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Abstract
This paper studies the behaviour of the spectrum of the weighted p-Laplacian on a
complete Riemannian manifold evolving by the Ricci-harmonic flow. Precisely, the
first eigenvalue diverges in a finite time along this flow. It is further shown that the
same divergence result holds on gradient shrinking and steady almost Ricci-harmonic
solitons under the condition that the soliton function is nonnegative and
superharmonic. We also continue the program in (Abolarinwa, Adebimpe and Bakare
in J. Ineq. Appl. 2019:10, 2019) to the case of volume-preserving Ricci-harmonic flow.
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1 Introduction

In this paper we aim at studying the properties of the spectrum of the weighted p-

Laplacian on a complete Riemannian manifold with evolving geometry. It is a well known

feature that spectrum as an invariant quantity evolves as the domain does under any

geometric flow. Throughout, we will consider an n-dimensional complete Riemannian

manifold (M, g, dμ) equipped with weighted measure dμ = e–φ dv and potential function

φ ∈ C∞(M, dμ), whose metric g = g(t) evolves along either the Ricci-harmonic flow or

volume-preserving Ricci-harmonic flow. Firstly, we extend results in [8] to the case of

volume-preserving Ricci-harmonic flow. We will obtain a variation formula for the first

eigenvalue and show that it is monotonically increasing under this setup. Secondly, we

study maximal time behaviour of the first eigenvalue. It is found that the bottom of the

spectrum diverges in a finite time of the flow existence. We observe the same result for

the behaviour of the evolving spectrum on a class of self-similar solutions, called gradient

almost Ricci-harmonic solitons.
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1.1 The Ricci-harmonic flow
The pair (g = g(t),φ = φ(t)) is said to be a Ricci-harmonic flow if it satisfies the system of
quasilinear parabolic equations

⎧
⎨

⎩

∂
∂t g = –2Rc + 2α∇φ ⊗ ∇φ,
∂
∂t φ = �gφ

(1.1)

subject to the initial condition (g(0),φ(0)) = (g0,φ0). Here φ : M × [0,∞) → R is a one-
parameter family of smooth functions, at least C2 in x and C1 in t, ⊗ is the tensor product,
Rc is the Ricci curvature tensor of (M, g), ∇ is the gradient operator, α is a nonincreas-
ing constant function of time, bounded below by αn > 0 in time, and � is the Laplace–
Beltrami operator on M. The system (1.1) was first studied by List [20] with a motivation
coming from general relativity. It was generalized by Müller [21] to the situation where
φ : (M, g) → (N , h) ((N , h) is a compact Riemannian manifold endowed with a static met-
ric h) and φ satisfies the heat flow for a harmonic map [15]. System (1.1) generalizes the
Ricci flow [16] for the case φ is a constant. For a detailed discussion on the Ricci flow, see
[12, 13].

Strictly related to (1.1) in applications is its normalized counterpart defined in [21] (see
[2, 3] also) by the system

⎧
⎨

⎩

∂
∂t g = –2Rc + 2α∇φ ⊗ ∇φ + 2r

n g,
∂
∂t φ = �gφ,

(1.2)

with initial data (g(0),φ(0)) = (g0,φ0) and r = Vol(M)–1 ∫

M(R–α|∇φ|2) dμ being a constant,
having a striking property of volume preservation all through the flow, though differing
from (1.1) by changes of scale in space and time parametrization.

1.2 The almost Ricci-harmonic soliton
Let σ = σ (x) : M →R be a smooth function. We call the tuple (g,φ, f ,σ ) a gradient almost
Ricci-harmonic soliton if it satisfies the coupled system of nonlinear elliptic equations

⎧
⎨

⎩

Rc – α∇φ ⊗ ∇φ + Hess f = σ g,

�φ – 〈∇φ,∇f 〉 = 0
(1.3)

for some smooth function f on M. Here, we assume σ ≥ 0 and the tuple (g,φ, f ,σ ) is said to
be shrinking when σ is positive or steady when σ is null. If ∇f is a Killing vector field or f is
a constant, we say that the soliton is trivial and the underlying metric is harmonic Einstein.
If the soliton function σ is constant, we have Ricci-harmonic solitons, which are special
solutions to (1.1) via scaling and diffeomorphism. These solutions occur as singularity
models or blow-up limits for the flow. Almost Ricci-harmonic solitons are generalization
of Ricci solitons, Einstein metrics, harmonic Einstein metrics, all of which are very useful
in geometry and theoretical physics. For a detailed background on Ricci solitons, see [10];
for Ricci-harmonic solitons, see [3, 20, 21]; and for almost Ricci harmonic solitons, see
[4, 6, 7, 9].

In recent years, obtaining information about behaviours of eigenvalues of geometric op-
erators on evolving manifolds has become a topic of concern among geometers since this
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information usually turns out to be useful in the study of geometry and topology of the un-
derlying manifolds. Perelman’s preprint [22] is fundamental in this respect. Cao [11] and
Li [18] extended Perelman’s result with or without any curvature assumption. Recently, [8]
was motivated by the first author’s papers [5] and [1] where he studied the evolution and
monotonicity of the first eigenvalue of the p-Laplacian and weighted Laplacian, respec-
tively. In [14], Di Cerbo proved that the first eigenvalue of Laplace–Beltrami operator on
a 3-dimensional closed manifold with positive Ricci curvature diverges as t → T under
the Ricci flow. The authors in [26] obtained a similar result under 3-dimensional Ricci–
Bourguignon flow. In [5] the first author proved the same result for the weighted Laplacian
under the Ricci-harmonic flow. Motivated by [14] and [5], we will show the same result
for the eigenvalue of the weighted p-Laplacian under the Ricci-harmonic flow and on gra-
dient almost Ricci-harmonic soliton for p = 2. Meanwhile, we will first extend the results
of [8] to the case of a volume-preserving flow.

1.3 Preliminaries
Throughout this paper, (M, g) will be taken to be a closed Riemannian manifold. The Rie-
mannian metric g(x) at any point x ∈ M is a bilinear symmetric positive definite matrix.
As in [8], we denote a symmetric 2-tensor by Sc := Rc – α∇φ ⊗ ∇φ and its metric trace
by S := R – α|∇φ|2, where R is the scalar curvature of (M, g) and ∇iφ = ∂

∂xi φ. We denote
the Laplace–Beltrami operator on (M, g) by �. We denote dv as the Riemannian volume
measure on (M, g) and dμ := e–φ(x) dv, the weighted volume measure, where φ ∈ C∞(M).

1.3.1 The weighted p-Laplacian
Let f : M →R be a smooth function, for p ∈ [1, +∞). The weighted p-Laplacian on smooth
functions is defined by

�p,φ := eφdiv
(
e–φ|∇f |p–2∇f

)
= �pf – |∇f |p–2〈∇φ,∇f 〉.

When p = 2, this is just the Witten Laplacian, and when φ is a constant, it is just the p-
Laplacian. See [8] for detailed descriptions of Witten Laplacian and p-Laplacian.

1.3.2 The minimax principle
The minimax principle also holds for the weighted p-Laplacian where its first nonzero
eigenvalue is characterized as follows:

λ1(t) = inf
f

{∫

M
|∇f |p dμ :

∫

M
|f |p dμ = 1, f 
= 0, f ∈ W 1,p(M, g, dμ)

}

(1.4)

satisfying the constraints
∫

M |f |p–2f dμ = 0, where W 1,p(M, g, dμ) is the completion of
C∞(M, g, dμ) with respect to the norm

‖f ‖W 1,p =
(∫

M
|f |p dμ +

∫

M
|∇f |p dμ

) 1
p

.

The infimum in (1.4) is achieved by f ∈ W 1,p satisfying the Euler–Lagrange equation

�p,φ f = –λ1|f |p–2f , (1.5)
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or equivalently,

∫

M
|∇f |p–2〈∇f ,∇ψ〉dμ – λ1

∫

M
|f |p–2〈f ,ψ〉dμ = 0 (1.6)

for all ψ ∈ C∞
0 (M) in the sense of distributions. In other words, we say that λ is an eigen-

value of �p,φ and f ∈ W 1,p is the corresponding eigenfunction if the pair (λ, f ) satisfies
(1.5). Then (1.6) implies

∫

M
|∇f |p dμ = λ

∫

M
|f |p dμ, (1.7)

implying λ =
∫

M |∇f |p dμ since
∫

M |f |p dμ = 1. Interested readers can see the book [23] for
a detailed discussion on the spectral theory.

1.3.3 Linearized operator
As in [8, Sect. 3], we define the linearized operator of the weighted p-Laplacian on a func-
tion h ∈ C∞(M) pointwise at the points ∇h 
= 0, which is strictly elliptic in general at these
points

Lφ(f̃ ) := eφdiv
(
e–φ|∇h|p–2G(∇ f̃ )

)

= |∇h|p–2�φ f̃ + (p – 2)|∇h|p–4 Hess f̃ (∇h,∇h) + (p – 2)�p,φh
〈∇h,∇ f̃ 〉

|∇h|2

+ 2(p – 2)|∇h|p–4 Hess f̃
(

∇h,∇ f̃ –
∇h
|∇h|

〈 ∇h
|∇h| ,∇ f̃

〉)

for a smooth function f̃ on M, where G can be viewed as a tensor defined as G := Id + (p –
2) ∇h⊗∇h

|∇h|2 . Note that the sum of the second-order parts of Lφ is

Lφ f̃ := |∇h|p–2�φ f̃ + (p – 2)|∇h|p–4 Hess f̃ (∇h,∇h) = �p,φ f̃ .

The weighted p-Laplacian degenerates at points ∇f = 0 for p 
= 2. In this case the ε-
regularization technique is usually applied by replacing the linearized operator with its
approximate operator.

Given ε > 0, an approximate operator Lφ,ε := �p,φ,ε for a smooth function fε is defined
by

�p,φ,εfε = eφdiv
(
e–φA

p–2
2

ε ∇fε
)

= �p,εfε – A
p–2

2
ε 〈∇φ,∇fε〉,

where Aε = |∇fε|2 + ε. Define the Gε norm ‖ · ‖Gε for every smooth 2-symmetric tensor Vij

by

‖Vij‖2 =
(

gij + (p – 2)
∇ifε∇jfε

Aε

)(

gkl + (p – 2)
∇kfε∇lfε

Aε

)

VikVjl.

Then the Gε trace of Vij is

TrGε (Vij) =
(

gij + (p – 2)
∇ifε∇jfε

Aε

)

Vij.
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In particular,

‖Hess fε‖2 = |Hess fε|2 + (p – 2)
|∇Aε|2

2Aε

+ (p – 2)2 |〈∇Aε ,∇fε〉|2
A2

ε

and

TrGε(Hess fε) = �fε + (p – 2)
〈∇Aε ,∇fε〉

2Aε

.

Hence,

A
p–2

2
ε TrGε(Hess fε) = �p,εfε = �p,φε + A

p–2
2

ε 〈∇φ,∇fε〉. (1.8)

This regularization procedure has also been used in [17, 24].

2 Variation of λ1(t) under volume-preserving flow
This section uses the variation formula for λ1(t) to establish its monotonicity under the
normalized Ricci-harmonic flow. Based on the argument in [8, Sect. 4], we shall assume
that λ1(f (t), t) = λ1(t) and that f (t) and λ1(f (t), t) are smooth. Supposing (M, g(t),φ(t), dμ),
t ∈ [0,∞) solves (1.2) on a closed manifold, define a general smooth function as follows:

λ1
(
f (t), t

)
:=

∫

M

∣
∣∇f (t)

∣
∣p dμ, (2.1)

where f (t) is a smooth function satisfying the normalization condition

∫

M

∣
∣f (t)

∣
∣p dμ = 1 and

∫

M

∣
∣f (t)

∣
∣p–2f (t) dμ = 0.

Proposition 2.1 Let (M, g(t),φ(t), dμ), t ∈ [0,∞) solve the normalized Ricci-harmonic
flow (1.2) on a closed Riemannian manifold, M, with R – α|∇|2 > 0. Let λ1(t) be the first
nonzero eigenvalue of the weighted p-Laplacian, �p,φ , and f (x, t) its corresponding eigen-
function. Then λ1(t) evolves by

d
dt

λ1(t) = λ1(t)
∫

M
(S + φt)|f |p dμ –

∫

M
(S + φt)|∇f |p dμ

+ p
∫

M
|∇f |p–2Sij∇if ∇jf dμ –

pr
n

λ1(t) (2.2)

for all times t ∈ [0,∞).

Proof Proposition 2.1 is a counterpart of [8, Theorem 4.1] and the proof follows directly.
The formulas in the next lemma are applied instead of those in [8, Lemma 3.1]. �

Lemma 2.2 Suppose (M, g(t),φ(t), dμ), t ∈ [0,∞) solves normalized Ricci-harmonic flow
(1.2). Then for any f ∈ C∞(M), we have the following formulas:

1. ∂
∂t |∇f |p = p|∇f |p–2(Sij∇if ∇jf + gij∇if ∇jft) – pr

n |∇f |p,
2. ∂

∂t |∇f |p–2 = (p – 2)|∇f |p–4(Sij∇if ∇jf + gij∇if ∇jft) – (p–2)r
n |∇f |p,
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3.

∂

∂t
(�p,φ f ) = 2S ij∇i(Z∇jf ) + gij∇i(Zt∇jf ) + gij∇i(Z∇jft)

– 2αZ(�φ)gij∇iφ∇jf – Zt〈∇φ,∇f 〉 – Z〈∇φt ,∇f 〉
– Z〈∇φ,∇ft〉 – 2SijZ∇iφ∇jf –

pr
n

�p,φ f ,

where Z := |∇f |p–2 and ft = ∂
∂t f .

Proof The proof follows from [8, Lemma 3.1] by using ∂
∂t gij = 2Sij – 2r

n gij. �

The following is the main theorem of this section.

Theorem 2.3 Let (M, g(t),φ(t), dμ), t ∈ [0,∞) solve the normalized Ricci-harmonic flow
(1.2) on a closed Riemannian manifold, M, with Smin(g0) > 0. Let λ1(t) be the first nonzero
eigenvalue of the weighted p-Laplacian �p,φ and f (t) its corresponding eigenfunction. Sup-
pose Sij ≥ β(S + �φ)gij with 1

p ≤ β ≤ 1
n , p ≥ n, �φ ≥ 0. Then, the quantity λ1(t)(e– n

2 rt –

(1 – rSmin(0)–1)
n
2 βp

2 e
pr
n t is monotonically nondecreasing along (1.1). Consequently, λ1(t) is

increasing and differentiable almost everywhere along the flow.

Proof By [21], S(t) evolves by ∂S
∂t = �S + 2|Sij|2 + 2α|�φ|2 – 2r

n S under (1.2). Applying the
inequality |Sij|2 ≥ 1

n S2, we have

∂S
∂t

≥ �S +
2
n

S(S – r).

By the maximum principle, comparing its solution with that of the ODE

dy
dt

=
2
n

y(y – r), y(0) = y0 = Smin(0),

we obtain

S(t) ≥ y(t) =
r

1 – (1 – r
y0

)e 2
n rt

.

Now we apply the assumptions Sij ≥ β(S + �φ)gij and �φ ≥ 0, and use the condition that
Smin(0) > 0 in the variation formula (2.2) to get

dλ1(t)
dt

∣
∣
∣
∣
t0

≥ λ1(t0)
∫

M
(S + �φ)|f |p dμ + (βp – 1)

∫

M
(S + �φ)|∇f |p dμ –

pr
n

λ1(t0)

≥ λ1(t)Smin(t0) + βp – 1)Smin(t0) –
pr
n

λ1(t0)

= p
(

βSmin –
r
n

)

λ1(t).

By a similar argument as in [8], we obtain

dλ1(t)
dt

≥ p
(

βSmin –
r
n

)

λ1(t0)
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in any sufficiently small neighbourhood of t0. Integrating with respect to t ∈ [t1, t2], t1 < t2

yields

ln
λ1(t2)
λ1(t1)

≥ pβ

∫ t2

t1

Smin(t) dt –
pr
n

(t2 – t1).

A simple calculus gives

∫ t2

t1

Smin(t) dt =
∫ t2

t1

re– 2
n rt dt

e– 2
n rt – (1 – r

y0
)

= ln
[e– 2

n rt1 – (1 – r
y0

)] n
2

[e– 2
n rt2 – (1 – r

y0
)] n

2
.

Therefore

ln
λ1(t2)
λ1(t1)

≥ pβ ln
[e– 2

n rt1 – (1 – r
y0

)] n
2

[e– 2
n rt2 – (1 – r

y0
)] n

2
–

pr
n

(t2 – t1).

Exponentiating we have

λ1(t2)
[

e– 2
n rt2 –

(

1 –
r
y0

)] n
2 pβ

e
pr
n t2 ≥ λ1(t1)

[

e– 2
n rt1 –

(

1 –
r
y0

)] n
2 pβ

e
pr
n t1 ,

implying that the quantity λ1(t)[e– 2
n rt – (1 – ry–1

0 )] n
2 pβe

pr
n t is monotonically nondecreasing

along (1.2). By Lebesque’s theorem, λ1 is differentiable almost everywhere along the flow
for all t ∈ [0,∞). �

3 Behaviour of λ1(t) at the maximal time
In [14], Di Cerbo proved that the first eigenvalue of Laplace–Beltrami operator on a 3-
dimensional closed manifold with positive Ricci curvature diverges as t → T under the
Hamilton’s Ricci flow. In [5] the author proved the same result for the weighted Laplacian
under Ricci-harmonic flow. Motivated by [14] and [5], we will show the same result for the
eigenvalue of the weighted p-Laplacian under the Ricci-harmonic flow. Our derivation will
be via weighted p-Reilly formula.

Theorem 3.1 (Weighted p-Reilly formula [25, Theorem 2.2]) Let (M, g, dμ) be a compact
smooth metric measure space. Then

∫

M
(�p,φ f )2 – |∇f |2p–4‖Hess f ‖2

G dμ =
∫

M
|∇f |2p–4(Rc + ∇2φ

)
(∇f ,∇f ) dμ (3.1)

for f ∈ C∞(M) and

‖Hess f ‖2
G = |Hess f |2 +

p – 2
2

|∇|∇f |2|2
|∇f |2 +

(p – 2)2

4
〈∇f ,∇|∇f |2〉2

|∇f |4 .

Before we state the main result of the section, we remark that it has been proved in [19,
Theorem 1.1] that either

lim sup
t→T

(
max

M
R(t)

)
= ∞ (3.2)
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or

lim sup
t→T

(
max

M
R(t)

)
< ∞, but lim sup

t→T

(

max
M

|W (t)|g(t) + |∇2φ(t)|2g(t)

R(t)

)

= ∞, (3.3)

where W (t) is the Weyl part of the Riemannian tensor, under the extended Ricci flow for
the case n ≥ 3 and T < ∞. Also in this case, |∇φ|2 is uniformly bounded. Observe that if
one assumes (3.2), then one can easily deduce that

lim
t→T

Smin(t) = ∞ (3.4)

without any additional assumption.
Finally, we use the estimate (3.4) together with (3.1) to prove that the eigenvalues of the

weighted p-Laplacian diverge as t approaches the maximal time. The main result is the
following.

Theorem 3.2 Let λ1(t) be the first eigenvalue of the weighted p-Laplacian for p ≥ 2 under
the Ricci-harmonic flow (M, g(t),φ(t), dμ), t ∈ [0, T], T < ∞ with S(0) > 0. Then

lim
t→T

λ1(t) = +∞, (3.5)

where Sij – βSgij > 0 in M × [0, T],β ∈ [0, 1
n ].

Proof By the Weighted p-Reilly formula (3.1), we have

∫

M
(�p,φ f )2 – |∇f |2p–4‖Hess f ‖2

G dμ

=
∫

M
|∇f |2p–4Sc(∇f ,∇f ) dμ

+
∫

M
|∇f |2p–4(α∇φ ⊗ ∇φ + ∇2φ

)
(∇f ,∇f ) dμ. (3.6)

Since �p,φ f = �pf – |∇f |p–2〈∇φ,∇f 〉, and using an elementary inequality of the form (a +
b)2 ≥ 1

1+s a2 – 1
s b2 for s > 0, we obtain the following inequality:

(�pf )2 =
(
�p,φ f + |∇f |p–2〈∇φ,∇f 〉)2

≥ 1
1 + s

(�p,φ f )2 –
1
s
|∇f |2p–4∣∣〈∇φ,∇f 〉∣∣2. (3.7)

Hence by (1.8) as ε ↘ 0, we have

|∇f |2p–4‖Hess f ‖2
G ≥ 1

n
(|∇f |p–2TrG(Hess f )

)2 =
1
n

(�pf )2

≥ 1
n(1 + s)

(�p,φ f )2 –
1
ns

|∇f |2p–4∣∣〈∇φ,∇f 〉∣∣2. (3.8)

Using (3.8) in the formula below,

∫

M
(�p,φ f )2 dμ = λ2

1

∫

M
|f |2p–2 dμ,
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yields

∫

M
(�p,φ f )2 – |∇f |2p–4‖Hess f ‖2

G dμ =
(

1 –
1

n(1 + s)

)

λ2
1

∫

M
|f |2p–2 dμ

+
1
ns

|∇f |2p–4∣∣〈∇φ,∇f 〉∣∣2. (3.9)

Putting (3.9) into (3.6) gives

(

1 –
1

n(1 + s)

)

λ2
1

∫

M
|f |2p–2 dμ +

1
ns

∫

M
|∇f |2p–4∣∣〈∇φ,∇f 〉∣∣2 dμ

≥
∫

M
|∇f |2p–4Sc(∇f ,∇f ) dμ + α

∫

M
|∇f |2p–4∇φ ⊗ ∇φ(∇f ,∇f ) dμ

+
∫

M
|∇f |2p–4∇2φ(∇f ,∇f ) dμ. (3.10)

Choosing s := 1
αn

, α ≥ αn > 0, we have

1 –
1

n(1 + s)
=

n(1 + αn) – αn

n(1 + αn)
and

1
ns

=
αn

n
,

and observe that

α

∫

M
|∇f |2p–4∇φ ⊗ ∇φ(∇f ,∇f ) dμ ≥ αn

n

∫

M
|∇f |2p–4∣∣〈∇φ,∇f 〉∣∣2 dμ

by identifying ∇φ ⊗ ∇φ(∇f ,∇f ) with |〈∇φ,∇f 〉|2. Hence (3.10) reads

(
n(1 + αn) – αn

n(1 + αn)

)

λ2
1

∫

M
|f |2p–2 dμ ≥

∫

M
|∇f |2p–4Sc(∇f ,∇f ) dμ

+
∫

M
|∇f |2p–4∇2φ(∇f ,∇f ) dμ. (3.11)

Since φ solves the heat equation, we observe that |∇2φ| ≥ 1√
n |�φ| = 1√

n |φt|. Using the
condition Sij – βSg ≥ 0, (3.11) implies

(
n(1 + αn) – αn

n(1 + αn)

)

λ2
1

∫

M
|f |2p–2 dμ

≥ β

∫

M
S|∇f |2p–2 dμ

1√
n

min
M

|φt|
∫

M
|∇f |2p–2 dμ

≥
(

βSmin(t) +
1√
n

min
M

|φt|
)∫

M
|∇f |2p–2 dμ. (3.12)

Multiplying both sides of (1.5) by the quantity |f |p–2f and integrating over M, then using
integration by parts formulas, we arrive at

λ1

∫

M
|∇f |2p–2 dμ = (p – 1)

∫

M
|∇f |p|f |p–2 dμ.
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Applying the Hölder inequality for any p > 2, we have

λ1

∫

M
|f |2p–2 dμ ≤ (p – 1)

(∫

M
|∇f |2p–2 dμ

) p
2p–2

(∫

M
|f |2p–2

) p–2
2p–2

,

hence

∫

M
|∇f |2p–2 dμ ≥

(
λ1

p – 1

) 2p–2
p

∫

M
|f |2p–2 dμ. (3.13)

Putting (3.13) into (3.12), we arrive at

(
n(1 + αn) – αn

n(1 + αn)

)

λ2
1

∫

M
|f |2p–2 dμ

≥
(

βSmin(t) +
1√
n

min
M

|φt|
)(

λ1

p – 1

) 2p–2
p

∫

M
|f |2p–2 dμ. (3.14)

For p > 2, we can conclude that

(
n(1 + αn) – αn

n(1 + αn)

)

λ2
1 ≥

(

βSmin(t) +
1√
n

min
M

|φt|
)(

λ1

p – 1

) 2p–2
p

(3.15)

and then

(
n(1 + αn) – αn

n(1 + αn)

)

λ
2
p
1 ≥

(

βSmin(t) +
1√
n

min
M

|φt|
)(

1
p – 1

) 2p–2
p

, (3.16)

which finally implies

λ1(t) ≥
[

n(1 + αn)
n(1 + αn) – αn

(

βSmin(t) +
1√
n

min
M

|φt|
)] p

2 · (p – 1)1–p. (3.17)

Since Smin(t) → +∞ as t → T and minM |φt| is finite, limt↗T = +∞. This completes the
proof of the theorem. �

Remark 3.3 The above result also holds for the case p = 2. Indeed, (3.14) reduces to

(
n(1 + αn) – αn

n(1 + αn)

)

λ2
1

∫

M
|f |2 dμ

≥
(

βSmin(t) +
1√
n

min
M

|φt|
)(

λ1

p – 1

)∫

M
|f |2 dμ (3.18)

for p = 2, and consequently,

λ1(t) ≥ n(1 + αn)
n(1 + αn) – αn

(

βSmin(t) +
1√
n

min
M

|φt|
)

. (3.19)

Then, Theorem 3.2 reduces to [5, Theorem 2.5].
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4 The spectrum on almost Ricci-harmonic solitons
In this section, we study the behaviour of the evolving spectrum on a class of self-similar
solutions called almost Ricci-harmonic solitons. In what follows, we assume that soliton
potential function f is the eigenfunction corresponding to the first nonzero eigenvalue
λ1 of the weighted p-Laplacian with p = 2. Our main result in this section is the follow-
ing.

Proposition 4.1 Suppose (M, g(t),φ(t), dμ), t ∈ [0, T], T < ∞ solves (1.1) and (g,φ, f ,σ ) is
either a gradient shrinking or steady almost Ricci-harmonic soliton with soliton function σ

satisfying 〈∇σ ,∇f 〉 ≥ 0 and �σ ≤ 0. Let λ1,φ(t) be the first eigenvalue of �φ with f being
the associated eigenfunction. Then

lim
t→T

λ1,φ(t) = +∞,

where Sij – βSgij ≥ 0, β > 0.

Before we give the proof of the above proposition, we discuss some basic formulas that
will be useful in the proof.

Lemma 4.2 Let (g,φ, f ,σ ) be a gradient almost (RH)α soliton, then the following equations
hold:

1
2
∇S = Sc(∇f , ·) + (n – 1)∇σ , (4.1)

1
2

∫

M
(�f )2 dμ =

∫

M

[

Sc(∇f ,∇f ) +
n – 2

2
〈∇σ ,∇f 〉

]

dμ

–
1
2

∫

M
(S – nσ )〈∇φ,∇f 〉dμ. (4.2)

Proof The proofs of the above formulas follow from standard computation. For formula
(4.1), see [6, Proposition 3.1]. The proof for formula (4.2) is given here. Taking the metric
trace of the first equation in (1.3), we have

S + �f = nσ .

Therefore,

∫

M
(�f )2 dμ =

∫

M
(nσ – S)�f dμ

= n
∫

M
σ�fe–φ dv –

∫

M
S�fe–φ dv

=
∫

M
〈∇f ,∇S〉dμ –

∫

M
〈∇φ,∇f 〉(S – nσ ) dμ

– n
∫

M
〈∇σ ,∇f 〉dμ,
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where we have used integration by parts. Using formula (4.1), we have
∫

M
(�f )2 dμ = 2

∫

M

[
Sc(∇f ,∇f ) + (n – 1)〈∇σ ,∇f 〉]dμ

–
∫

M
〈∇φ,∇f 〉(S – nσ ) dμ – n

∫

M
〈∇σ ,∇f 〉dμ

= 2
∫

M

[

Sc(∇f ,∇f ) +
n – 2

2
〈∇σ ,∇f 〉

]

dμ –
∫

M
〈∇φ,∇f 〉(S – nσ ) dμ. �

Another fact that we need is [6, Theorem 2.1], where we have proved that if (g,φ, f ,σ )
is a gradient almost Ricci-harmonic soliton, then it is shrinking, provided 0 ≤ Smin ≤ nσ ∗

with 0 < σ ≤ σ ∗, and it is steady, provided Smin = 0 with σ = 0 under the condition �σ ≤ 0,
where σ ∗ := supM σ .

We are now set to give the proof of the proposition.

Proof of Proposition 4.1 By formula (4.2) of Lemma 4.2, we have for gradient steady almost
Ricci-harmonic soliton

1
2

∫

M
(�f )2 dμ =

∫

M

[

Sc(∇f ,∇f ) +
n – 2

2
〈∇σ ,∇f 〉

]

dμ, (4.3)

since S = Smin = 0 and σ = 0. Similarly, for gradient shrinking almost Ricci-harmonic soli-
ton,

1
2

∫

M
(�f )2 dμ ≥

∫

M

[

Sc(∇f ,∇f ) +
n – 2

2
〈∇σ ,∇f 〉

]

dμ. (4.4)

Using an elementary inequality for q ≥ 1, we have

(�f )2 =
(
�φ f + 〈∇φ,∇f 〉)2

= (�φ f )2 +
∣
∣〈∇φ,∇f 〉∣∣2 + 2�φ f 〈∇φ,∇f 〉

≤ (�φ f )2 +
∣
∣〈∇φ,∇f 〉∣∣2 +

1
q

(�φ f )2 – q
∣
∣〈∇φ,∇f 〉∣∣2

=
(

1 +
1
q

)

(�φ f )2 + (1 – q)
∣
∣〈∇φ,∇f 〉∣∣2.

Combining the above inequality with the condition 〈∇σ ,∇f 〉 ≥ 0 (or �σ ≤ 0) in (4.3)
(steady case) or (4.4) (shrinking case), we have

(

1 +
1
q

)∫

M
(�φ f )2 dμ ≥

∫

M
(�f )2 dμ + (q – 1)

∫

M

∣
∣〈∇φ,∇f 〉∣∣2 dμ

≥ 2
∫

M

[

Sc(∇f ,∇f ) +
n – 2

2
〈∇σ ,∇f 〉

]

dμ

+ (q – 1)
∫

M

∣
∣〈∇φ,∇f 〉∣∣2 dμ

≥ 2β

∫

M
S|∇f |2 dμ,

since q ≥ 1 and Sij – βSgij ≥ 0.
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Using �φ f = –λ1,φ f , λ1,φ
∫

M f 2 dμ =
∫

M |∇f |2 dμ and
∫

M f 2 dμ = 1, we arrive at

λ1,φ(t) ≥ 2q
1 + q

β max
M

Smin(t), (4.5)

and, by taking the limit as t grows to maximal time T , with the fact Smin(t) → +∞ as t → T ,
we obtain the desired result. �

Remark 4.3 In the two cases of solitons discussed above, the quantity

∫

M

[

Sc(∇f ,∇f ) +
n – 2

2
〈∇σ ,∇f 〉

]

dμ

is positive. If it were nonpositive then the soliton had to be trivial, in which case f would be
constant. For instance, in [6, Theorem 2.3], we have shown that compact gradient almost
Ricci-harmonic soliton is trivial for n ≥ 3 if

∫

M

[
Sc(∇f ,∇f ) + (n – 2)〈∇σ ,∇f 〉]dv ≤ 0.
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