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Abstract
In this paper we study the utility of the functional Pompeiu–Chebyshev in some
inequalities. Some results obtained by Alomari will be generalized regarding
inequalities with Pompeiu–Chebyshev type functionals, in which linear and positive
functionals intervene. We investigate some new inequalities of Grüss type using
Pompeiu’s mean value theorem. Improvement of known inequalities is also given.
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1 Introduction
If f , g are integrable functions on [a, b], then the functional defined by

T (f , g) =
1

b – a

∫ b

a
f (t)g(t) dt –

1
b – a

∫ b

a
f (t) dt · 1

b – a

∫ b

a
g(t) dt (1)

is known as functional Chebyshev, with multiple applications in numerical analysis and
probability theory (see [3]).

The following theorem combines a series of results regarding the bounds for this func-
tional.

Theorem 1.1 (See [3, 5–7]) Let f , g : [a, b] → R be two absolutely continuous functions,
then

∣∣T (f , g)
∣∣ ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(b–a)2

12 ‖f ′‖∞‖g ′‖∞, if f ′, g ′ ∈ L∞[a, b],
1
4 (Mf – mf )(Mg – mg), if mf ≤ f ≤ Mf and mg ≤ g ≤ Mg ,
b–a
π2 ‖f ′‖2‖g ′‖2, if f ′, g ′ ∈ L2[a, b],
1
8 (b – a)(Mf – mf )‖g ′‖∞, if mf ≤ f ≤ Mf and g ′ ∈ L∞[a, b].

(2)

In [9], Pompeiu established the following mean value theorem for functions defined on
an interval [a, b] such that 0 /∈ [a, b].
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Theorem 1.2 For every function f ∈ C1[a, b], 0 /∈ [a, b] and for all x, y ∈ [a, b], x �= y, there
is c ∈ (x, y) such that

xf (y) – yf (x)
x – y

= f (c) – cf ′(c). (3)

From (3), we obtain that

∣∣xf (y) – yf (x)
∣∣ ≤ |x – y|∥∥f – e1f ′∥∥,

where ei = xi, i = 0, n, n ∈N.
In 2005, Pachpatte (see [8]) introduced the following functional.
If f , g : [a, b] →R are two differentiable functions on (a, b), then

P(f , g) =
∫ b

a
f (x)g(x) dx –

3
b3 – a3

∫ b

a
xf (x) dx

∫ b

a
xg(x) dx (4)

and proved the following result.

Theorem 1.3 If f , g : [a, b] → R are two continuous on [a, b] and differentiable functions
on (a, b) such that 0 /∈ [a, b], then

∣∣P(f , g)
∣∣ ≤ (b – a)

(
1 –

3
4

(a + b)2

a2 + ab + b2

)∥∥f – e1f ′∥∥∞
∥∥g – e1g ′∥∥∞. (5)

Dragomir (see [4]) studied the Pompeiu–Chebyshev functional and changed it as fol-
lows:

P̂(f , g) =
b3 – a3

3
P(f , g).

The following result, obtained by Dragomir in [4], will be used in some demonstrations
included in this paper.

Lemma 1.4 Let f : [a, b] → R be an absolutely continuous function on [a, b], b > a > 0.
Then, for any x, y ∈ [a, b], we have

∣∣yf (x) – xf (y)
∣∣ ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|x – y|‖f – e1f ′‖∞, if f – e1f ′ ∈ L∞[a, b],

( 1
2q–1 )

1
q | xq

yq–1 – yq

xq–1 | 1
q ‖f – e1f ′‖p,

if f – e1f ′ ∈ Lp[a, b],

‖f – e1f ′‖1
max{x,y}
min {x,y} , if f – e1f ′ ∈ L1[a, b],

(6)

where p, q > 1 with 1
p + 1

q = 1.

In [1], Alomari studied and generalized some inequalities related to the Pompeiu–
Chebyshev functional.

The purpose of this paper is to generalize the results of Alomari considering the
Pompeiu–Chebyshev functional in which linear and positive functionals intervene.
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2 Main results
In the following we denote by F a set of linear functions defined on the interval I = [a, b].
We will assume that the set F contains the constant and polynomial functions, and we
suppose that, if f , g ∈F , then f · g ∈F .

Definition 2.1 Let A, B : F →R be two linear and positive functionals.

If f , g ∈F , we denote

PA,B(f , g) =
1
2
[
B(e2)A(fg) + A(e2)B(fg) – A(e1f )B(e1g) – A(e1g)B(e1f )

]
. (7)

We call the functional PA,B(f , g) a Pompeiu–Chebyshev functional.

Remark 2.2 For any two linear and positive functionals A, B : F →R, we have

PA,B(f , g) = PB,A(f , g).

Remark 2.3 If we take

A(f ) = B(f ) =
∫ b

a
f (x) dx, F = L[a, b],

then the functional PA,B(f , g) becomes the functional that was studied by Dragomir in [4].

Theorem 2.4 If F = C1[a, b], 0 /∈ [a, b], then

∣∣PA,B(f , g)
∣∣ ≤ 1

2
[
B(e0)A(e2) + A(e0)B(e2) – 2A(e1)B(e1)

]

× ∥∥f – e1f ′∥∥∞
∥∥g – e1g ′∥∥∞. (8)

Proof From Lemma 1.4 we have

∣∣xf (y) – yf (x)
∣∣∣∣xg(y) – yg(x)

∣∣ ≤ (x – y)2∥∥f – e1f ′∥∥∞
∥∥g – e1g ′∥∥∞. (9)

Next, by Ax or By we will understand that the functional A, respectively B, acts on the
variable x, respectively y.

It is easy to see that

PA,B(f , g) =
1
2

AxBy
((

yf (x) – xf (y)
)(

yg(x) – xg(y)
))

. (10)

From relations (9) and (10) we get the following:

∣∣PA,B(f , g)
∣∣ ≤ 1

2
AxBy(x – y)2 · ∥∥f – e1f ′∥∥∞

∥∥g – e1g ′∥∥∞. (11)

Further we have

AxBy
(
(x – y)2) = B(e0)A(e2) + A(e0)B(e2) – 2A(e1)B(e1). (12)

Combining relations (11) and (12), we get (8). �
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Corollary 2.5 If we take A(f ) = B(f ) =
∫ b

a f (x) dx, then we obtain

∣∣PA,B(f , g)
∣∣ ≤ 1

2

[
2
∫ b

a
x2 dx

∫ b

a
dx – 2

(∫ b

a
x dx

)2

dx
]∥∥f – e1f ′∥∥∞

∥∥g – e1g ′∥∥∞,

so,

∣∣PA,B(f , g)
∣∣ ≤ 1

12
(b – a)4∥∥f – e1f ′∥∥∞

∥∥g – e1g ′∥∥∞, (13)

which is the inequality obtained by Dragomir in [4].

Definition 2.6 Let f , g ∈ F . The functions f and g are called synchronous (or similarly
ordered) if for all x, y ∈ I , where I is the domain for f and g , we have

(
f (x) – f (y)

)(
g(x) – g(y)

) ≥ 0, (14)

and f and g are called asynchronous (or oppositely ordered) if for all x, y ∈ I we have

(
f (x) – f (y)

)(
g(x) – g(y)

) ≤ 0. (15)

Theorem 2.7 Let f , g ∈F , where f , g : I →R such that 0 /∈ I .
(i) If f

e1
and g

e1
are synchronous functions, then PA,B(f , g) ≥ 0.

(ii) If f
e1

and g
e1

are asynchronous functions, then PA,B(f , g) ≤ 0.

Proof Since f
e1

and g
e1

are synchronous (asynchronous) functions, we have

(
f (x)

x
–

f (y)
y

)(
g(x)

x
–

g(y)
y

)
≥ (≤)0

⇔ (
yf (x) – xf (y)

)(
yg(x) – xg(y)

) ≥ (≤)0, ∀x, y ∈ I.

So,

PA,B(f , g) =
1
2

Ax
(
By(f , g)

)
=

1
2

AxBy
(
yf (x) – xf (y)

)(
xg(y) – yg(x)

) ≥ (≤)0. �

Remark 2.8 If A(f ) = B(f ) =
∫ b

a f (x) dx, then we get Theorem 6 and Corollary 1 from [1].

The following theorem shows a pre-Grüss inequality for the functional PA,B(f , g) (see
[5]).

Theorem 2.9 Let f , g ∈F , where f , g : I →R. Then

∣∣PA,B(f , g)
∣∣ ≤ 1 · ∣∣PA,B(f , f )

∣∣ 1
2
∣∣PA,B(g, g)

∣∣ 1
2 . (16)

Constant 1 is the best possible.

Proof From the equality

PA,B(f , g) =
1
2

Ax
(
By(f , g)

)
=

1
2

AxBy
((

xf (y) – yf (x)
)(

xg(y) – yg(x)
))
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and from the CBS-inequality, we obtain

∣∣PA,B(f , g)
∣∣ ≤

[
1
2

AxBy
(
xf (y) – yf (x)

)2
] 1

2
[

1
2

AxBy
(
xg(y) – yg(x)

)2
] 1

2
.

But we have

1
2

AxBy
(
xf (y) – yf (x)

)2 = PA,B(f , f )

and

1
2

AxBy
(
xg(y) – yg(x)

)2 = PA,B(g, g).

From the above the conclusion is obtained. �

We notice that for f (x) = g(x) = c · x – 1, c ∈R, fixed we obtain the equality in (16).
We note that for A(f ) = B(f ) =

∫ b
a f (x) dx we get Theorem 7 from [1].

Theorem 2.10 Let f , g : [a, b] → R, 0 < a < b, f , g ∈ F . If there exist real numbers mf ,
Mf , mg , Mg such that mf ≤ f (x) ≤ Mf and mg ≤ g(x) ≤ Mg , ∀x ∈ [a, b], then the following
inequality

∣∣PA,B(f , g)
∣∣ ≤ 1

2
(
A(e2)B(e0) + B(e2)A(e0) – 2A(e1)B(e1)

)

× (bMf – amf )(bMg – amg) (17)

holds.

Proof From the assumptions of the theorem we have

amf ≤ yf (x) ≤ bMf and – bMf ≤ –xf (y) ≤ –amf .

Adding the last inequalities, we have

amf – bMf ≤ yf (x) – xf (y) ≤ bMf – amf

or

∣∣yf (x) – xf (y)
∣∣ ≤ bMf – amf .

In the same way we proceed for the function g , and we get

∣∣xg(y) – yg(x)
∣∣ ≤ bMg – amg ,

∣∣xf (y) – yf (x)
∣∣ ≤ bMf – amf .

(18)

From (18) we get

∣∣(xf (y) – yf (x)
)(

xg(y) – yg(x)
)∣∣ ≤ (bMf – amf )(bMg – amg).
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So, we have

∣∣PA,B(f , g)
∣∣ ≤ (bMf – amf )(bMg – amg)PA,B(1, 1).

Since

PA,B(1, 1) =
1
2
(
A(e2)B(e0) + B(e2)A(e0) – 2A(e1)B(e1)

)
,

we get the inequality from the conclusion. �

Corollary 2.11 If we take A(f ) = B(f ) =
∫ b

a f (x) dx, then we get the following inequality:

∣∣PA,B(f , g)
∣∣ ≤ 1

12
(b – a)4(bMf – amf )(bMg – amg). (19)

Theorem 2.12 Let A, B : F → R be two linear and positive functionals. Let f , g : [a, b] →
R, 0 < a < b, f , g ∈F . If there exist real numbers mf , Mf , mg , Mg such that mf ≤ f (x) ≤ Mf

and mg ≤ g(x) ≤ Mg , ∀x ∈ [a, b], then the following inequality holds:

∣∣PA,B(f , g)
∣∣ ≤ 1

2
(bMf – amf )(bMg – amg)AxBy(1). (20)

Proof From the assumptions of the theorem we have

amf ≤ yf (x) ≤ bMf and – bMf ≤ –xf (y) ≤ –amf .

Adding the last inequalities, we have

amf – bMf ≤ yf (x) – xf (y) ≤ bMf – amf

or

∣∣yf (x) – xf (y)
∣∣ ≤ bMf – amf .

In the same way we proceed for the function g , and we get

∣∣xg(y) – yg(x)
∣∣ ≤ bMg – amg .

From the above we get

∣∣(xf (y) – yf (x)
)(

xg(y) – yg(x)
)∣∣ ≤ (bMf – amf )(bMg – amg),

and then

∣∣PA,B(f , g)
∣∣ ≤ 1

2
AxBy

(
(bMf – amf )(bMg – amg)

)
.

The last inequality is equivalent to the conclusion. �
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Remark 2.13 If we take A(f ) = B(f ) =
∫ b

a f (x) dx, then we get Theorem 8 from [1].

Theorem 2.14 Let f , g : [a, b] → R, 0 < a < b, f , g ∈ F . If there exist real numbers mg , Mg

such that mg ≤ g(x) ≤ Mg , ∀x ∈ [a, b], then the following inequality

∣∣PA,B(f , g)
∣∣ ≤ 1√

2
[
A(e2)B(e0) + A(e0)B(e2) – 2A(e1)B(e1)

] 1
2
∣∣PA,B(f , f )

∣∣ 1
2

× (bMg – amg) (21)

holds.

Proof From (16) we get

∣∣PA,B(f , g)
∣∣ ≤ √

PA,B(f , f ) ·PA,B(g, g). (22)

From (10) and (17) we have

∣∣PA,B(g, g)
∣∣ ≤ 1

2
(
A(e2)B(e0) + A(e2)B(e0) – 2A(e1)B(e1)

)
(bMg – amg)2. (23)

From relationships (22) and (23) we get the conclusion. �

Corollary 2.15 If we take A(f ) = B(f ) =
∫ b

a f (x) dx, then we obtain the following inequality:

∣∣PA,B(g, g)
∣∣ ≤ 1

2
√

3
(b – a)2(bMg – amg)

∣∣PA,B(f , f )
∣∣ 1

2 . (24)

Theorem 2.16 Let A, B : F → R be two linear and positive functionals. Let f , g : [a, b] →
R, 0 < a < b, f , g ∈ F . If there exist real numbers mg , Mg such that mg ≤ g(x) ≤ Mg , ∀x ∈
[a, b], then the following inequality holds:

∣∣PA,B(f , g)
∣∣ ≤ 1√

2

∣∣PA,B(f , f )
∣∣ 1

2
∣∣AxBy(1)

∣∣ 1
2 (bMg – amg). (25)

Proof From (16) we get

∣∣PA,B(f , g)
∣∣ ≤ √

PA,B(f , f ) ·PA,B(g, g). (26)

From (17) for f = g we have

∣∣PA,B(g, g)
∣∣ ≤ 1

2
(bMg – amg)2AxBy(1). (27)

Replacing (27) in (26), we get the conclusion. �

Remark 2.17 If we take A(f ) = B(f ) =
∫ b

a f (x) dx, then we get Theorem 9 from [1].

An improvement of inequality (17) from Theorem 2.10 is given below.
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Theorem 2.18 Let D be a subset of the real line such that D ⊂ [a, b], a > 0. If f , g ∈ F ,
f , g : D → R, 0 < a < b and we suppose that there exist real numbers mf , Mf , mg , Mg such
that mf ≤ f (x) ≤ Mf and mg ≤ g(x) ≤ Mg , ∀x ∈ D, then the following inequality holds:

∣∣PA,B(f , g)
∣∣ ≤ 1

2
AxBy

(|xMf – ymf ||xMg – ymg |
)
. (28)

Proof It is easy to see, in these conditions, that we have

∣∣xf (y) – yf (x)
∣∣ ≤ |xMf – ymf |,∣∣xg(y) – yg(x)
∣∣ ≤ |xMg – ymg |.

From the above we obtain

∣∣(xf (y) – yf (x)
)(

xg(y) – yg(x)
)∣∣ ≤ ∣∣(xMf – ymf )(xMg – ymg)

∣∣, ∀x, y ∈ D.

Applying the linear and positive functional AxBy and considering that

∣∣AxBy
(
h(x, y)

)∣∣ ≤ AxBy
(∣∣h(x, y)

∣∣),

the statement results. �

Remark 2.19 If we take A(f ) = B(f ) =
∫ b

a f (x) dx, then from (22) we get Theorem 10 from
[1].

A generalization of this is given in what follows.

Theorem 2.20 Let f , g : D → R, D ⊂ [a, b], 0 < a < b, f , g ∈ F . If there exist real numbers
mf , Mf , mg , Mg such that mf ≤ f (x) ≤ Mf and mg ≤ g(x) ≤ Mg , ∀x ∈ D, then the following
inequality holds:

∣∣PA,B(f , g)
∣∣ ≤ 1

4
Kf Kg , (29)

where

Kf =
[(

M2
f + m2

f
)(

A(e0)B(e2) + B(e0)A(e2)
)

+
(
M2

f – m2
f
)∣∣A(e0)B(e2) – B(e0)A(e2)

∣∣ – 4A(e1)B(e1)mf Mf
] 1

2 (30)

and

Kg =
[(

M2
g + m2

g
)(

A(e0)B(e2) + B(e0)A(e2)
)

+
(
M2

g – m2
g
)∣∣A(e0)B(e2) – B(e0)A(e2)

∣∣ – 4A(e1)B(e1)mgMg
] 1

2 . (31)

Proof Using the Cauchy–Schwarz inequality in (28), we have

∣∣PA,B(f , g)
∣∣ ≤ 1

2

√
AxBy

(
(xMf – ymf )2

)√
AxBy

(
(xMg – ymg)2

)
, (32)

∣∣PA,B(f , g)
∣∣ ≤ 1

2

√
AxBy

(
(xmf – yMf )2

)√
AxBy

(
(xmg – yMg)2

)
. (33)
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From the above we obtain

∣∣PA,B(f , g)
∣∣ ≤ 1

2

√
max

{
AxBy

(
(xMf – ymf )2

)
, AxBy

(
(xmf – yMf )2

)}

×
√

max
{

AxBy
(
(xMg – ymg)2

)
, AxBy

(
(xmg – yMg)2

)}
.

Computing, we obtain

max
{

AxBy
(
(xMf – ymf )2), AxBy

(
(xmf – yMf )2)}

=
1
2
[(

M2
f + m2

f
)(

A(e0)B(e2) + B(e0)A(e2)
)

+
(
M2

f – m2
f
)∣∣A(e0)B(e2) – B(e0)A(e2)

∣∣ – 4Mf mf A(e1)B(e1)
]

and

max
{

AxBy
(
(xMg – ymg)2), AxBy

(
(xmg – yMg)2)}

=
1
2
[(

M2
g + m2

g
)(

A(e0)B(e2) + B(e0)A(e2)
)

+
(
M2

g – m2
g
)∣∣A(e0)B(e2) – B(e0)A(e2)

∣∣ – 4MgmgA(e1)B(e1)
]
.

So, we get

∣∣PA,B(f , g)
∣∣ ≤ 1

2
Kf · 1

2
Kg ,

where Kf and Kg are given in (30), respectively (31), which is the inequality from the con-
clusion. �

A more general case is taken forward, which improves relationship (25).

Theorem 2.21 Let f , g : D → R, D ⊂ [a, b], 0 < a < b, f , g ∈ F . If there exist real numbers
mg , Mg such that mg ≤ g(x) ≤ Mg , ∀x ∈ D, then

∣∣PA,B(f , g)
∣∣ ≤ 1

2
∣∣PA,B(f , f )

∣∣ 1
2 · Kg , (34)

where Kg is given by (31).

Proof Using inequality (29), we have

∣∣PA,B(g, g)
∣∣ ≤ 1

4
K2

g ,

and replacing this in relation (16), we get inequality (24). �

Remark 2.22 If we take A(f ) = B(f ) =
∫ b

a f (x) dx, then we obtain

∣∣PA,B(f , g)
∣∣ ≤ 1

2
√

3

∣∣PA,B(f , f )
∣∣ 1

2
[
2(b – a)

(
b3 – a3)(M2

g + m2
g
)

– 3mgMg
(
b2 – a2)2] 1

2 ,

which is inequality (2.14) from [1, Th. 11].
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3 Applications
In this section we investigate some new inequalities of Grüss type using Pompeiu’s mean
value theorem and the above results. Improvement of known inequalities is also given.

Theorem 3.1 Let f , g : [a, b] → R, 0 < a < b, f , g ∈ F . If f ∈ C1[a, b], then the following
inequality

∣∣PA,B(f , g)
∣∣ ≤ 1

2
AxBy

(|x – y| · ∣∣yg(x) – xg(y)
∣∣)∥∥f – e1f ′∥∥∞ (35)

holds.

Proof From Lemma 1.4 we have that

∣∣yf (x) – xf (y)
∣∣ ≤ |x – y|∥∥f – e1f ′∥∥∞,

and it follows that

∣∣PA,B(f , g)
∣∣ =

1
2
∣∣AxBy

(
yf (x) – xf (y)

)(
yg(x) – xg(y)

)∣∣

≤ 1
2

AxBy
(|x – y| · ∣∣yg(x) – xg(y)

∣∣)∥∥f – e1f ′∥∥∞. �

Remark 3.2 If we take A(f ) = B(f ) =
∫ b

a f (x) dx, then from (29) we get the first result from
[1, Th. 13].

Theorem 3.3 Let f , g : [a, b] → R, 0 < a < b, f , g ∈ F . If f ∈ L1[a, b], then the following
inequality

∣∣PA,B(f , g)
∣∣ ≤ 1

2
AxBy

(
max{x, y}
min{x, y} · ∣∣yg(x) – xg(y)

∣∣
)∥∥f – e1f ′∥∥

1 (36)

holds.

Proof From Lemma 1.4 we have

∣∣PA,B(f , g)
∣∣ =

1
2
∣∣AxBy

(
yf (x) – xf (y)

)(
yg(x) – xg(y)

)∣∣

≤ 1
2
∥∥f – e1f ′∥∥

1AxBy

(
max{x, y}
min{x, y} · ∣∣yg(x) – xg(y)

∣∣
)

. �

Remark 3.4 If we take A(f ) = B(f ) =
∫ b

a f (x) dx, then from (36) we get the last result from
[1, Th. 13].

Theorem 3.5 Let f , g : D →R, D ⊂ [a, b], 0 < a < b, f , g ∈F , f ∈ C1[a, b]. If there exist real
numbers mg , Mg such that mg ≤ g(x) ≤ Mg , ∀x ∈ [a, b], then

∣∣PA,B(f , g)
∣∣ ≤ 1

2
√

2
[
B(e0)A(e2) + A(e0)B(e2) – 2A(e1)B(e1)

] 1
2

× Kg · ∥∥f – e1f ′∥∥∞, (37)

where Kg is given by (31).
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Proof From inequality (8) we get

∣∣PA,B(f , f )
∣∣ ≤ 1

2
[
B(e0)A(e2) + A(e0)B(e2) – 2A(e1)B(e1)

]‖f – e1f ‖2
∞.

On the other hand, from inequality (29) we have

∣∣PA,B(g, g)
∣∣ ≤ 1

4
[
M2

g A(e0)B(e2) + m2
g A(e2)B(e0) – 2MgmgA(e1)B(e1)

]

=
1
4

Kg .

Using the last two inequalities in (16), we get the conclusion. �

Remark 3.6 If we take A(f ) = B(f ) =
∫ b

a f (x) dx, then from (37) we get the result from [1,
Th. 14].

Theorem 3.7 Let f : [a, b] →R, 0 < a < b, f , g ∈F , f ∈ C1[a, b], g ∈ L1[a, b]. Then we have
the following inequality:

∣∣PA,B(f , g)
∣∣ ≤ 1

4
∥∥f – e1f ′∥∥∞

∥∥g – e1g ′∥∥
1

× [
A(e0)B(e2) + A(e2)B(e0) – 2A(e1)B(e1)

+
∣∣A(e2)B(e0) – A(e0)B(e2)

∣∣]. (38)

Proof From Lemma 1.4 we get

∣∣PA,B(f , g)
∣∣ =

1
2
∣∣AxBy

(
yf (x) – xf (y)

)(
yg(x) – xg(y)

)∣∣

≤ 1
2
∥∥f – e1f ′∥∥∞

∥∥g – e1g ′∥∥
1 · AxBy

(
max{x, y}
min{x, y} · |x – y|

)
. (39)

If x < y, then

max{x, y}
min{x, y} · |x – y| =

y
x

(y – x) < y2 – xy.

If x ≥ y, then

max{x, y}
min{x, y} · |x – y| =

x
y

(x – y) ≤ x2 – xy.

Therefore, we have

AxBy

(
max{x, y}
min{x, y} · |x – y|

)

≤
⎧⎨
⎩

AxBy(y2 – xy), if x < y,

AxBy(x2 – xy), if x ≥ y,

≤ max
{

AxBy
(
y2 – xy

)
, AxBy

(
x2 – xy

)}
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= max
{

A(e0)B(e2) – A(e1)B(e1), A(e2)B(e0) – A(e1)B(e1)
}

=
1
2
[
A(e0)B(e2) + A(e2)B(e0) – 2A(e1)B(e1) +

∣∣A(e2)B(e0) – A(e0)B(e2)
∣∣].

Using the last inequality in (39), we obtain (38). �

Remark 3.8 If we take A(f ) = B(f ) =
∫ b

a f (x) dx, then inequality (39) becomes the following
inequality:

∣∣PA,B(f , g)
∣∣ ≤ 1

24
(b – a)4∥∥f – e1f ′∥∥∞

∥∥g – e1g ′∥∥
1. (40)

Theorem 3.9 Let f : [a, b] →R, 0 < a < b, f , g ∈F , f ∈ C1[a, b], g ∈ L1[a, b]. Then we have
the following inequality:

∣∣PA,B(f , g)
∣∣ ≤ 1

2
AxBy

(
|x – y|max{x, y}

min{x, y}
)∥∥f – e1f ′∥∥∞

∥∥g – e1g ′∥∥
1. (41)

Proof From Lemma 1.4 we get

∣∣PA,B(f , g)
∣∣ =

1
2
∣∣AxBy

(
yf (x) – xf (y)

)(
yg(x) – xg(y)

)∣∣

≤ 1
2

AxBy

(
|x – y|max{x, y}

min{x, y}
)∥∥f – e1f ′∥∥∞

∥∥g – e1g ′∥∥
1. �

Remark 3.10 If we take A(f ) = B(f ) =
∫ b

a f (x) dx, then inequality (41) becomes inequality
(3.5) from [1, Th. 15].

Theorem 3.11 Let f : [a, b] → R, 0 < a < b, f , g ∈F , f ∈ L1[a, b]. If there exist real numbers
mg , Mg such that mg ≤ g(x) ≤ Mg , ∀x ∈ [a, b], then the following inequality holds:

∣∣PA,B(f , g)
∣∣ =

1
2
√

2

∣∣∣∣AxBy

((
max{x, y}
min{x, y}

)2)∣∣∣∣
1
2 · Kg · ∥∥f – e1f ′∥∥

1, (42)

where Kg is given by (31).

Proof From Lemma 1.4 we get

∣∣PA,B(f , f )
∣∣ ≤ 1

2

∣∣∣∣AxBy

(
max2{x, y}
min2{x, y}

)∣∣∣∣
∥∥f – e1f ′∥∥2

1.

Using inequality (29), we have

∣∣PA,B(g, g)
∣∣ ≤ 1

4
K2

g ,

where Kg is given by (31).
Substituting in (16) we get the desired result. �

Remark 3.12 If we take A(f ) = B(f ) =
∫ b

a f (x) dx, then inequality (42) becomes inequality
(3.7) from [1, Th. 16].
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Definition 3.13 Let a, b ∈ R, with a < b and f , g, h ∈ F , h : [a, b] → R+. The functional
noted by PA,B(f , g; h), defined by

PA,B(f , g; h) =
1
2

AxBy
[
h2(x)f (y)g(y) + h2(y)f (x)g(x)

–
(
h(x)h(y)g(x)f (y) + h(x)h(y)f (x)g(y)

)]
, (43)

is called Pompeiu–Chebyshev with respect to the function h functional.

Note that the functional can also be written in the following form:

PA,B(f , g; h) =
1
2

AxBy
(
h(x)f (y) – h(y)f (x)

)(
h(x)g(y) – h(y)g(x)

)
.

Definition 3.14 (See [1]) Let f , g : [a, b] → R, f , g ∈ F . The functions f and g are called
synchronous with respect to a function h (h-synchronous, similarly ordered), h : [a, b] →
R+, if for all x, y ∈ [a, b], we have

(
h(x)f (y) – h(y)f (x)

)(
h(x)g(y) – h(y)g(x)

) ≥ 0, (44)

and f , g are called asynchronous with respect to a function h (h-asynchronous, oppositely
ordered) if for all x, y ∈ [a, b] we have

(
h(x)f (y) – h(y)f (x)

)(
h(x)g(y) – h(y)g(x)

) ≤ 0. (45)

The next result generalizes the inequalities from Theorem 2.7.

Theorem 3.15 Let f , g : [a, b] → R, f , g ∈ F , and h : [a, b] → R+ such that h(x) �= 0, ∀x ∈
[a, b].

(i) If f
h and g

h are h-synchronous functions, then

PA,B(f , g; h) ≥ 0. (46)

(ii) If f
h and g

h are h-asynchronous functions, then

PA,B(f , g; h) ≤ 0. (47)

Proof Since f
h and g

h are h-synchronous (h-asynchronous) functions, we have

(
h(x)f (y) – h(y)f (x)

)(
h(x)g(y) – h(y)g(x)

) ≥ (≤)0, ∀x, y ∈ [a, b].

From this and (43) we have

PA,B(f , g; h) =
1
2

AxBy
(
h(x)f (y) – h(y)f (x)

)(
h(x)g(y) – h(y)g(x)

) ≥ (≤)0,

from where we get the conclusion. �
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Remark 3.16 In (46), respectively (47), if we take h(x) = x, x ∈ [a, b], then we obtain the
inequalities from Theorem 2.7.

Remark 3.17 If we take A(f ) = B(f ) =
∫ b

a f (x) dx, then inequality (46) becomes inequality
(4.5) from [1, Th. 19].

The next theorem is a generalization of Theorem 2.9 and contains the pre-Grüss in-
equality.

Theorem 3.18 Let f , g : [a, b] → R, a, b ∈ R, a < b, and f , g ∈ F . If h ∈ F is a positive
function, then

∣∣PA,B(f , g; h)
∣∣ ≤ ∣∣PA,B(f , f ; h)

∣∣ 1
2
∣∣PA,B(g, g; h)

∣∣ 1
2 . (48)

Proof Using the CBS inequality in equality (43), we obtain

∣∣PA,B(f , g; h)
∣∣ ≤

[
1
2

AxBy
(
h(x)f (y) – h(y)f (x)

)2
] 1

2

×
[

1
2

AxBy
(
h(x)g(y) – h(y)g(x)

)2
] 1

2
.

But we have

1
2

AxBy
(
h(x)f (y) – h(y)f (x)

)2 = PA,B(f , f ; h)

and

1
2

AxBy
(
h(x)g(y) – h(y)g(x)

)2 = PA,B(g, g; h).

From the above we get the conclusion. �

Remark 3.19 In (46), if we take h(x) = x, x ∈ [a, b], then we obtain inequality (16) from
Theorem 2.9.

Remark 3.20 If we take A(f ) = B(f ) =
∫ b

a f (x) dx, then inequality (46), respectively (47),
becomes inequalities (4.8) from [1, Corollary 8].

It is easy to see that the Pompeiu–Chebyshev functional with respect to the function h,
PA,B(f , f ; h) represents the reverse of CBS-inequality. We have

PA,B(f , f ; h) =
1
2

AxBy
((

h(x)f (y) – h(y)f (x)
)2) ≥ 0. (49)

We recall that a function f : [a, b] →R is called of p– H-Hölder type, with H > 0, p ∈ (0, 1],
if for any x, y ∈ [a, b] we have

∣∣f (x) – f (y)
∣∣ ≤ H|x – y|p.

In [2], Barnett and Dragomir proved the following theorem.
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Theorem 3.21 If f , g are measurable on [a, b] and f
g is p – H-Hölder type, with H > 0,

p ∈ (0, 1]), then

0 ≤
∫ b

a
f 2(x) dx

∫ b

a
g2(x) dx –

(∫ b

a
f (x)g(x) dx

)2

≤ H2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(b–a)2p+2

(2p+1)(2p+2)‖h‖4∞, if h ∈ L∞[a, b],
2

– 1
β (b–a)2p+ 2

α

(2αp+1)
1
α (2αp+2)

1
α
‖h‖4

2β , if h ∈ L2β [a, b],

1
2 (b – a)2p‖h‖4

2, if h ∈ L2[a, b],

(50)

for α,β > 1, 1
α

+ 1
β

= 1 and ‖h‖p = (
∫ b

a |f (x)|p dx)
1
p .

Starting from this we can state the following results.

Theorem 3.22 Let a, b ∈R, a < b, and f , g, h ∈F , where f , g, h : [a, b] →R. If f
h and g

h are
of p – H-Hölder type, with H1, H2 > 0, p, q ∈ (0, 1], then

∣∣PA,B(f , g; h)
∣∣ ≤ 1

2
H1H2 · AxBy

(|x – y|p+qh2(x)h2(y)
)
. (51)

Proof From f
h and g

h are of p – H-Hölder type with H1, H2 > 0, p, q ∈ (0, 1] we have

∣∣∣∣ f (x)
h(x)

–
f (y)
h(y)

∣∣∣∣ ≤ H1|x – y|p, ∀x, y ∈ [a, b]

and

∣∣∣∣ g(x)
h(x)

–
g(y)
h(y)

∣∣∣∣ ≤ H2|x – y|q, ∀x, y ∈ [a, b].

By multiplying the last two inequalities, we obtain

|h(x)f (y) – h(y)f (x)| · |h(x)g(y) – h(y)g(x)|
|h(x)h(y)|2 ≤ H1H2|x – y|p+q.

Using (43) in the last inequality PA,B(f , g; h), we obtain the conclusion. �

Remark 3.23 If we take A(f ) = B(f ) =
∫ b

a f (x) dx, then inequality (41) becomes inequality
(4.13) from [1, Theorem 20], which represents the following inequalities:

∣∣PA,B(f , g; h)
∣∣ ≤ H1H2

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(b–a)p+q+2√
(2p+1)(2p+2)(2q+1)(2q+2)

‖h‖4∞, if h ∈ L∞[a, b],

2
– 1

β (b–a)p+q+ 2
α

[(2αp+1)(2αp+2)(2αq+1)(2αq+2)]
1
α
‖h‖4

2β , if h ∈ L2β [a, b],

1
2 (b – a)p+q‖h‖4

2, if h ∈ L2[a, b].

(52)
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Theorem 3.24 Let a, b ∈R, a < b, and f , g, h ∈F , where f , g, h : [a, b] →R. If h
f and h

g are
of p – H-Hölder type, with H1, H2 > 0, p, q ∈ (0, 1], then

∣∣PA,B(f , g; h)
∣∣ ≤ 1

2
H1H2 · AxBy

(|x – y|p+qf (x)f (y)g(x)g(y)
)
. (53)

Proof From h
f and h

g are of p – H-Hölder type with H1, H2 > 0, p, q ∈ (0, 1] we have

∣∣∣∣h(x)
f (x)

–
h(y)
f (y)

∣∣∣∣ ≤ H1|x – y|p, ∀x, y ∈ [a, b]

and
∣∣∣∣h(x)

g(x)
–

h(y)
g(y)

∣∣∣∣ ≤ H2|x – y|q, ∀x, y ∈ [a, b].

By multiplying the last two inequalities, we obtain

|h(x)f (y) – h(y)f (x)| · |h(x)g(y) – h(y)g(x)|
|f (x)f (y)g(x)g(y)| ≤ H1H2|x – y|p+q.

Applying in the last inequality PA,B(f , g; h), we obtain the conclusion. �

Remark 3.25 If we take A(f ) = B(f ) =
∫ b

a f (x) dx, then inequality (43) becomes (4.16) from
[1, Theorem 21], which represents the following inequalities:

∣∣PA,B(f , g; h)
∣∣ ≤ H1H2

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(b–a)p+q+2√
(2p+1)(2p+2)(2q+1)(2q+2)

‖f ‖2∞‖g‖2∞, f , g ∈ L∞[a, b],

2
– 1

β (b–a)p+q+ 2
α

[(2αp+1)(2αp+2)(2αq+1)(2αq+2)]
1
α
‖f ‖2

2β‖g‖2
2β , f , g ∈ L2β [a, b],

1
2 (b – a)p+q‖f ‖2

2‖g‖2
2, f , g ∈ L2[a, b].

4 Examples
In this section we give some examples by choosing the functionals A(f ) and B(f ) in differ-
ent forms and, in this way, we obtain some inequalities.

Example 4.1 Let

A(f ) =
1

b – a

∫ b

a
f (x) dx and B(f ) =

f (a) + f (b)
2

be two functionals for which we have

A(e0) = 1, A(e1) =
a + b

2
, A(e2) =

a2 + ab + b2

3
(54)

and

B(e0) = 1, B(e1) =
a + b

2
, B(e2) =

a2 + b2

2
. (55)
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Using (7) for the functionals A and B chosen, we obtain

PA,B(f , g) =
1
2

[
a2 + b2

2(b – a)

∫ b

a
f (x)g(x) dx +

a2 + ab + b2

3
· f (a)g(a) + f (b)g(b)

2

–
ag(a) + bg(b)

2(b – a)

∫ b

a
xf (x) dx –

af (a) + bf (b)
2(b – a)

∫ b

a
xg(x) dx

]
. (56)

For the functional defined by (56), we obtain the following inequalities:
(a) If 0 < a < b, f , g : [a, b] →R, f , g ∈F , f , g ∈ C1[a, b], then

∣∣PA,B(f , g)
∣∣ ≤ (b – a)2

6
∥∥f – e1f ′∥∥∞

∥∥g – e1g ′∥∥∞. (57)

(b) If 0 < a < b, f , g : [a, b] →R, f , g ∈F , and there exist real numbers mf , Mf , mg , Mg

such that mf ≤ f (x) ≤ Mf and mg ≤ g(x) ≤ Mg , ∀x ∈ D, then

∣∣PA,B(f , g)
∣∣ ≤ (b – a)2

6
(bMf – amf )(bMg – amg). (58)

Example 4.2 Let

Rα(f ) =
1

Γ (α)

∫ b

a
(b – x)α–1f (x) dx, α ∈ N,α ≥ 1

be a Riemann–Liouville type functional for which we have

Rα(e0) =
(b – a)α

α!
,

Rα(e1) =
(aα + b)(b – a)α

(α + 1)!
, (59)

Rα(e2) =
a2(b – a)α

α!
+

2a(b – a)α+1

(α + 1)!
+

2(b – a)α+2

(α + 2)!
.

For α = 1 we denote

R1(f ) = A(f ) =
∫ b

a
f (x) dx

and for α = 2 we denote

R2(f ) = B(f ) =
∫ b

a
(b – x)f (x) dx.

We have

A(e0) = b – a, A(e1) =
b2 – a2

2
, A(e2) =

b3 – a3

3
(60)

and

B(e0) =
(b – a)2

2
,
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B(e1) =
(2a + b)(b – a)2

6
,

B(e2) =
(3a2 + b2 + 2ab)(b – a)2

12
. (61)

Substituting (60) and (61) in (7), we obtain

PA,B(f , g) =
1
2

[
(3a2 + b2 + 2ab)(b – a)2

12

∫ b

a
f (x)g(x) dx

+
b3 – a3

3

∫ b

a
(b – x)f (x)g(x) dx –

∫ b

a
xf (x) dx

∫ b

a
(b – x)xg(x) dx

–
∫ b

a
xg(x) dx

∫ b

a
(b – x)xf (x) dx

]
. (62)

For the functional defined by (62), we obtain the following inequalities:
(a) If 0 < a < b, f , g : [a, b] →R, f , g ∈F , f , g ∈ C1[a, b], then

∣∣PA,B(f , g)
∣∣ ≤ (b – a)5

24
∥∥f – e1f ′∥∥∞

∥∥g – e1g ′∥∥∞. (63)

(b) If 0 < a < b, f , g : [a, b] →R, f , g ∈F , and there exist real numbers mf , Mf , mg , Mg

such that mf ≤ f (x) ≤ Mf and mg ≤ g(x) ≤ Mg , ∀x ∈ [a, b], then

∣∣PA,B(f , g)
∣∣ ≤ (b – a)5

24
(bMf – amf )(bMg – amg). (64)

(c) If 0 < a < b, f , g : [a, b] →R, f , g ∈F , and there exist real numbers mg , Mg such that
mg ≤ g(x) ≤ Mg , ∀x ∈ [a, b], then

∣∣PA,B(f , g)
∣∣ ≤ (b – a) 5

2

2
√

6

∣∣PA,B(f , g)
∣∣ 1

2 (bMg – amg). (65)

Example 4.3 Let

Rα(f ) =
1

Γ (α)

∫ b

a
(b – x)α–1f (x) dx, α > 0

and

Rβ (f ) =
1

Γ (β)

∫ b

a
(b – x)β–1f (x) dx, β > 0

be two Riemann–Liouville type functionals for which we have

Rϕ(e0) =
(b – a)ϕ

ϕ!
, Rϕ(e1) =

(ϕa + b)(b – a)ϕ

(ϕ + 1)!
,

Rϕ(e2) =
a2(b – a)ϕ

ϕ!
+

2a(b – a)ϕ+1

(ϕ + 1)!
+

2(b – a)ϕ+2

(ϕ + 2)!
, (66)

where ϕ ∈ {α,β}.
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For Rα(f ) = A(f ) and Rβ(f ) = B(f ), using relations (66) in (7), we have

PA,B(f , g)

=
1
2

[(
a2(b – a)β

β !
+

2a(b – a)β+1

(β + 1)!
+

2(b – a)β+2

(β + 2)!

)

× 1
Γ (α)

∫ b

a
(b – x)α–1f (x)g(x) dx

+
(

a2(b – a)α

α!
+

2a(b – a)α+1

(α + 1)!
+

2(b – a)α+2

(α + 2)!

)
1

Γ (β)

∫ b

a
(b – x)β–1f (x)g(x) dx

–
1

Γ (α)Γ (β)

∫ b

a
(b – x)α–1xf (x) dx

∫ b

a
(b – x)β–1xg(x) dx

–
1

Γ (α)Γ (β)

∫ b

a
(b – x)β–1xf (x) dx

∫ b

a
(b – x)α–1xg(x) dx

]
. (67)

For the functional defined by (67), we obtain the following inequalities:
(a) If 0 < a < b, f , g : [a, b] →R, f , g ∈F , f , g ∈ C1[a, b], then

∣∣PA,B(f , g)
∣∣ ≤ (α2 + β2 + α + β – αβ)(b – a)α+β+2

(α + 2)!(β + 2)!
∥∥f – e1f ′∥∥∞

∥∥g – e1g ′∥∥∞. (68)

(b) If 0 < a < b, f , g : [a, b] →R, f , g ∈F , and there exist real numbers mf , Mf , mg , Mg

such that mf ≤ f (x) ≤ Mf and mg ≤ g(x) ≤ Mg , ∀x ∈ [a, b], then

∣∣PA,B(f , g)
∣∣ ≤ (α2 + β2 + α + β – αβ)(b – a)α+β+2

(α + 2)!(β + 2)!

× (bMf – amf )(bMg – amg). (69)

(c) If 0 < a < b, f , g : [a, b] →R, f , g ∈F , and there exist real numbers mg , Mg such that
mg ≤ g(x) ≤ Mg , ∀x ∈ [a, b], then

∣∣PA,B(f , g)
∣∣ ≤

[
(α2 + β2 + α + β – αβ)(b – a)α+β+2

(α + 2)!(β + 2)!

] 1
2

× ∣∣PA,B(f , f )
∣∣ 1

2 (bMg – amg). (70)
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6. Lupaş, A.: The best constant in an integral inequality. Mathematica 15(38), 219–222 (1973)
7. Ostrowski, A.M.: On an integral inequality. Aequ. Math. 4, 358–373 (1970)
8. Pachpatte, B.G.: On Grüss like integral inequalities via Pompeiu’s mean value theorem. J. Inequal. Pure Appl. Math. 6(3),

132 (2005)
9. Pompeiu, D.: Sur une proposition analogue au theoreme des accroissements finis. Mathematica 22, 143–146 (1946)


	On some inequalities relative to the Pompeiu-Chebyshev functional
	Abstract
	Keywords

	Introduction
	Main results
	Applications
	Examples
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


