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Abstract
We study a covariate-adjusted regression(CAR) model that is proposed for such
situations where both predictors and response in a regression model are not directly
observable but are distorted by a multiplicative factor that is determined by an
unknown function of some observable covariate. By establishing a connection to
varying-coefficient models, we present the local linear L1-estimation method when
the underlying error distribution deviates from a normal distribution. The robust
estimators of parameters are proposed in the underlying regression model. The
consistency and asymptotic normality of the robust estimators are investigated. Since
the limit distribution depends on the unknown components of the errors, an
empirical likelihood ratio method based on L1 estimator is proposed. The confidence
intervals for the regression coefficients are constructed. Simulation results
demonstrate the superiority of the proposed estimators over other classical
estimators when the underlying errors have heavy tails. Pima Indian diabetes data set
is conducted to illustrate the performance of the proposed method, where the
response and predictors are potentially contaminated by body mass index.

MSC: Covariate-adjusted regression; Least absolute deviation estimation; Asymptotic
normality; Local linear estimate

1 Introduction
Covariate-adjusted regression(CAR) was initially proposed for regression analysis by Sen-
türk and Müller [18], where both the response and predictors are not directly observed.
The available data are distorted by unknown functions of some common observable co-
variate. An example is the fibrinogen data collected on 69 hemodialysis patients, where
the regression of fibrinogen level on serum transferrin level is of interest in Kaysen et al.
[11]. Both response and predictor are known to be influenced in a multiplicative fashion by
body mass index, defined as weight/height2. Based on the observation, Sentürk and Müller
[18] suggested that the confounding variable affects the primary variables through a flexi-
ble multiplicative unknown function. Such way of adjustment may reduce non-negligible
bias and lead to consistent estimators of the parameters of interest, which is through di-
viding by the body mass index identified as a common confounder. For the simple case of
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two variables of interest, the underlying variables are

Y =
Ỹ

ψ(U)
, X =

X̃
φ(U)

, (1.1)

U ⊥⊥ (Y , X), where “⊥⊥”indicates independence, Y and X are the unobservable continu-
ous variables of interest, while Ỹ and X̃ are available distorted variables. U is an observed
continuous scalar confounding variable, ψ(·) and φ(·) denote unknown smooth contam-
inating functions of U . The main goal is to uncover the relationship between response Y
and covariate X, based on the confounding variable U , and on the contaminate variables
Ỹ and X̃ . Sentürk and Müller [18] considered the simple linear regression model

Y = γ0 + γ1X + e, (1.2)

where γ0 and γ1 are unknown parameters, e is the error term, e ⊥⊥ (X, U). Reasonable
assumption for ψ(·) and φ(·) is that the mean distorting effect vanishes, that is,

E
(
ψ(U)

)
= 1, E

(
φ(U)

)
= 1. (1.3)

The central objective, based on the observation of the confounding variable U and the
distorted observations (Ỹ , X̃) in (1.1) is to estimate the unknown parameters γ0 and γ1.

To eliminate the effect caused by distortions, Sentürk and Müller [19] proposed
covariate-adjusted varying coefficient model(CAVCM) to target the covariate-adjusted
relationship between longitudinal variables. Sentürk and Nguyen [20] proposed the esti-
mation procedures based on local polynomial smoothing technique (LP) for the model.
Cui et al. [3] considered the covariate-adjusted nonlinear regression and proposed a di-
rect plug-in estimation procedure for the model. Li et al. [12] studied covariate-adjusted
partially linear regression models and obtained confidence intervals for the regression
coefficients.

According to model (1.1)–(1.3), the regression of Ỹ on X̃ can be expressed as

Ỹ = β0(U) + β1(U)X̃ + e(U), (1.4)

where β0(U) = ψ(U)γ0, β1(U) = γ1ψ(U)/φ(U), e(U) = ψ(U)e.
This is a varying coefficient model with heteroscedasticity, that is, a useful extension

of classical linear models. Varying coefficient models are widely used in diverse areas as
the modeling bias can significantly be reduced and the “curse of dimensionality”problem
can also be avoided. See, for example, Hastie and Tibshirani [8], Fan and Zhang [5–7].
Least-squares (LS) method is the popular approach in the vast literature on model (1.4),
as LS method has favorable properties for a large class of error distributions. However,
this method will break down when the random error is adversely affected by outliers and
heavy-tail distributions. The robust estimation method is desired. In this article, we pro-
pose robust coefficient estimation motivated by Tang et al. [21]. We use a two-step esti-
mation procedure to estimate the unknown parameters. Firstly, we use L1-estimation to
estimate varying coefficients based on local linear fit. Because model (1.4) is heteroscedas-
tic, the inferring methods are not same. Secondly, the estimates of unknown parameters
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are constructed based on weighted averages of these functions. However, the limiting vari-
ance has a complex structure with several unknown components. An estimated empirical
log-likelihood approach to construct the confidence region of the regression parameter
is developed. An empirical log-likelihood ratio is proved to be asymptotically standard
chi-square.

The rest of this article is organized as follows. In Sect. 2, we describe the L1 estima-
tion procedure and propose the estimation of both nonparametric and parametric com-
ponents. We obtain the asymptotic results and discuss the efficiency of the estimators. In
Sect. 3, we construct empirical likelihood based confidence regions for the parameters.
Section 4 presents the hypothesis testing procedure. In Sects. 5 and 6, some simulations
and empirical study are carried out to assess the performance of the proposed estima-
tors and confidence regions. Section 7 concludes the paper with discussion. The proofs of
theorems are deferred to Appendix.

2 Estimation and asymptotic behavior
Consider a covariate-adjusted regression model in the following general form:

⎧
⎪⎪⎨

⎪⎪⎩

Y = Xτγ + e,

Ỹ = ψ(U)Y ,

X̃r = φr(U)Xr , r = 1, . . . , p,

(2.1)

where γ = (γ1, . . . ,γp)τ . Y and Xr , r = 1, . . . , p, are unobservable variables distorted by
smooth function ψ(U) and φr(U). Ỹ , X̃r , r = 1, . . . , p, and univariate confounder U are ob-
servable variables. e is random error with 0.5 quantile being zero, E(ψ(U)) = 1, E(φr(U)) =
1, r = 1, . . . , p. Our goal is to estimate the unknown parameter γ consistently based the
observed data, and to further establish asymptotic normality for the proposed estimators.
The estimation of the regression coefficient γ is a two-step estimation procedure similar
to that in Sentürk and Müller [18]. From model (2.1), we rewrite CAR into the following
CAVCM:

Ỹ = X̃
τ
β(U) + e(U), (2.2)

where β(U) = (β1(U), . . . ,βp(U))τ , βr(U) = γr
ψ(U)
φr (U) , r = 1, . . . , p, e(U) = ψ(U)e.

In the first step, we employ L1-estimation to estimate varying coefficients β(U) based
on local linear fit. For U in the neighborhood of u, we use a local linear approximation

βr(U) ≈ ar(u) + a′
r(u)(U – u) �= ar + br(U – u)

for r = 1, . . . , p.
Suppose that {Ui, X̃ i, Ỹi}, i = 1, . . . , n, are independent and identically distributed sam-

ples from model (2.1), X̃ i = (X̃i1, . . . , X̃ip)τ . Let (âτ , b̂
τ
)τ be the local linear L1-estimate of

(aτ , bτ )τ by minimizing

n∑

i=1

∣∣Ỹi – X̃
τ

i
(

a + (Ui – u)b
)∣∣K

(
(Ui – u)/h

)
, (2.3)

where a = (a1, . . . , ap)τ , b = (b1, . . . , bp)τ .
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In the second step, from (C1), (C2), and (2.1),

E(X̃r) = E(Xr), E
(
βr(U)X̃r

)
= γrE(X̃r), r = 1, . . . , p.

The unknown regression parameters γr , r = 1, . . . , p, are obtained as averages of raw es-
timates β̂r(Ui). The estimates are given by

γ̂r =
1
¯̃Xr

n∑

i=1

1
n

β̂r(Ui)X̃ir , r = 1, . . . , p, (2.4)

where ¯̃Xr = 1
n
∑n

i=1 X̃ir .
In this section, we establish the asymptotic properties of γ̂r .

Theorem 1 Under the regularity conditions in Appendix, if h → 0 and nh → ∞ as n →
∞, then

γ̂r = γr + Op
(
n–1/2) + Op(Cn), r = 1, . . . , p, (2.5)

where Cn = Op(h2 + log1/2(1/h)/(nh)).

Theorem 2 Under the regularity conditions in Appendix, if nh2/ log(1/h) → ∞ and
nh4 → 0 as n → ∞, then the asymptotic distribution of γ̂r is given by

√
n(γ̂r – γr) D→ N

(
0,σ 2

r
)
, r = 1, . . . , p, (2.6)

where

σ 2
r =

{
γ 2

r E
(
X2

r
)

var
(
ψ(U)

)
+ γ 2

r var(Xr)

+ 2γ 2
r
[
E
(
φr(U)ψ(U)

)
E
(
X2

r
)

–
(
E(Xr)

)2] + γ 2
r var

(
φr(U)Xr

)}
/
{

E(Xr)
}2.

The optimal bandwidth for β̂r(·) is h ∼ n–1/5. This bandwidth does not satisfy the condi-
tion in Theorem 2. In order to obtain the asymptotic normality for γ̂r , undersmoothing for
β̂r(·) is necessary. The requirement has also been used in the literature for semiparametric
model; see Carroll et al. [2] for a detailed discussion.

3 Empirical likelihood
Although we have obtained the asymptotic distribution of γr , the σ 2

r is complex and in-
cludes several unknown components to be estimated. To resolve this difficulty, we propose
an empirical likelihood method to construct a confidence interval for γr . For more infor-
mation on the empirical likelihood estimation, we refer to Owen [16].

Note that E((βr(Ui) – γr)X̃ir) = 0 for i = 1, 2, . . . , n, r = 1, . . . , p if γr is the true parameter.
Hence, the problem of testing whether γr is the true parameter is equivalent to testing
whether E((βr(Ui) – γr)X̃ir) = 0. By Owen [15], to construct an empirical likelihood ra-
tio function for γr , we denote Vi(γr) = (βr(Ui) – γr)X̃ir . That is, we can define the profile
empirical likelihood ratio function

Ln(γr) = –2 max

{ n∑

i=1

log(npi)
∣∣
∣pi ≥ 0,

n∑

i=1

pi = 1,
n∑

i=1

piVi(γr) = 0

}

.



Sun and Wang Journal of Inequalities and Applications         (2020) 2020:75 Page 5 of 18

It can be shown that Ln(γr) is asymptotically chi-squared with 1 degree of freedom. How-
ever, Ln(γr) cannot be directly used to make statistical inference on γr because Ln(γr) con-
tains the unknown βr(·). A natural way is to replace βr(·) by L1-estimator β̂r(·) and to
replace Vi(γr) by V̂i(γr). Then an estimated empirical likelihood ratio function is defined
by

L̂n(γr) = –2 max

{ n∑

i=1

log(npi)
∣
∣∣pi ≥ 0,

n∑

i=1

pi = 1,
n∑

i=1

piV̂i(γr) = 0

}

.

By the Lagrange multiplier method, L̂n(γr) can be represented as

L̂n(γr) = 2
n∑

i=1

log
(
1 + λV̂i(γr)

)
, (3.1)

where λ is determined by

1
n

n∑

i=1

V̂i(γr)
1 + λV̂i(γr)

= 0. (3.2)

In the following, we show that log L̂n(γr) converges to the standard chi-square distribution
with degree 1.

Theorem 3 Under conditions of Theorem 2, we have

L̂n(γr) D→ χ2
1 . (3.3)

According to Theorem 3, we construct a (1 – α)-level confidence region of γr :

CRα =
{
γr : L̂n(γr) ≤ cα

}
,

where cα satisfies P(χ2
1 ≤ cα) = 1 – α.

4 Bootstrap test
It is often of practical interest to test for the significance of the regression coefficients. We
consider the null hypothesis

H0 : βr(u) = cr , r = 1, . . . , p, (4.1)

where cr is an unknown constant. Under the null hypothesis, the smooth estimator β̂r(u)
of βr(u) is expected to be close to a horizontal line. We average {β̂r(Ui)} to obtain the
estimator of parameter cr . Similar to the statistics proposed by Cai, Fan, and Yao [1], the
residual sum of squares under null hypothesis is

RSS0 = n–1
n∑

i=1

∣∣
∣∣
∣
Ỹi –

p∑

j �=r

β̂j(Ui)X̃ij – ĉrX̃ir

∣∣
∣∣
∣
.
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Analogously, the the residual sum of squares corresponding to model (2.2) is

RSS1 = n–1
n∑

i=1

∣∣
∣∣
∣
Ỹi –

p∑

j=1

β̂j(Ui)X̃ij

∣∣
∣∣
∣
.

The goodness-of-fit test statistic is defined as

Tn = (RSS0 – RSS1)/RSS1 = RSS0/RSS1 – 1,

and we reject the null hypothesis (4.1) for large values of Tn. The distribution of T∗
n com-

puted from the bootstrap samples is used as an approximation to the distribution of Tn.
The p-value of the test is the relative frequency of the event T∗

n ≥ Tn.

5 Simulation study
In this section, we carry out simulations to investigate the performance of our proposed
methods as outlined in Sects. 2 and 3. We shall compare the finite sample performance
of the LP procedure with our approach. The underlying (unobserved) multiple regression
model considered is as follows:

Y = 3 + 0.1X1 + 2X2 – 0.2X3 + e, (5.1)

where the predictors X1, X2, and X3 are distributed as N(2, 1.52), N(0.5, 0.252), N(1, 1).
For the distribution of the confounding variable U , it is generated from a uniform [0, 1]
distribution. The distorting functions considered are

ψ(U) = (U + 3)2/a, φ1(U) = (U + 10)/b, φ3(U) = (U + 3)/c,

where (a, b, c) are (12.339, 10.5, 3.5) for U ∼ U[0, 1]. The constants a, b, c are chosen
such that the distorting functions satisfy the constraints in (1.3). In order to show the
robustness of our estimators, the following different error distributions are considered:
N(0, 0.25), t(3), and Cauchy(0, 0.2). For the weight function, we use the Epanechnikov ker-
nel, and the asymptotic optimal bandwidth h for LP has been considered in Senturk et al.
[19]. We can produce simple formulas for the asymptotic optimal bandwidth h for L1:
hL1 = hLP/{4f (F–1(0.5))}1/5 motivated by Kai et al. [10]. We repeat the simulation 1000
times with sample sizes of 50, 100, and 200, respectively. The corresponding results are
summarized in Table 1. As we can see from the table, when the error is normally dis-
tributed, the proposed L1 estimators perform nearly as well as the LP estimators although
they have slightly larger biases and standard deviations. However, for the other two non-
normal errors, LP estimators are not as good as expected. And L1 estimators have a sig-
nificant improvement.

For the sample sizes, n = 100 and 200 samples are generated from the above simulated
data, and for each sample, the 95% confidence intervals are computed using the empiri-
cal likelihood, which is reported in Table 2. When n increases, we see that the coverage
probabilities increase.
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Table 1 Summary of bias and standard deviation over 1000 simulations

n Dist Method Bias (SD)

γ0 γ1 γ2 γ3

50 Normal LP –0.0071 (0.0730) 0.0003 (0.0093) 0.0129 (0.0920) 0.0003 (0.0130)
L1 –0.0083 (0.0767) 0.0002 (0.0072) 0.0134 (0.0939) 0.0008 (0.0132)

t3 LP 0.0114 (0.3651) –0.0065 (0.1927) 0.0027 (0.4083) 0.0080 (0.3240)
L1 0.0213 (0.3566) –0.0067 (0.1720) 0.0070 (0.3969) 0.0029 (0.3008)

Cauchy LP 0.0946 (32.7370) 0.8215 (35.8373) –1.0257 (41.5098) 1.3761 (32.1225)
L1 –0.0861 (6.2061) 0.4566 (7.0982) –0.6856 (8.31108) –0.0929 (3.1853)

100 Normal LP –0.0063 (0.0830) 1.03e–05 (0.0078) 0.0116 (0.0685) 0.0004 (0.0091)
L1 –0.0079 (0.0798) 5.75e–05 (0.0083) 0.0080 (0.0762) –0.0006 (0.0074)

t3 LP –0.0249 (0.3126) –0.0078 (0.0991) 0.0078 (0.2443) 0.0017 (0.1907)
L1 –0.0297 (0.2964) 0.0079 (0.0734) 0.0093 (0.1890) 0.0039 (0.1553)

Cauchy LP 1.2813 (26.0130) 0.4512 (20.6582) –1.3174 (28.6553) 0.6500 (14.6341)
L1 0.0733 (0.5163) 0.0083 (0.1183) 0.043 (0.7523) –0.0147 (0.3702)

200 Normal LP –0.0007 (0.0376) 3.87e–05 (0.0027) 0.0066 (0.0423) –0.0002 (0.0043)
L1 –0.0024 (0.0383) 4.56e–05 (0.0024) 0.0046 (0.0427) 0.0005 (0.0041)

t3 LP 0.0139 (0.2856) –0.0029 (0.0648) –0.0059 (0.1711) 0.0015 (0.1347)
L1 –0.0123 (0.1844) –0.0035 (0.0502) 0.0025 (0.1287) 0.0023 (0.1195)

Cauchy LP 1.7790 (23.2778) –0.0714 (7.6870) –1.1413 (20.6915) –0.6269 (16.2315)
L1 0.0393 (0.2638) –0.0030 (0.0678) 0.0012 (0.1530) 0.0059 (0.1407)

Table 2 Coverage probabilities of confidence regions when the nominal level is 0.95

n Dist γ0 γ1 γ2 γ3

100 Normal 0.8923 0.8265 0.9181 0.8370
t3 0.8437 0.7887 0.8396 0.7741

200 Normal 0.9182 0.8806 0.9273 0.8827
t3 0.8581 0.8140 0.8622 0.8029

6 Application
We illustrate the methodology via an application to the diabetes data set which contains
eight-dimensional patterns to understand the prevalence of diabetes and other cardiovas-
cular risk factors. The 131 subjects analyzed here are females at least 35 years old of Pima
Indian heritage who were actually screened for diabetes. The female patients may have
abnormal insulin action that prevents the body from normal utilization of glucose. Obe-
sity is a risk factor in both diabetes and hypertension. One of the purposes of the study
is to identify risk factors for diabetes, among which is hypertension. In this study, we in-
vestigate the relationship between plasma glucose (GLU) concentration and hypertensive
measure, diastolic blood pressure (DBP). We analyze the simple linear regression relation-
ship between GLU and DBP, GLU = γ0 + γ1DBP + e. Body mass index (BMI) is identified
to be a major factor significantly associated with elevated prevalence of hypertension and
diabetes. Both the response and the predictor are potentially affected by body mass in-
dex (BMI), BMI = weight/height2. The varying coefficient model has the following form
GLU = β0(BMI) +β1(BMI)DBP + e(BMI), based on the confounding variable BMI and the
contaminate variables, GLU and DBP.

The parameters γ0 and γ1 are estimated by the covariate-adjusted regression algorithm.
Three outliers are removed before the analysis. The p-values for covariate-adjusted re-
gression estimates are obtained from 1000 bootstrap samples. For least squares regres-
sion, DBP was close to being significant, p = 0.056, while with covariate-adjusted re-
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gression it became highly significant, p = 0.029. Thus, the covariate-adjusted regression
model is more appropriate for the data than least-squares regression. We shall compare
the performance of the LP procedure with our approach. The LP estimates are (γ̂0, γ̂1) =
(72.1511, 0.5972). The L1 estimates are (γ̂0, γ̂1) = (74.2114, 0.6035). We estimate the stan-
dard deviation of γ0 and γ1 based on 1000 bootstrap samples for both these two methods.
The corresponding standard deviation estimates of LP estimators are ŝ.d.(γ̂0) = 0.3129 and
ŝ.d.(γ̂1) = 0.0819. The corresponding standard deviation estimates of L1 estimators are
ŝ.d.(γ̂0) = 0.2994 and ŝ.d.(γ̂1) = 0.0611. From the above, we can see that the difference be-
tween the estimated parameters based on LP modeling and L1 modeling is relatively small;
however, L1 estimators have smaller standard errors than LP approach, which means that
L1 modeling has better performance. It is believed that the distortion effect of the obesity
index on blood pressure is different from its effect on plasma glucose, and the distortion
effect of the obesity index on GLU can be assessed directly from the estimated intercept
function.

7 Discussion
In this paper, we propose a robust and efficient procedure for CAR, which has improved on
the earlier proposed LP estimation when the underlying error distribution deviates from
normal distribution, and the asymptotic normality has been established under some reg-
ular conditions. We propose a two-step estimation procedure considered for CAR. Firstly,
we use L1-estimation motivated by Tang et al. [21] to estimate varying coefficients based
on local linear fit. The performance of the smoothing technique chosen for estimation
of the varying coefficient functions in the first step does affect the overall performance
of the CAR estimates in the second step. When the data contain outliers or come from
population with heavy-tailed distributions, L1-estimation should yield better estimators.
Secondly, the estimates of unknown parameters are constructed based on weighted av-
erages of these functions. In addition, an estimated empirical log-likelihood approach to
construct the confidence region of the regression parameter is developed, and the confi-
dence intervals for the regression coefficients are constructed. Finally, it is interesting to
develop a robust and efficient variable selection procedure for the CAR in high dimension
setting.

Appendix
To establish the main results given in Sects. 2 and 3, the following regularity conditions
are imposed:

(C1) Contaminating functions ψ(·) and φr(·) are twice continuously differentiable,
satisfying E(ψ(Ui)) = 1, E(φr(Ui)) = 1, φr(Ui) > 0, ψ(Ui) > 0, r = 1, . . . , p, i = 1, . . . , n.

(C2) The variables X , U , e are mutually independent, and the variables Y , U are
mutually independent, E(Y 2) < ∞, E(X2

r ) < ∞, r = 1, . . . , p.
(C3) The random variable U has bounded support Ω , fU (·) is the density function of

covariate U .
(C4) The kernel function K(·) is symmetric with a compact support and satisfies a

Lipschitz condition.
(C5) Denoted by f (·) and F(·) are the density function and cumulative distribution of

the error e, respectively. f (·) is bounded away from zero and has a continuous and
uniformly bounded derivative. F(0) = 0.5.
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(C6) E(X̃X̃
τ |U = u) is nonsingular for all u ∈ Ω .

Remark These conditions are mild. Conditions (C1)–(C3) are assumed in Cui et al. [3].
Conditions (C4)–(C5) can be found in Tang et al. [21]. Condition (C6) can be found in Kai
et al. [9].

In order to obtain our results, we first prove some lemmas.

Lemma 1 Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. random vectors, where the Yis are scalar random
variables. Assume further that E|Y |r < ∞ and that supX

∫ |y|rf (x, y) dy < ∞, where f (x, y)
denotes the joint density of (X, Y ). Let K(·) be a bounded positive function with bounded
support, satisfying a Lipschitz condition. Then

sup
X∈D

∣∣
∣∣
∣
n–1

n∑

i=1

{
Kh(Xi – x)Yi – E

[
Kh(Xi – x)Yi

]}
∣∣
∣∣
∣

= Op

(
log1/2(1/h)√

nh

)
,

provided that n2ε–1h → ∞ for some ε < 1 – r–1, Kh(·) = K(·/h)/h.

The proof of Lemma 1 can be found in Mack and Silverman [13].

Lemma 2 Under the regularity conditions (C1)–(C6), if h → 0 and nh → ∞ as n → ∞,
then

β̂(U) – β(U) =
1√
nh

Op
(
h2 + log1/2(1/h)/

√
nh

)
. (A.1)

Proof Let η = (nh)1/2(a – β(u)), ζ = (nh)1/2h(b – β ′(u)), i = (nh)–1/2X̃
τ

i [η + h–1(Ui – u)ζ ],
ri(u) = X̃

τ

i {β(Ui) – β(u) – β ′(Ui – u)}. We recall {âτ , b̂
τ }τ minimizes

n∑

i=1

∣∣Ỹi – X̃
τ

i
(

a + (Ui – u)b
)∣∣K

(
(Ui – u)/h

)
,

(
âτ , b̂

τ )τ = argmin
a,b

n∑

i=1

∣∣Ỹi – X̃
τ

i
(

a + (Ui – u)b
)∣∣K

(
(Ui – u)/h

)

= argmin
a,b

n∑

i=1

{∣∣(nh)–1/2X̃
τ

i
[
(nh)1/2(a – β(u)

)

+ h–1(Ui – u)(nh)1/2h
(

b – β ′(u)
)]

–
[

X̃
τ

i
{
β(Ui) – β(u) – β ′(Ui – u)

}
+ e(Ui)

]∣∣

–
∣
∣X̃

τ

i
{
β(Ui) – β(u) – β ′(Ui – u)

}
+ e(Ui)

∣
∣}K

(
(Ui – u)/h

)
,

= argmin
a,b

n∑

i=1

(∣∣i – ri(u) – e(Ui)
∣∣ –

∣∣ri(u) + e(Ui)
∣∣)K

(
(Ui – u)/h

)
.

The last equality holds because the last term is free of the optimization variables a and b.
By applying the following identity:

|x – y| – |x| = y
(
2I(x ≤ 0) – 1

)
+ 2

∫ y

0

{
I(x ≤ s) – I(x ≤ 0)

}
ds,
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n∑

i=1

(∣∣ri(u) + e(Ui) – i
∣∣ –

∣∣ri(u) + e(Ui)
∣∣)K

(
(Ui – u)/h

)

= 2
n∑

i=1

i
[
I
(
e(Ui) ≤ –ri(u)

)
– 1/2

]
K

(
(Ui – u)/h

)

+ 2
n∑

i=1

K
(
(Ui – u)/h

)∫ i

0

[
I
(
e(Ui) + ri(u) ≤ s

)
– I

(
e(Ui) + ri(u) ≤ 0

)]
ds

=
[
2Wτ

n
(
ητ , ζ τ

)τ + 2Bn
]
,

where

Wτ
n = (nh)–1/2

n∑

i=1

K
(
(Ui – u)/h

)[
I
(
ei ≤ –ri(u)/ψ(Ui)

)
– 1/2

]
X̃

τ

i

(
Ip,

Ui – u
h

Ip

)
,

Bn =
n∑

i=1

K
(
(Ui – u0)/h

)∫ i

0

[
I
(
e(Ui) + ri(u) ≤ s

)
– I

(
e(Ui) + ri(u) ≤ 0

)]
ds.

Since L1-loss is a special case of quantile loss function at 0.5, the next proof is similar to
that of Theorem 3.1 of Kai et al. [10]. By Lemma 1, we have

Bn = E(Bn) + Op
(
log1/2(1/h)/

√
nh

)
. (A.2)

The conditional expectation of Bn can be calculated as follows:

E(Bn|U , X)

=
n∑

i=1

K
(
(Ui – u)/h

)∫ i

0

{
F
(
s/ψ(Ui) – ri(u)/ψ(Ui)

)
] – F

(
–ri(u)/ψ(Ui)

)}
ds

=
1
2
(
ητ , ζ τ

)
(

1
nh

n∑

i=1

1
ψ(Ui)

K
(
(Ui – u)/h

)
f
(
–ri(u)/ψ(Ui)

)(
X̃

τ

i , X̃
τ

i (Ui – u)/h
)τ

× (
X̃

τ

i , X̃
τ

i (Ui – u)/h
)
)

(
ητ , ζ τ

)τ + Op
(
log1/2(1/h)/

√
nh

)

�=
1
2
(
ητ , ζ τ

)
Sn

(
ητ , ζ τ

)τ + Op
(
log1/2(1/h)/

√
nh

)
,

where

Sn =
1

nh

n∑

i=1

{
1

ψ(Ui)
K

(
Ui – u

h

)
f
(
–ri(u)/ψ(Ui)

)

× (
X̃

τ

i , X̃
τ

i (Ui – u)/h
)τ (X̃

τ

i , X̃
τ

i (Ui – u)/h
)}

.

It can be shown that

E(Sn) =
fU (u)
ψ(u)

S + Op
(
h2),
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where S = diag(f (0),μ2f (0)) ⊗ E(X̃X̃
τ |U = u), μ2 =

∫
u2K(u) du. Then

Wτ
n
(
ητ , ζ τ

)τ + Bn

= Wτ
n
(
ητ , ζ τ

)τ + E(Bn) + Op
(
log1/2(1/h)/

√
nh

)

= Wτ
n
(
ητ , ζ τ

)τ +
fU (u)
2ψ(u)

(
ητ , ζ τ

)
S
(
ητ , ζ τ

)τ + Op
(
h2 + log1/2(1/h)/

√
nh

)
.

Similar to the proof procedures of Theorem 3.1 of Kai et al. [10], by applying the con-
vexity lemma of Pollard [17] and the quadratic approximation lemma of Fan et al. [4], the
minimizer can be expressed as

(
η̂

τ , ζ̂ τ )τ = –
ψ(u)

2fU (u)
S–1Wn + Op

(
h2 + log1/2(1/h)/

√
nh

)
. (A.3)

That is,

η̂ = –
ψ(u)

fU (u)f (0)
(
E
(

X̃X̃
τ |U = u

))–1
n∑

i=1

{
1√
nh

K
(
(Ui – u)/h

)

× [
I
(
ei ≤ –ri(u)/ψ(Ui)

)
– 1/2

]
X̃ i

}
+ Op

(
h2 + log1/2(1/h)/

√
nh

)
.

Hence, we get

β̂(u) – β(u) = –
ψ(u)

fU (u)f (0)
(
E
(

X̃X̃
τ |U = u

))–1
n∑

i=1

{
1

nh
K

(
(Ui – u)/h

)

× [
I
(
ei ≤ –ri(u)/ψ(Ui)

)
– 1/2

]
X̃ i

}
+

1√
nh

Op
(
h2 + log1/2(1/h)/

√
nh

)
.

Obviously, the asymptotic expression of β(Uk) is

β̂(Uk) = β(Uk) –
ψ(Uk)

fU (Uk)f (0)
(
E
(

X̃kX̃
τ

k |Uk
))–1

n∑

i=1

{
1

nh
K((Ui – Uk)/h

× [
I
(
ei ≤ –ri(Uk)/ψ(Ui)

)
– 1/2

]
X̃ i

}
+

1√
nh

Op
(
h2 + log1/2(1/h)/

√
nh

)

for k = 1, . . . , n.
We split the second term in the previous expression into two parts R1k + R2k , where

R1k = –
ψ(Uk)

fU (Uk)f (0)
(
E
(

X̃kX̃
τ

k |Uk
))–1

n∑

i=1

{
1

nh
K

(
(Ui – Uk)/h

)

×
[

I
(

ei ≤ –
ri(Uk)
ψ(Ui)

)
– I(ei ≤ 0)

]
X̃ i

}
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and

R2k = –
ψ(Uk)

fU (Uk)f (0)
(
E
(

X̃kX̃
τ

k |Uk
))–1

n∑

i=1

{
1

nh
K

(
(Ui – Uk)/h

)

×
[

I(ei ≤ 0) –
1
2

]
X̃ i

}
.

Write

E
(‖R1k‖2) =

1
n2h2

n∑

i=1

E(Rii,1k) +
2

n2h2

∑

i�=j

E(Rij,1k),

where

Rii,1k =
ψ2(Uk)

f 2
U (Uk)f 2(0)

X̃
τ

i
(
E
(

X̃kX̃
τ

k |Uk
))–2X̃ i

×
[

I
(

ei ≤ –
ri(Uk)
ψ(Ui)

)
– I(ei ≤ 0)

]2

K2((Ui – Uk)/h
)
,

Rij,1k =
ψ2(Uk)

f 2
U (Uk)f 2(0)

X̃
τ

i
(
E
(

X̃kX̃
τ

k |Uk
))–2X̃ jK

(
(Ui – Uk)/h

)
K

(
(Uj – Uk)/h

)

× [
I
(
ei ≤ –ri(Uk)/ψ(Ui)

)
– I(ei ≤ 0)

][
I
(
ej ≤ –rj(Uk)/ψ(Uj)

)
– I(ej ≤ 0)

]
.

By the fact

[
I
(
ei ≤ –ri(Uk)/ψ(Ui)

)
– I(ei ≤ 0)

]2 =
∣∣I

(
ei ≤ –ri(Uk)/ψ(Ui)

)
– I(ei ≤ 0)

∣∣,

without loss of generality, assuming – ri(Uk )
ψ(Ui)

> 0, we have

E(Rii,1k)

= E
{

E(Rii,1k)|Uk , Ui
}

= E
{

ψ2(Uk)
f 2
U (Uk)f 2(0)

E
(

X̃
τ

i
[
E
(

X̃kX̃
τ

k |Uk
)]–2X̃ i|Ui

)

× [
F
(
–ri(Uk)/ψ(Ui)

)
– F(0)

]
K2((Ui – Uk)/h

)}

= E
{

ψ2(Uk)
f 2
U (Uk)f 2(0)ψ(Ui)

E
(

X̃
τ

i
[
E
(

X̃kX̃
τ

k |Uk
)]–2X̃ i|Ui

)

× f (ξ )
(
–ri(Uk)

)
K2((Ui – Uk)/h

)
}

≤ M
∫ ∫

ψ2(Uk)fU (Ui)
fU (Uk)ψ(Ui)

E
(

X̃
τ

i
[
E
(

X̃kX̃
τ

k |Uk
)]–2X̃ i|Ui

)

× (Ui – Uk)2K2((Ui – Uk)/h
)

dUk dUi,

where ξ between 0 and – ri(Uk )
ψ(Ui)

. Noting that K(·) is a symmetric function, we have E(Rii,1k) =
O(h3) uniformly for k. In the same spirit, we can prove E(Rij,1k) = O(h6) uniformly for k. It



Sun and Wang Journal of Inequalities and Applications         (2020) 2020:75 Page 13 of 18

follows that

E
(‖R1k‖

)2 =
1

n2h2 nO
(
h3) +

2
n2h2 n(n – 1)O

(
h6) = O

(
h4)

uniformly for k.
For R2k , noting that

E

{ n∑

i=1

K
(
(Ui – Uk)/h

)[
I(ei ≤ 0) – 1/2

]
X̃ir

}2

= O(nh),

we have R2k = Op( 1√
nh

).
Therefore, we can obtain (A.1). �

Lemma 3 Under assumptions (C1)–(C6), if nh2/ log(1/h) → ∞ and nh4 → 0 as n → ∞,
we have

1√
n

n∑

i=1

V̂i(γr) D→ N
(
0, A(γr)

)
, (A.4)

where A(γr) = γ 2
r E(ψ(Ui) – φr(Ui))2E(X2

ir).

Proof We use some elementary calculation to obtain

1√
n

n∑

i=1

V̂i(γr) =
1√
n

n∑

i=1

(
βr(Ui) – γr

)
X̃ir +

1√
n

n∑

i=1

(
β̂r(Ui) – βr(Ui)

)
X̃ir . (A.5)

By central theorems for the sum of independent and identically distributed random vari-
ables, we can obtain that

1√
n

n∑

i=1

(
βr(Ui) – γr

)
X̃ir

D→ N
(
0, A(γr)

)
. (A.6)

By Lemma 2, we can show that n–1/2 ∑n
i=1(β̂r(Ui)–βr(Ui))X̃ir

P→ 0. This together with (A.5)
and (A.6) proves Lemma 3. �

Lemma 4 Under conditions of Lemma 2, we have

1
n

n∑

i=1

V̂ 2
i (γr) P→ A(γr). (A.7)

Proof
1
n

n∑

i=1

V̂ 2
i (γr) =

1
n

n∑

i=1

(
βr(Ui) – γr

)2X̃2
ir +

1
n

n∑

i=1

(
β̂r(Ui) – βr(Ui)

)2X̃2
ir

+
2
n

n∑

i=1

(
β̂r(Ui) – βr(Ui)

)(
βr(Ui) – γr

)
X̃2

ir

=: M1 + M2 + M3.
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By the law of large numbers, we obtain M1
P→ A(γr). Hence, to prove Lemma 4, we only

need to show that Ml
P→ 0, l = 2, 3.

By conditions (C1)–(C3) and Lemma 2, we obtain

|M2| ≤ 1
n

max
1≤i≤n

(
β̂r(Ui) – βr(Ui)

)2
n∑

i=1

X̃2
ir = op(1).

By the similar argument for M3, we have

|M3| ≤ 2
n

max
1≤i≤n

∣∣β̂r(Ui) – βr(Ui)
∣∣

n∑

i=1

(
βr(Ui) – γr

)
X̃2

ir = op(1).

The proof is completed. �

Lemma 5 Under the assumptions of Theorem 3, we have

max
1≤i≤n

∣
∣V̂i(γr)

∣
∣ = op

(
n1/2).

Proof Some elementary calculation yields that

max
1≤i≤n

∣
∣V̂i(γr)

∣
∣ ≤ max

1≤i≤n

∣
∣(βr(Ui) – γr

)
X̃ir

∣
∣ + max

1≤i≤n

∣
∣(β̂r(Ui) – βr(Ui)

)
X̃ir

∣
∣.

By conditions (C1) and (C2), we have 1
n
∑n

i=1(βr(Ui) – γr)2X̃2
ir

a.s.= A(γr) < ∞. This implies
that max1≤i≤n |(βr(Ui) – γr)X̃ir| = op(n1/2). By Markov’s inequality, for any κ > 0,

P
{

n1/2 max
1≤i≤n

∣∣(β̂r(Ui) – βr(Ui)
)
X̃ir

∣∣ > κ
}

≤
n∑

i=1

P
{∣∣β̂r(Ui) – βr(Ui))X̃ir

∣∣ > κ
√

n
}

≤ 1
nκ2

n∑

i=1

E
{[

β̂r(Ui) – βr(Ui))
]2X̃2

ir
} → 0.

This is max1≤i≤n |(β̂r(Ui) – βr(Ui))X̃ir| = op(n1/2). The proof is completed. �

Lemma 6 Under the conditions of Theorem 3, we have

λ = Op
(
n–1/2).

Proof By using Lemmas 3–5 and the same method in Owen [14], we can prove this lemma.
Here, we omit the process of the proof. �

Proof of Theorem 1 The proposed estimates γ̂r can be denoted by

γ̂r =
1
¯̃Xr

n∑

i=1

1
n

β̂r(Ui)X̃ir

=
1
¯̃Xr

1
n

n∑

i=1

[
β̂r(Ui) – βr(Ui)

]
X̃ir +

1
¯̃Xr

1
n

n∑

i=1

βr(Ui)X̃ir

= Q1 + Q2.
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Applying Lemma 2, we have

Q1 = Op(Cn)
1
¯̃Xr

1
n

n∑

i=1

X̃ir = Op(Cn),

Q2 =
1
¯̃Xr

1
n

n∑

i=1

[
γr

ψ(Ui)
φr(Ui)

φr(Ui)X̃ir

]

= γr
1
¯̃Xr

1
n

n∑

i=1

ψr(Ui)Xir .

It is obvious that the following result holds: ¯̃Xr = E(Xr) + Op(n–1/2). Thereafter, we get Q2 =
γr + Op(n–1/2). The law of large numbers is used in the previous equations, and Theorem 1
holds. �

Proof of Theorem 2 Motivated by methodology in Sentürk and Müller [19], we show

√
n

(
1
n
∑n

i=1 β̂r(Ui)X̃ir – γrE(Xr)
¯̃Xr – E(Xr)

)
D→ N

(

0,

(
Σr,11, Σr,12

Σr,21, Σr,22

))

, (A.8)

where

Σr,11 = γ 2
r E

(
X2

r
)

var
(
ψ(U)

)
+ γ 2

r var(Xr),

Σr,12 = Σr,21 = γr
[
E
(
φr(U)ψ(U)

)
E
(
X2

r
)

–
(
E(Xr)

)2], Σr,22 = var
(
φr(U)Xr

)
.

The asymptotic normality of
√

n(γ̂r – γr) for r = 0, . . . , n will follow (A.8) with a simple
application of the δ-method, since γ̂r =

∑n
i=1 n–1β̂r(Ui)X̃ir/ ¯̃Xr as defined in (2.4). In view of

the Cramér–Wald device, we need only verify that, for any real a, b,

√
n

{

a

[ n∑

i=1

(
β̂r(Ui)X̃ir

)
/n – γrE(Xr)

]

+ b
[ ¯̃Xr – E(Xr)

]
}

D→ N
(
0,σ ∗2

r
)
, (A.9)

where

σ ∗2
r = a2γ 2

r E
(
X2

r
)

var
(
ψ(U)

)
+ a2γ 2

r var(Xr)

+ 2abγr
[
E
(
φr(U)ψ(U)

)
E
(
X2

r
)

–
(
E(Xr)

)2] + b2 var
(
φr(U)Xr

)
.

Write

√
n

{

a

[ n∑

i=1

(
β̂r(Ui)X̃ir

)
/n – γrE(Xr)

]

+ b
[ ¯̃Xr – E(Xr)

]
}

=
√

n

{
a
n

n∑

i=1

[(
β̂r(Ui) – βr(Ui)

)
X̃ir

]
+

a
n

n∑

i=1

[
βr(Ui)X̃ir

]
– aγrE(Xr)

+
b
n

n∑

i=1

X̃ir – bE(Xr)

}
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=
√

n

{
a
n

n∑

i=1

[(
β̂r(Ui) – βr(Ui)

)
X̃ir

]
}

+
√

n

{
a
n

n∑

i=1

[
βr(Ui)X̃ir

]
– aγrE(Xr)

+
b
n

n∑

i=1

X̃ir – bE(Xr)

}

= I1 + I2.

For I1, using Lemma 2 and the conditions in (C1)–(C6), we have

√
n

n∑

i=1

1
n

((
β̂r(Ui) – βr(Ui)

)
X̃ir

)

=
√

n
n∑

i=1

1
n

{

–
ψ(Ui)

fU (Ui)f (0)

n∑

j=1

(
1

nh
K

(
(Uj – Ui)/h

)
]
[

I(ej ≤ 0) –
1
2

]

× (
E
(

X̃ iX̃
τ

i |Ui
)–1X̃ j

)
r

)
+

1√
nh

Op
(
h2 + log1/2(1/h)/

√
nh

)
}

X̃ir

=
√

n
n∑

i=1

1
n

{

–
ψ(Ui)

fU (Ui)f (0)

n∑

j=1

(
1

nh
K

(
(Uj – Ui)/h

)
]
[

I(ej ≤ 0) –
1
2

]

× (
E
(

X̃ iX̃
τ

i |Ui
)–1X̃ j

)
r

)}

X̃ir + op(1)

= Gn + op(1).

Now, let us deal with Gn. Notice that E(I(ej ≤ 0) – 1/2) = 0. Hence, we get

E
(
G2

n
) ≤ C

n

n∑

j=1

E

{ n∑

i=1

1
nh

K
(
(Uj – Ui)/h

)[
I(ej ≤ 0) –

1
2

]
X̃ir)

}2

=
1

(nh)2 O(nh) = o(1).

This implies I1 = op(1). By the central limit theorem,

I2
D→ N

(
0,σ ∗2

r
)
.

This completes the proof of Theorem 2. �

Proof of Theorem 3 We use a Taylor expansion to (3.1), and by Lemmas 3–6 we can obtain

L̂n(γr) = 2
n∑

i=1

{
λV̂i(γr) –

[
λV̂i(γr)

]2/2
}

+ op(1). (A.10)

By Eq. (3.2), we have

0 =
1
n

n∑

i=1

V̂i(γr)
1 + λV̂i(γr)

=
1
n

n∑

i=1

V̂i(γr) –
1
n

n∑

i=1

V̂ 2
i (γr)λ +

1
n

n∑

i=1

V̂ 3
i (γr)λ2

1 + λV̂i(γr)
. (A.11)
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By Lemmas 3–6, the final term of (A.11) has norm bounded by

1
n

n∑

i=1

∣
∣V̂ 3

i (γr)
∣
∣λ2∣∣1 + λV̂i(γr)

∣
∣–1 ≤ Op

(
n–1) max

1≤i≤n

∣
∣V̂i(γr)

∣
∣ 1
n

n∑

i=1

∣
∣V̂i(γr)

∣
∣2

= Op
(
n–1)op

(
n1/2)Op(1)

= op
(
n–1/2). (A.12)

This, together with (A.11), yields

n∑

i=1

[
V̂i(γr)λ

]2 =
n∑

i=1

V̂i(γr)λ + op(1),

λ =

[ n∑

i=1

V̂ 2
i (γr)

]–1 n∑

i=1

V̂i(γr) + op
(
n–1/2).

Then, by (A.10), we have

L̂n(γr) =

[
1√
n

n∑

i=1

V̂i(γr)

]2[
1
n

n∑

i=1

V̂ 2
i (γr)

]–1

+ op(1).

This, together with Lemmas 3 and 4, completes the proof. �

Acknowledgements
We sincerely thank referees and editor for their helpful comments and suggestions, which have improved this version of
the manuscript.

Funding
This work is supported by the National Natural Science Foundation of China (NO. 1187028, 11731015, 11571051,
11501241), Natural Science Foundation of Jilin Province (No. 20180101216JC, 20170101057JC, 20150520053JH), and
Program for Changbaishan Scholars of Jilin Province (2015010).

Availability of data and materials
Pima Indian diabetes data set is used for empirical study. This dataset is originally from the National Institute of Diabetes
and Digestive and Kidney Diseases. The data set is available on the web site:
https://www.kaggle.com/uciml/pima-indians-diabetes-database.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
YS and DW conceived the idea of the study; YS analyzed the data; DW interpreted the results; YS wrote the paper; all the
authors discussed the results and revised the manuscript. All authors read and approved the final manuscript.

Author details
1Institute of Mathematics, Jilin University, Changchun, P.R. China. 2College of Mathematics, Jilin Normal University, Siping,
P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 May 2019 Accepted: 26 February 2020

References
1. Cai, Z., Fan, J., Yao, Q.: Functional-coefficient regression models for nonlinear time series. J. Am. Stat. Assoc. 95,

941–956 (2000)
2. Carroll, R., Fan, J., Gijbels, I., Wand, M.: Generalized partially linear single-index models. J. Am. Stat. Assoc. 92, 477–489

(1997)

https://www.kaggle.com/uciml/pima-indians-diabetes-database


Sun and Wang Journal of Inequalities and Applications         (2020) 2020:75 Page 18 of 18

3. Cui, X., Guo, W.S., Zhu, L.X.: Covariate-adjusted nonlinear regression. Ann. Stat. 37, 1839–1870 (2009)
4. Fan, J., Gijbels, I.: Local Polynomial Modelling and Its Applications. Chapman & Hall, London (1996)
5. Fan, J., Zhang, W.: Statistical estimation in varying coefficient model. Ann. Stat. 27, 1491–1518 (1999)
6. Fan, J., Zhang, W.: Simultaneous confidence bands and hypothesis testing in varying-coefficient models. Scand. J.

Stat. 27, 715–731 (2000)
7. Fan, J., Zhang, W.: Statistical methods with varying coefficient models. Stat. Interface 1, 179–195 (2008)
8. Hastie, T.J., Tibshirani, R.J.: Varying-coefficient models. J. R. Stat. Soc., Ser. B 55, 757–796 (1993)
9. Kai, B., Li, R., Zou, H.: Local composite quantile regression smoothing: an efficient and safe alternative to local

polynomial regression. J. R. Stat. Soc., Ser. B 72, 49–69 (2010)
10. Kai, B., Li, R., Zou, H.: New efficient estimation and variable selection methods for semiparametric varying-coefficient

partially linear models. Ann. Stat. 39, 305–332 (2011)
11. Kaysen, G.A., Dubin, J.A., Müller, H.G., Mitch, W.E., Rosales, L.M., Levin, N.W., the Hemo Study Group: Relationships

among inflammation nutrition and physiologic mechanisms establishing albumin levels in hemodialysis patients.
Kidney Int. 61, 2240–2249 (2002)

12. Li, F., Lin, L., Cui, X.: Covariate-adjusted partially linear regression models. Commun. Stat., Theory Methods 39,
1054–1074 (2010)

13. Mack, Y., Silverman, B.: Weak and strong uniform consistency of kernel regression estimates. Probab. Theory Relat.
Fields 61, 405–415 (1982)

14. Owen, A.B.: Empirical likelihood ratio confidence regions. Ann. Stat. 18, 90–120 (1990)
15. Owen, A.B.: Empirical likelihood for linear models. Ann. Stat. 19, 1725–1747 (1991)
16. Owen, A.B.: Empirical Likelihood. Chapman & Hall, New York (2001)
17. Pollard, D.: Asymptotics for least absolute deviation regression estimators. Econom. Theory 7, 186–199 (1991)
18. Sentürk, D., Müller, H.G.: Covariate-adjusted regression. Biometrika 92, 75–89 (2005)
19. Sentürk, D., Müller, H.G.: Inference for covariate-adjusted regression via varying coefficient models. Ann. Stat. 34,

654–679 (2006)
20. Senturk, D., Nguyen, D.V.: Estimation in covariate-adjusted regression. Comput. Stat. Data Anal. 50, 3294–3310 (2006)
21. Tang, Q.G., Wang, J.D.: L1-Estimation for varying coefficient models. Statistics 39, 389–404 (2005)


	L1-Estimation for covariate-adjusted regression
	Abstract
	MSC

	Introduction
	Estimation and asymptotic behavior
	Empirical likelihood
	Bootstrap test
	Simulation study
	Application
	Discussion
	Appendix
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


