(s)

)
dg(s),

for t ∈ K , where

Tα =
∫ ∞

0
ηα(θ )T

(
tαθ

)
dθ , Sα = α

∫ ∞

0
θηα(θ )T

(
tαθ

)
dθ ,

A : D(A) ⊆ X → is the infinitesimal generator of equicontinuous C0-semigroup T(t),
ηα is a probability density function defined on (0,∞), that is, ηα(t) ≥ 0, θ ∈ (0,∞) and∫ ∞

0 ηα(θ ) dθ = 1.

Lemma 2.13 (see [40]) Tα , Sα have the following properties:
(i) For every fixed t ≥ 0, the operators Tα and Sα are all linear and bounded, i.e., for

each x ∈ X ,

∥∥Tα(t)x
∥∥ ≤ M1‖x‖,

∥∥Sα(t)x
∥∥ ≤ M1

Γ (α)
‖x‖.

The operators Tα and Sα are all compact if T(t) (t > 0) is compact for any t ≥ 0.
(ii) Tα and Sα are all strongly continuous operators.

3 Existence of solution
In this section, by using the measure of noncompactness and fixed point theorem, we
obtain a sufficient condition in order to ensure the existence of a mild solution.

The following hypotheses will be used:
(H1) The C0-semigroup T(t) generated by a linear operator A : D(A) ⊆ X → X is

compact for t > 0.
(H2) The function f : K × X → X :

(i) f (·, x) is measurable for all x ∈ X , and f (t, ·) is continuous for a.e. t ∈ K ;
(ii) There is a function h ∈ HLSp

g (K ;R+) and a nondecreasing continuous function
Φ : R+ →R

+ such that

∥∥f (t, x)
∥∥ ≤ h(t)Φ

(‖x‖)
for all x ∈ X , almost all t ∈ K , and

lim inf
l→+∞

Φ(l)
l

= ϕ < +∞.

(H3) p : G(K ; X) → X is a continuous and compact mapping, and there are two positive
constants c and d such that ‖p(x)‖ ≤ c‖x‖∞ + d for all x ∈ G(K ; X).

(H4) B : E → X is a linear and bounded operator, so there is a positive constant M2 such
that

‖B‖ ≤ M2.
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(H5) The control function u is given in Uad , a Banach space of admissible control
functions.

Theorem 3.1 Suppose that hypotheses (H1)–(H5) are satisfied, then the fractional mea-
sure evolution Eq. (1.1) has at least one solution on (0, b] provided that

M1c + ϕ sup
t∈[0,b]

(∫ t

0

[
(t – s)α–1]q dg(s)

) 1
q M1

Γ (α)
‖h‖HLSp

g
< 1. (3.1)

Proof Let r ≥ 0 and Br = {G(K ; X) : ‖x‖∞ < r}, we denote Br = {G(K ; X) : ‖x‖∞ ≤ r}. Define
the operators F , F1, F2 as follows:

Fx(t) = Tα(t)
(
x0 – p(x)

)
+

∫ t

0
(t – s)α–1Sα(t – s)

(
f
(
s, x(s)

)
+ Bu(s)

)
dg(s),

F1x(t) = Tα(t)
(
x0 – p(x)

)
,

F2x(t) =
∫ t

0
(t – s)α–1Sα(t – s)

(
f
(
s, x(s)

)
+ Bu(s)

)
dg(s).

The proof process is divided into four steps.
Step I. We can find a positive number r such that F(Br) ⊆ Br .
If this is not the case, there is a function xr satisfying ‖F(xr)(t)‖ > r for some t ∈ K .

According to assumptions (H1)–(H4), we get

r <
∥∥F(xr)(t)

∥∥
=

∥∥∥∥Tα(t)
(
x0 – p(xr)

)
+

∫ t

0
(t – s)α–1Sα(t – s)f

(
s, xr(s)

)
dg(s)

+
∫ t

0
(t – s)α–1Sα(t – s)Bu(s) dg(s)

∥∥∥∥
≤ M1

(‖x0‖ + cr + d
)

+
M1

Γ (α)

(∫ t

0

[
(t – s)α–1]q dg(s)

) 1
q
(∫ b

0

∥∥f
(
s, xr(s)

)∥∥p dg(s)
) 1

p

+
∥∥Sα(t – s)B

∥∥(∫ t

0

[
(t – s)α–1]q dg(s)

) 1
q
(∫ b

0

∥∥u(s)
∥∥p dg(s)

) 1
p

≤ M1
(‖x0‖ + cr + d

)

+ sup
t∈[0,b]

(∫ t

0

[
(t – s)α–1]q dg(s)

) 1
q
(

M1

Γ (α)
Φ(r)‖h‖HLSp

g
+

M1M2‖u‖HLS

Γ (α)

)
.

We can divide both sides of this inequality by r and take the limit r → +∞ in both sides
to get

1 ≤ M1c + ϕ sup
t∈[0,b]

(∫ t

0

[
(t – s)α–1]q dg(s)

) 1
q M1

Γ (α)
‖h‖HLSp

g
,

which contradicts (3.1), so we can find r satisfying F(Br) ⊆ Br .
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Step II. F is continuous on Br .
Let xn → x ∈ Br as n → ∞, where {xn}∞n=1 is a sequence in Br . Then we have

∥∥F
(
xn)(t) – F(x)(t)

∥∥
≤ ∥∥Tα(t)

∥∥∥∥p
(
xn) – p(x)

∥∥
+

∥∥∥∥
∫ t

0
(t – s)α–1Sα(t – s)f

(
s, xn)dg(s) –

∫ t

0
(t – s)α–1Sα(t – s)f

(
s, x(s)

)
dg(s)

∥∥∥∥
≤ M1

∥∥(
p
(
xn) – p(x)

)∥∥ +
M1

Γ (α)

∫ t

0
(t – s)α–1∥∥f

(
s, xn(s)

)
– f

(
s, x(s)

)∥∥dg(s).

From the continuity of p(x) and (H2)(i), we derive that the operator F : Br → Br is con-
tinuous.

Step III. F(Br) is equiregulated on K .
For any t0 ∈ [0, b), we get

∥∥F(x)(t) – F(x)
(
t+
0
)∥∥

≤ ∥∥(
Tα(t) – Tα

(
t+
0
))(

x0 – p(x)
)∥∥

+
∫ t+

0

0

∥∥(
(t – s)α–1Sα(t – s) –

(
t+
0 – s

)α–1Sα

(
t+
0 – s

))
f
(
s, x(s)

)∥∥dg(s)

+
∫ t

t+
0

∥∥(t – s)α–1Sα(t – s)f
(
s, x(s)

)∥∥dg(s)

+
∫ t+

0

0

∥∥(
(t – s)α–1Sα(t – s) –

(
t+
0 – s

)α–1Sα

(
t+
0 – s

))
Bu(s)

∥∥dg(s)

+
∫ t

t+
0

∥∥(t – s)α–1Sα(t – s)Bu(s)
∥∥dg(s)

= A1 + A2 + A3 + A4 + A5,

where

A1 =
∥∥(

Tα(t) – Tα

(
t+
0
))(

x0 – p(x)
)∥∥,

A2 =
∫ t+

0

0

∥∥(
(t – s)α–1Sα(t – s) –

(
t+
0 – s

)α–1Sα

(
t+
0 – s

))
f
(
s, x(s)

)∥∥dg(s),

A3 =
∫ t

t+
0

∥∥(t – s)α–1Sα(t – s)f
(
s, x(s)

)∥∥dg(s),

A4 =
∫ t+

0

0

∥∥(
(t – s)α–1Sα(t – s) –

(
t+
0 – s

)α–1Sα

(
t+
0 – s

))
Bu(s)

∥∥dg(s),

A5 =
∫ t

t+
0

∥∥(t – s)α–1Sα(t – s)Bu(s)
∥∥dg(s).

In terms of conditions (H2) and (H3) we know that the sets {p(x) : x ∈ Br} and {f (s, x(s)) :
s ∈ K , x ∈ Br} are bounded. Moreover, according to the compactness and strong continuity
of T(t), we know T(t) satisfies uniform operator topology continuity, and applying domi-
nated convergence theorem, we can derive that A1, A2, A4 all tend to zero independently of
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x as t → t+
0 . Let j(t) =

∫ t
0 kα(s) dg(s), where kα(s) = (t – s)α–1h(s), referring to Proposition 2.3,

j(t) : K → X is a regulated function, we can obtain

A3 ≤ M1

Γ (α)
Φ(r)

∫ t

t+
0

∥∥(t – s)α–1h(s)
∥∥dg(s)

≤ M1

Γ (α)
Φ(r)

(∥∥j(t) – j
(
t+
0
)∥∥ +

∫ t+
0

0

∥∥(
(t – s)α–1 –

(
t+
0 – s

)α–1)f (s)
∥∥dg(s)

)
,

when t → t+
0 , we have A3 → 0. In a similar way, we know that A5 → 0 as t → t+

0 . According
to the above discussion, we can also derive that ‖F(x)(t–

0 )–F(x)(t)‖ → 0 as t → t–
0 for every

t0 ∈ (0, b]. So F(Br) is equiregulated on K .
Step IV. F is a contraction mapping.
In fact, for x, y ∈ Br , 0 < t < b, we have

∥∥F1(x)(t) – F1(y)(t)
∥∥ ≤ ∥∥Tα(t)

(
p(x) – p(y)

)∥∥
≤ cM1‖x – y‖,

so for any bounded D ⊂ Br , we have σ (F1D) ≤ cM1σ (D).
In the following we prove that F2 is a compact operator.
In terms of Step II, we know that lim F2xn = F2x as n → ∞, F2 is continuous on Br .
Let t be fixed, where t ∈ K , φ is a positive constant and satisfies 0 < φ ≤ t for each F2x(·) ∈

Br ,

F2φx(t) = Sα(φ)
∫ t–φ

0
(t – s)α–1Sα(t – s – φ)

(
f
(
s, x(s)

)
+ Bu(s)

)
dg(s).

It follows from the compactness of Sα that the set F2φx(t) = {F2φx(t) : x(·) ∈ Br} is relatively
compact in X for each 0 < φ < t. On the other hand, for any x(·) ∈ Br , under condition (H2),
we have

∥∥F2x(t) – F2φx(t)
∥∥ =

∥∥∥∥
∫ t

t–φ

(t – s)α–1Sα(t – s – φ)f
(
s, x(s)

)
dg(s)

∥∥∥∥
≤ M1

Γ (α)

∫ t

t–φ

(t – s)α–1∥∥f
(
s, xr(s)

)∥∥dg(s)

≤ M1

Γ (α)
Φ(r)

∫ t

t–φ

(t – s)α–1h(s) dg(s).

According to hypothesis (H2), we know that
∫ t

t–φ
(t – s)α–1h(s) dg(s) is regulated and con-

tinuous from the left, then the last inequality tends to zero as φ → 0+. So, for each t ∈ K ,
F2 is relatively compact on Br for any D ⊂ Br , we obtain that

σ (FD) ≤ σ (F1D) + σ (F2D) ≤ cM1σ (D).

By (3.1) we know cM1 < 1, so the operator F is condensed.
According to Darbo–Sadovskii’s fixed point theorem, we know that the fractional

measure evolution problem (1.1) has a solution on the interval K . This completes the
proof. �
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Remark 3.1 If g is a step function g(s) =
∑∞

n=1 ρnΘ(s – tn), where t1 < t2 < · · · is a sequence
of moments in [0, b],

∑∞
n=1 ρn < ∞, where (ρn)n is a sequence of positive numbers, and

Θ(s – tn) = 0 if s ≤ 0; otherwise Θ(s – tn) = 1, Θ(s – tn) is a singular function, then Eq. (1.1)
becomes a fractional evolution equation.

Remark 3.2 If g is the sum of an absolutely continuous function with a step function as in
Remark 3.1, then Eq. (1.1) becomes an impulsive fractional evolution equation.

4 Nonlocal controllability
In this section, we obtain some sufficient conditions ensuring the nonlocal controllability
of mild solutions by employing the measure of noncompactness and fixed point theorem.

Definition 4.1 (Nonlocally controllable, see [36]) If for each x0, x1 ∈ X there is a control
u ∈ Uad such that the mild solution x(·) of (1) satisfies that x(b) + q(x) = x1, then system
(1.1) is said to be nonlocally controllable on K .

Furthermore, we suppose that
(H6) There is a function W ∈ HLSp

g (K ;R+) (p > 1) such that

σ
(
f (t, D)

) ≤ W (t)σ (D).

(H7) Define an operator Λ ∈ HLSp
g (K ; X) (p > 1) by

Λu =
∫ b

0
(b – s)α–1Sα(b – s)Bu(s) dg(s),

and assume it satisfies the following:
(i) Operator Λ–1 taking value in HLSp

g (K ; X)/ kerΛ exists and there is a positive
constant M3 such that

∥∥Λ–1∥∥ ≤ M3;

(ii) There is a function J ∈ HLSp
g (K ;R+) (p > 1) such that, for almost t ∈ K and any

bounded set D ⊆ X ,

σ
((

Λ–1D
)
(t)

) ≤ J(t)σ (D).

Theorem 4.2 Suppose that hypotheses (H1)–(H7) are satisfied, then the fractional mea-
sure evolution Eq. (1.1) is controllable on (0, b] if

c
(

M1 +
M1M2M3

Γ (α)
(1 + M1)

)

+
M1γ

Γ (α)
sup

t∈[0,b]

(∫ t

0

[
(t – s)α–1]q dg(s)

) 1
q
(

1 +
M1M2M3

Γ (α)

)
‖h‖HLSp

g
< 1 (4.1)
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and

Ξ =
(

4M2
1M2

Γ (α)2 sup
t∈[0,b]

∫ t

0
(t – s)α–1J(s) dg(s) +

2M1

Γ (α)

)

× sup
t∈[0,b]

∫ t

0
(t – s)α–1W (s) dg(s) < 1.

Proof Let x0 ∈ X be fixed. Define the operators F , F1, F2 as follows:

Fx(t) = Tα(t)
(
x0 – p(x)

)
+

∫ t

0
(t – s)α–1Sα(t – s)

(
f
(
s, x(s)

)
+ Bu(s)

)
dg(s),

F1x(t) = Tα(t)
(
x0 – p(x)

)
,

F2x(t) =
∫ t

0
(t – s)α–1Sα(t – s)

(
f
(
s, x(s)

)
+ Bu(s)

)
dg(s).

From condition (i) of (H7), we can define the control for arbitrary function x(·) ∈ G(K ; X)
as follows:

ux(t) = Λ–1
[

x1 – p(x) – Tα(b)
(
x0 – p(x)

)
–

∫ b

0
(b – s)α–1Sα(b – s)f

(
s, x(s)

)
dg(s)

]
(t).

Let r ≥ 0 and Br = {G(K ; X) : ‖x‖∞ < r}, we denote Br = {G(K ; X) : ‖x‖∞ ≤ r}.
The proof process is divided into three steps.
Step I. Claim 1: we can find a positive number r such that F(Br) ⊆ Br .
Claim 2: we show that, for any x, x ∈ Br , we can derive F1x + F2x ∈ Br .
In order to prove Claim 1, we can prove by contradiction. We suppose that there is

a function xr(·) ∈ Br satisfying ‖F(xr)(t)‖ > r for some t ∈ K . According to assumptions
(H1)–(H4), we have

∥∥F(xr)(t)
∥∥

=
∥∥∥∥Tα(t)

(
x0 – p(xr)

)

+
∫ t

0
(t – s)α–1Sα(t – s)f

(
s, xr(s)

)
dg(s)

+
∫ t

0
(t – s)α–1Sα(t – s)Bu(s) dg(s)

∥∥∥∥
≤ M1

(‖x0‖ +
∥∥p(xr)

∥∥)

+
M1

Γ (α)

(∫ t

0

[
(t – s)α–1]q dg(s)

) 1
q
(∫ b

0

∥∥f
(
s, xr(s)

)∥∥p dg(s)
) 1

p

+
∥∥Sα(t – s)B

∥∥(∫ t

0

[
(t – s)α–1]q dg(s)

) 1
q
(∫ b

0

∥∥u(s)
∥∥p dg(s)

) 1
p

≤ M1
(‖x0‖ +

∥∥p(xr)
∥∥)
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+ sup
t∈[0,b]

(∫ t

0

[
(t – s)α–1]q dg(s)

) 1
q
(

M1

Γ (α)
Φ(r)‖h‖HLSp

g
+

M1M2‖u‖HLS

Γ (α)

)

≤ r,

where

‖uxr ‖HLS

=
∥∥∥∥Λ–1

[
x1 – p(x) – Tα(b)

(
x0 – p(x)

)

–
∫ b

0
(b – s)α–1Sα(t – s)f

(
s, x(s)

)
dg(s)

]∥∥∥∥
HLS

≤ M3

[
‖x1‖ + M1‖x0‖ + (1 + M1)

∥∥p(x)
∥∥

+
(∫ b

0

[
(b – s)α–1]q dg(s)

) 1
q M1

Γ (α)
Φ(r)‖h‖HLSp

g

]
.

Due to ‖F(xr)(t)‖ > r, so we have

(
M1 +

M2
1M2M3

Γ (α)

)
‖x0‖

+
(

M1 +
M1M2M3

Γ (α)
(1 + M1)

)
(cr + d) +

(
M1 +

M1M2M3

Γ (α)

)
‖x1‖

+
M1

Γ (α)
Φ(r) sup

t∈[0,b]

(∫ t

0

[
(t – s)α–1]q dg(s)

) 1
q
(

1 +
M1M2M3

Γ (α)

)
‖h‖HLSp

g
> r.

We divide the above inequality on both sides by r, then passing to the lower limit as r →
+∞, we have

c
(

M1 +
M1M2M3

Γ (α)
(1 + M1)

)

+
M1γ

Γ (α)
sup

t∈[0,b]

(∫ t

0

[
(t – s)α–1]q dg(s)

) 1
q
(

1 +
M1M2M3

Γ (α)

)
‖h‖HLSp

g
≥ 1.

It is a contradiction to (4.1). So we can find some positive number r satisfying F(Br) ⊆ Br .
Based on Claim 1, it is easy to prove Claim 2 as follows:
For t ∈ K and x, x ∈ Br , we get that

∥∥F1(x)(t) + F2(x)(t)
∥∥

=
∥∥∥∥Tα(t)

(
x0 – p(xr)

)

+
∫ t

0
(t – s)α–1Sα(t – s)f

(
s, x(s)

)
dg(s) +

∫ t

0
(t – s)α–1Sα(t – s)Bu(s) dg(s)

∥∥∥∥
≤ M1

(‖x0‖ +
∥∥p(xr)

∥∥)
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+
M1

Γ (α)

(∫ t

0

[
(t – s)α–1]q dg(s)

) 1
q
(∫ b

0

∥∥f
(
s, x(s)

)∥∥p dg(s)
) 1

p

+
∥∥Sα(t – s)B

∥∥(∫ t

0

[
(t – s)α–1]q dg(s)

) 1
q
(∫ b

0

∥∥u(s)
∥∥p dg(s)

) 1
p

≤ M1
(‖x0‖ +

∥∥p(xr)
∥∥)

+ sup
t∈[0,b]

(∫ t

0

[
(t – s)α–1]q dg(s)

) 1
q
(

M1

Γ (α)
Φ(r)‖h‖HLSp

g
+

M1M2‖uxr ‖HLS

Γ (α)

)

≤ r,

we can derive F1(x)(t) + F2(x)(t) ∈ Br .
Step II. F1 is continuous on Br .
Let lim xn → x ∈ Br as n → ∞, where {xn}∞n=1 is a sequence in Br . Then we have

∥∥F1
(
xn)(t) – F1(x)(t)

∥∥ ≤ ∥∥Tα(t)
∥∥∥∥p

(
xn) – p(x)

∥∥,

from the continuity of p(x), we derive that the operator F1 : Br → Br is continuous.
Step III. The operator F1 is compact.
Let u, v ∈ K , 0 < μ < ν < b, we have

∥∥F1(x)(ν) – F1(x)(μ)
∥∥ ≤ ∥∥Tα(ν) – Tα(μ)

∥∥(‖x0‖ +
∥∥p(x)

∥∥)
≤ ∥∥Tα(ν) – Tα(μ)

∥∥(r + cr + d),

due to the strong continuity of Tα , we can conclude that limμ→ν ‖Tα(ν)–Tα(μ)‖ = 0, which
implies that F1(Br) is equicontinuous. According to Ascoli theorem, we get F1 is a compact
mapping.

Step IV. F(Br) is equiregulated on K .
For any t0 ∈ [0, b), we get

∥∥F(x)(t) – F(x)
(
t+
0
)∥∥

≤ ∥∥(
Tα(t) – Tα

)(
t+
0
)(

x0 – p(x)
)∥∥

+
∫ t+

0

0

∥∥(
(t – s)α–1Sα(t – s) –

(
t+
0 – s

)α–1Sα

(
t+
0 – s

))
f
(
s, x(s)

)∥∥dg(s)

+
∫ t

t+
0

∥∥(t – s)α–1Sα(t – s)f
(
s, x(s)

)∥∥dg(s)

+
∫ t+

0

0

∥∥(
(t – s)α–1Sα(t – s) –

(
t+
0 – s

)α–1Sα

(
t+
0 – s

))
Bu(s)

∥∥dg(s)

+
∫ t

t+
0

∥∥(t – s)α–1Sα(t – s)Bu(s)
∥∥dg(s)

= A1 + A2 + A3 + A4 + A5.

In terms of the conditions we know that the set {p(x) : x ∈ Br} and {f (s, x(s)) : s ∈ K , x ∈ Br}
are bounded. Furthermore, according to the compactness and strong continuity of T(t),
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we know that T(t) satisfies uniform operator topology continuity, and applying dominated
convergence theorem, we can derive that A1, A2, A4 all tend to zero independently of x as
t → t+

0 . Let j(t) =
∫ t

0 kα(s) dg(s), where kα(s) = (t – s)α–1h(s) referring to Proposition 2.3,
j(t) : K → X is a regulated function, we can obtain

A3 ≤ M1

Γ (α)
Φ(r)

∫ t

t+
0

∥∥(t – s)α–1h(s)
∥∥dg(s)

≤ M1

Γ (α)
Φ(r)

(∥∥j(t) – j
(
t+
0
)∥∥ +

∫ t+
0

0

∥∥(
(t – s)α–1 –

(
t+
0 – s

)α–1)h(s)
∥∥dg(s)

)
,

when t → t+
0 , we have A3 → 0. In a similar way, we know that A5 → 0 as t → t+

0 . According
to the above discussion, we can also derive that ‖F(x)(t–

0 )–F(x)(t) → 0‖ as t → t–
0 for every

t0 ∈ (0, b]. So F(Br) is equiregulated on K .
Step V. F2 is a contraction mapping.
Suppose D = {xn}∞n=1 ⊂ Br . In terms of assumptions (H2)(iii) and (H4)(ii), we can obtain

σ
{

uxn (s)
}∞

n=1 ≤ J(s)σ
({∫ t

0
(t – s)α–1Sα(t – s)f

(
s, xn(s)

)
dg(s)

}∞

n=1

)

≤ J(s)
2M1

Γ (α)

∫ t

0
(t – s)α–1W (s)σ

(
D(s)

)
dg(s)

and

σ
(
(F2D)(t)

)
= σ

(
(F2xn)(t)∞n=1

)
≤ σ

({∫ t

0
(t – s)α–1Sα(t – s)f

(
s, xn(s)

)
dg(s)

}∞

n=1

)

+ σ

({∫ t

0
(t – s)α–1Sα(t – s)Buxn (s) dg(s)

}∞

n=1

)

≤ 2M1

Γ (α)

∫ t

0
(t – s)α–1W (s)σ

(
D(s)

)
dg(s)

+
2M1M2

Γ (α)

∫ t

0
(t – s)α–1σ

{
uxn (s)

}∞
n=1 dg(s)

≤
(

2M1

Γ (α)
+

4M2
1M2

Γ (α)2

∫ t

0
(t – s)α–1J(s) dg(s)

)∫ t

0
(t – s)α–1W (s)σ

(
D(s)

)
dg(s)

≤
(

2M1

Γ (α)
+

4M2
1M2

Γ (α)2 sup
t∈[0,b]

∫ t

0
(t – s)α–1J(s) dg(s)

)

× sup
t∈[0,b]

∫ t

0
(t – s)α–1W (s) dg(s)σ (D)

= Ξσ (D).

Hence we can derive that operator F2 is condensed. According to Krasnoselskii’s fixed
point theorem, we see that the operator F has a fixed point in Br .
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Then

x(b) = Tα(b)
(
x0 – p(x)

)
+

∫ b

0
(b – s)α–1Sα(b – s)Bux(s) ds

+
∫ b

0
(b – s)α–1Sα(b – s)f

(
s, x(s)

)
dg(s)

= –p(x) + x1.

Hence, the fractional measure evolution system (1.1) is nonlocally controllable on the in-
terval K . The proof is completed. �

(Ĥ1) The C0-semigroup T(t) generated by a linear operator A : D(A) ⊆ X → X is
equicontinuous for t > 0.

Theorem 4.3 Suppose that hypotheses (Ĥ1), (H2)–(H7) are satisfied, then the fractional
measure evolution Eq. (1.1) is controllable on (0, b] if

c
(

M1 +
M1M2M3

Γ (α)
(1 + M1)

)

+
M1γ

Γ (α)
sup

t∈[0,b]

(∫ t

0

[
(t – s)α–1]q dg(s)

) 1
q
(

1 +
M1M2M3

Γ (α)

)
‖h‖HLSp

g
< 1 (4.2)

and

(
4M2

1M2

Γ (α)2 sup
t∈[0,b]

∫ t

0
(t – s)α–1J(s) dg(s) +

2M1

Γ (α)

)
sup

t∈[0,b]

∫ t

0
(t – s)α–1W (s) dg(s) < 1.

Proof We can use the similar way in Theorem 4.2 to derive the result. �

5 An example
Consider the following fractional measure evolution equation:

⎧⎪⎪⎨
⎪⎪⎩

CDα
0+x(t, z) = ∂2

∂z2 x(t, z) dt + ( e–t sin x(t,z)
et+e–t + ωu(t, z)) dg(t),

t ∈ [0, 1], z ∈ [0,π ],

x(0) + |x|
6+|x| = x0.

(5.1)

Let

A : D(A) ⊆ X → X and Ay = y′′,

where D(A) =
{

y ∈ X : y, y′ is absolutely continuous, y′′ ∈ X, y(0) = y(π ) = 0
}

,

f : [0, 1] × X → X and f
(
t, x(t, z)

)
=

e–t sin x(t, z)
et + e–t ,

B : x → X and Bu(t, z) = μu(t, z),

p : G
(
[0, 1]; X

) → X and p
(
x(t, z)

)
=

|x(t, z)|
6 + |x(t, z)| .
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It is easy to see that A is the infinitesimal generator of an analytic semigroup T(t) in X,
taking en(x) =

√
2/π sin(nx) as an orthonormal basis in X,

T(t)y =
∞∑

n=1

e–n2t〈y, en〉en, t ≥ 0

and ‖T(t)‖ ≤ e–t , so there is M1 > 0 satisfying ‖T(t)‖ ≤ M1.

∥∥f (t, x1) – f (t, x2)
∥∥ =

(∫ π

0

∣∣∣∣e–t sin x1

et + e–t –
e–t sin x2

et + e–t

∣∣∣∣
2

dz
) 1

2

≤
(∫ π

0

∣∣∣∣ e–t

et + e–t

∣∣∣∣
2

| sin x1 – sin x2|2 dz
) 1

2

≤ 1
2

(∫ π

0
| sin x1 – sin x2|2 dz

) 1
2

≤ 1
2

(∫ π

0
|x1 – x2|2 dz

) 1
2

≤ 1
2
‖x1 – x2‖.

Moreover, we have

∥∥f (t, x)
∥∥ =

(∫ π

0

∣∣∣∣ e–t

et + e–t

∣∣∣∣
2

sin2 x dz
) 1

2 ≤ 1
2

(∫ π

0
sin2 x dz

) 1
2 ≤ 1

2
‖x‖.

Taking h(t) = 1
4 , Φ(‖x‖) = ‖x‖, we obtain that h(t) and Φ(t) satisfy assumption (H2).

∥∥p
(
x1(t, z)

)
– p

(
x2(t, z)

)∥∥ =
(∫ π

0

( |x1(t, z)|
6 + |x1(t, z)| –

|x2(t, z)|
6 + |x2(t, z)|

)2

dz
) 1

2

≤ 1
6

∫ π

0
|x1 – x2|2 dz)

1
2

≤ 1
6
‖x1 – x2‖,

∥∥p
(
x(t, z)

)∥∥ =
(∫ π

0

( |x(t, z)|
6 + |x(t, z)|

)2

dz
) 1

2 ≤ 1
6
‖x‖ ≤ 1

6
‖x‖∞.

We take c = 1
6 , d = 0, hypothesis (H3) is satisfied.

We define the linear and bounded operator B and linear operator Λ : HLSp
g ([0, 1]; X) →

X as follows:

B(u) = μu(t, z), z ∈ [0,π ]

and

Λu =
∫ 1

0
(1 – s)α–1Sα(1 – s)Bu(s) dg(s).
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It is easy to know that ‖B‖ = μ = M2, ‖Λ‖ ≤ μ. In terms of the inverse operator theo-
rem, Λ–1 is the invertible operator of Λ and takes value in HLSp

g ([0, 1]; X)/ kerΛ.
If the inequalities

1
6

(
M1 +

M1M2M3

Γ (α)
(1 + M1)

)

+
1
4

M1

Γ (α)

(∫ 1

0

[
(1 – s)α–1]q dg(s)

) 1
q
(

1 +
M1M2M3

Γ (α)

)
< 1

and

(
4M2

1M2

Γ (α)2

(∫ 1

0

[
(1 – s)α–1]q dg(s)

) 1
q ∥∥J(s)

∥∥
HLSp

g
+

2M1

Γ (α)

)

×
∫ 1

0
(1 – s)α–1W (s) dg(s) < 1

hold, then the conditions in Theorem 4.2 are satisfied, our results can be applied to prob-
lem (5.1).

6 Conclusions
This paper is concerned with the existence and nonlocal controllability of mild solution
for fractional evolution equation driven by measure with nonlocal conditions for the first
time. We prove the regulated proposition of fractional equation firstly, then by construct-
ing operator F , using the noncompact measure method and different fixed point theorems,
we derive some sufficient conditions to guarantee the existence and nonlocal controllabil-
ity of mild solutions. Finally, an illustrative example is given to show the practical use-
fulness of the analytical results. Furthermore, we will investigate the fractional measure
evolution equations with Riemann–Liouville and Hilfer fractional derivatives in the next
work.
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