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1 Introduction
IfO<) > a2 <ooand 0< )y 2
inequality with the best possible constant factor 7 ([1], Theorem 315):

~ b% < 00, then we have the following discrete Hilbert

172

<n<2a sz) : (1)

o0 o0
m=1 n=1

Assuming that 0 < fooo f(x)dx < 00 and 0 < fooo 2% (y)dy < oo, we still have the following
integral analogue of (1) ([1], Theorem 316):

f /Oofxf;y)d dy <71(/ 12 x)dx/ g(y)dy)m, @)

where the constant factor 7 is the best possible. Inequalities (1) and (2) are playing an
important role in analysis and its applications [2—13].

The following half-discrete Hilbert-type inequality was provided in 1934 ([1], Theorem
351): If K(x) (x > 0) is a decreasing function, p > 1, }7 + %1 =1,0<¢(s) = ;7 K@) dax < 00,
f(x)>0,and 0 < [, f7(x) dx < 00, then

0011’”2 - d < P(x)d.
> ( /0 K(n)f () x) ¢P( ) / P dx. 3
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In recent years, some new extensions of (3) were given by [14—19].

In 2006, using the Euler—-Maclaurin summation formula, Krnic et al. [20] gave an exten-
sion of (1) with the kernel m (0 < A <14).1In 2019, following [20], Adiyasuren et al. [21]
considered an extension of (1) involving the partial sums. In 2016—-2017, by applying the
weight functions Hong [22, 23] considered some equivalent statements of the extensions
of (1) and (2) with a few parameters. Some similar works were provided in [24-26].

In this paper, following [21, 22], by the use of the weight functions and the idea of in-
troduced parameters, we give a new Hilbert-type integral inequality with the kernel ﬁ
(A > 0) involving the upper limit functions and the beta and gamma functions. We consider
the equivalent statements of the best possible constant factor related to a few parameters.
As applications, we obtain a corollary in the case of nonhomogeneous kernel and some

particular inequalities.

2 Some lemmas

In what follows, we assume that p > 1, % +-=1,X1>0,A1,Ap € (0,1 + 1), f(x) and g(y)
(0,00), f(x) = o(e"), g(y) = 0(&”) (x,y — 00),
such that for any A = (0,4) (a > 0), f,g € L*(A), and the upper limit functions are defined

by

N =I=

are nonnegative measurable functions in R,

x y
F(x) ::/ f@®)dt (x>0) and G(y) ::/ gydt (y=>0),
0 0
satisfying
0< /00 PG P () dy < 0o and 0 < /Ooy'qkz_(x_h_“)_le(y) dy < 00.
0 0

By the definition of the gamma function, for X,x,y > 0, the following expression holds:

1 1

wor ST ), e @

Lemma 1 Fort >0, we have the following expressions:

/00 e fx)dx =t /00 e " F(x) dx, (5)
0 0
| eremar-t [ evcna. ©)
0 0
Proof We find

/000 e f(x) dx = /000 e dF (x)

= e "F(x)|[F - f F(x)de™
0

_ lim £®)

x—oo el

o0
+t / e ™ F(x)dx.
0
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If F(00) = constant, then lim,_, » % =0, and (5) follows; if F(00) = 00, in view of f(x) =

o(e*) (x — oo), we find

/ OOe"”cf(x) dx = lim F'lx)
0 x—>

oo (e,

. fx) ®
= lim —* F(x)d
im —— +t/0 e "F(x)dx

+ t/ e ™ F(x)dx
0

[o¢]
=0+t / e ™ F(x) dx,
0

and then (5) follows. In the same way, we have (6).

The lemma is proved. O

Lemma 2 Fors>0,u,0 €(0,s), define the following weight functions:

o] ta—l
@ (0,%) = £ / L4t (xewr,), @)
o (x+1)
=y [ L ) ®
(i, y) =y~ t €R,). 8
S e "
We have the following expressions:
ZD'(U,JC)ZB(G,S—G) (x€R+)’ (9)
w(lh}’) = B(/,L,S - /‘L) ()’ € R+)r (10)
where B(u,v) := [;° % dt (u,v > 0) is the beta function satisfying
Bwv) = ——— () ()
= T'u+v) wE:

Proof Setting u = £, we find

o0 o-1 00 o-1
w(a,x):xs_"/ () xdu:/ " du=B (0,s—0),
0 0

(x + ux)s (1 + u)s

namely, (9) follows. In the same way, we have (10).

The lemma is proved. O

Lemma 3 Suppose that s > 0, 1,0 € (0,s). We have the following inequality:

/m < fx)g(y)
o Jo (x+y)

« [/wxp(l—u)—(S—u—0>—1fl’(x) dx]ﬁ [/w)ﬂ(l‘”)‘(s“‘_”)_lng) dy] ?1' (11)
0 0

dx 531% (a,s—a)B%(u,s—,u)
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For »>0,s=A+2(>2),A\1=p—-1€(0,A+1), A =0 —1€ (0,1 + 1), by the substitution
f(x) = F(x) and g(y) = G(y) in (11) we can reduce it to the following:

G 1 1
// (j))A(Qdxdy<Bé(A2+1,A+1—Az)33(k1+M+1—M)
x+y

x |:/ x—pm—()\_xl—)\z)—lFP(x) dx}p [/wy—qkz—(x—m—xz)—le(y) dy] q, (12)
0 0

Proof By Hélder’s inequality (see [27]) we obtain
[ = [ [ ety o e [asa
=\ [chm;oéflg%}f“”“}
* {/om[/ow (xjy)s%]g v dy};

- |:/ ) @ (0, 0)xP 1~ Aon=0)=Lgp () dx} p
0

=

1

x[/ o(j1, )y gw)dy}q. (13)
0

Then by (9) and (10) we have (11).
By simplifications of (11) we have

Fx)G 1 L
/ / F@GO) 1y < BF (g 4 1,34 1= 20)BE (g 4 124 1= 21)
(x+y)k+2

1 1

x |:/ x—ml—(x_xl—xz)—ll-"ﬁ(x) dxi|p [/Ooy—qkz—(/\—m—xz)—le(y) dyi| q. (14)
0 0

If (14) keeps the form of equality, then, in view of the proof of (13), there exist constants
A and B such that they are not all zero, satisfying fors=A+2,A; =u -1, A =0 -1,

AxPM-0=hi=22)-1,(i-r1-Ao)+1 pp (x)

=By 72Gi(y) a.e.in (0,00) x (0, 00).
Without loss of generality, we assume that A # 0. Then for fixed y € (0, 0), we have
g —(AmAq—Ag)— B _
xPM-0-r1-22) le(x) — ( qh2 G4(y) ) -(-21-22) 46 in (0, 00),
a0
which contradicts the fact that

o0
0< / a PR PP () e < 00,
0

since forany A —A; — Ay € R, fo ~(=21-%2) dx = 00, Therefore inequality (12) follows.
The lemma is proved. O
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3 Main results
Theorem 1 We have the following inequality:

1:= / / F(A+2)B%()\ +1L,A+1 )L)Bé(k +LA+1-2)
= < , - , -
(x+y)’\ xdy () 2 2 1 1
1
1 1
% [ f X PR R) -1 pp (g dx]” [ [ y@a-0h1=2)-1 Ga () dy]q. (15)
0 0

In particular, for A1 + Ay = & (A1, A2 € (0,1)), we reduce it to the following inequality:

/0 /0 {i"igy()yk) dxdy<)»1)»23()»1,)\2)< /0 x‘f’“‘lF"(x)dxy

> —qr2-1 (39 %
x(/o y G(y)dy) , 16)

where the constant factor A yB(A1, A2) is the best possible.

Proof Using (4), (5), and (6), we find

% / °° / ") ( / T et dt) dxdy

m)/ : 1( ) dx)( e‘”g(y) dy) dt

F(A)/ M(/ xtF(x)dx)< eth(y)dy> dt
i | [ rweo| [T e asa

r'(+2) G(y)
ror L i 1

In view of (12), we have (15).
In the case of A1 + A5 = A (A1, A3 € (0, 1)), we find

'(A+2)
re)
(v +2)
r)
(A +2) F(A+2) T'(M+1) (A +1)

=gy Pt Liae D=y r(h+2)

= Alhw = A1haB(A1, A2),

BP (i + LA+ 1=A)BT(0y +1,A+1—24y)

B ()»2+1)»1+1)B‘1()n1+1 )L2+1)

and then (16) follows.
For any 0 < ¢ < min{pXy,gX,}, we set

~ 0, 0<t<1, B 0, O0<t<l,
Fo=1" . HOP
tl

£_ Ap—£-1
P, t>1, tea T,

t>1.
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We obtain thatf(x) = o(€), g(y) = o(¢’) (x,y — 00), and F(x) = G(y) =0 0<xy=<1),

where

x x r-£ A-£
- - e -1
P(x):/f(t>dt=/ P T X,
0 1

h-f -t

s y Y. b 1 g
G(y):/ g(t)dt=/ A T <? (> 1).

1 M=% h-%

0 q q

If there exists a positive constant M (M < A1AyB(A1,A2)) such that (16) is valid when
replacing A112B(A1, A2) by M, then, in particular, by substitution of f(x) = F(x) and g(y) =

2(y) we have
f /mf(x)g(y) d d M(/oox—Pll_lﬁp(x) dx)p (/ooy_qkz_léq(y) dy>q
(x+y) 0 0
We find

T .= > —PM-1EP (40 4 )p( * ~a*2-1G4(y) 4 )q
J (/0 x (%) dx /0 y ) dy
; > -prh1-1(, > —p d i|11g|: * ~qha-1(,P2~% 1, iI}I
<()»1—f,)()»2—§)|:/1 PG /1 AR

1 > —e-1 }7 * —e—1 >;
= d. 7
(x1—§>(x2—§></1 * ") (/ e

1 o el 1
S S— P —
(/\1—1%)(2»2—2)/1 T - D029

In view of the Fubini theorem (see [28]), it follows that
oo poo 25—l 00 0o Ag-£-1
[ e e[
1 1 (x+y) 1 e (1+u)
0o 1 Aho-g-1 00 0o Aa—£-1
:/ x_’s_1|:/ uiqkdu] dx+/ x_’s_1|:/ qudu] dx
1 1x (1+ 1) 1 1 (I+u)
1 ) )\2—%—1 1 [® ukz,%,l
Ly ) e du+ - / d
/o (fux AT A A T
1 1 u}»2+§—l 00 ulz—%—l
= - —d ——du|.
e[ o (L+uy ”*/1 (L+uy ”]

So we obtain

1 dp+=-1 00 )\.Z_q_l B B M
761144—/ 4du§81<8M]<T.
ey i D0a D)

As ¢ — 0% in this inequality, in view of the continuity of the beta function, we find
B(A1,19) < %, namely A;AB(A1,A2) < M. Hence M = A1A2B(A1, ;) is the best possible
constant factor of (14).

The theorem is proved. d

Page 6 of 12



Mo and Yang Journal of Inequalities and Applications (2020) 2020:5 Page 7 of 12

Remark 1 We set ):1 = A + A"\P%“, 5»2 = Ay + %. It follows that ):1 + iz = A. For
A—A1—Ay € (—p)»l,p()» - )\.1)), we find

~ —pA A A—A
)\.1>)\.1+ plZO, )\1<)\1+u:)\.,
b p

namely, 0 < A1 < A, and then 0 < Ay < A. So we reduce (15) as follows:

I_/“ﬁ/“f@k@) LG+, PO+ LA+1-2)Bi(hy + LA+1-2)

Gy VTG

yPh-1pp O ~2h2-1q g
X </0 F (x)dx) </0 y G (y)dy) . (18)

Theorem 2 If\ — Ay — Ay € (=pA1, p(A — A1)) and the constant factor

(k+2) (A L,A+1- )»)Bq()» LA+1-2q)
—_ + + + +

o 2 2 1 1
in (18) is the best possible, then A1 + Ay = A with A1, 1 € (0,1).

Proof As regards to the assumptions, we find 0 < 5»1, ):z < . By (16) the unified best pos-
sible constant factor in (18) must be of the form

r(x+2)

3\1}:23():1,)12)<: W B(Ay + 1,49 + 1)>,

namely, it follows that
A A 1 1
B()\.l +1,A0 + 1) ZBZ"()Q +LA+1 —)\.2)B§()\.1 +LA+1 —)\.1).

By Holder’s inequality (see [27]) we obtain

(A+1)-1

~ ~ * y
BA1+1,A+1) = ——du
(A 2+1) /0 P

o0 1 Atl-hy )\1+1 o0 1 A=hg o
- L 14 (T uT)d
| G w= [ g ) e
1 1
e8] uA—)Q » o0 ukl q
< w4 "4
—[A u+w“2”}[ﬂ u+m“2”]
= Bi(hy+ LA+ 1—A)Bi(h +1L,A+1—Ay). (19)

We observe that (19) becomes equality if and only if there exist constants A and B such
that they are not all zero and

A2 =BuM  ae.inR,
see [26]). Without loss of generality, we suppose A 0. It follows that u*2*1 = £ g e.in
(see [ g Y, pp A

R, namely, A — A; — A, =0, and then A1 + Ay = X with A1, 15 € (0, 4).
The theorem is proved. d
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Theorem 3 The following statements are equivalent:
(i) BI% A +1L,A+1- Az)B% (A1 + LA+ 1—xq) is independent of p, q;
(ii) Bll’ A +1,A+1- )\z)B% (A1 + 1, A+ 1 —xq) is expressible as a single integral;
(iii) IfA— Ay = Az € (=pAn, p(h = A1), then Ay + Ay = A (A1, Az € (0,1));
(iv) The constant factor

I'(h+2)

1 1
Bl +1,A+1=2)Bi(A+1,A+1—-A
o) (A2 2)B7 (A 1)

in (15) is the best possible.

1 1
Proof (i) = (ii). Since B? (Ag + 1,1 + 1 = X3)B4 (A1 + 1,1 + 1 — 1) is independent of p, g, we
find

1 1
BE()\.2+1,)\.+1—)\2)B‘7()\.1+1,)\.+1—)\.1)
1 1
= lim lim BI;(A2+1,A+ 1—)\.2)35()»1 + LA+ 1—)\‘1)
p—>00g—>1*

uM

o0
=BA+1LA+1-Xy)= —— au,
(A1 1) /0 1+ u) U

which is a single integral.

(ii) = (iii). Suppose that Bl%(kz +LA+1- AZ)B%(M +1,A +1—A;) is expressible as a
single integral fo W B du. Then (19) keeps the form of equality. By the
proof of Theorem 2 we have Ay + Ay = A (A1, A2 € (0, 1)).

(iii) = (iv). If A1 + A2 = A (A1, A2 € (0, 1)), then by Theorem 1 the constant factor

(. +2)

=) B(M+1k+1 nguM+1x+1 A)(= MAaB(h1, A2))

in (13) is the best possible.
(iv) = (i). In this case, by Theorem 2 we have A1 + A = A, and

Bl%(kz +1L,A+1 —)\Z)B%(Al +LA+1-2)=BMA1+1,A+1)
is independent of p, g
Hence statements (i), (ii), (iii), and (iv) are equivalent.
The theorem is proved. O
Remark2 If u + 0 =s (u,0 € (0,s)), then inequality (11) reduces to

I e

1

x [ / oqu(“”*lg‘f(y) dy] " (20)
0

We confirm that the constant factor B(u, o) in (20) is the best possible. Otherwise, we
would reach a contradiction by (17) that the constant factor in (16) is not the best possible.

Page 8 of 12
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Replacing x by 9—16 and then x°2f (%) by f(x) in (20), we have the following Hardy—Hilbert’s
integral inequality with a nonhomogeneous kernel and the best possible constant factor
B(s-o0,0):

1

dxdy < B(s — 0,0)|: f ooxp(l"’)’lfp(x) dx] ’
0

/°° < f(x)g(»)
o Jo (Q+xy)y

x [ / " yti-o)-igagy) dy} y (21)
0

4 A corollary and some particular cases
Replacing x by 1 in (15) and setting f(x) = %72 (1), we define

Frw) = /;oot—/\]?(t)dt<= /lwf(é)%duz/:f(t)dt).

Then replacing f (x) by f(x), we have F; (x) = [7° £*f(t) dt and the following Hilbert-type
integral inequality with nonhomogeneous kernel:

oo 00 r 2 1 L
/0 0 {Cl(t)ig(/y)idxd < %) )BT’<A2+1,A+1—A2)BM+M+1—M)

. :
X [/ x‘p)‘l_(k_’\l_h)_ll-"f(x) dx:|
0

1

X [/my—qxz—(x-xl—xz)—le(y) dyi| q, (22)
0

which is equivalent to (15).

In view of Theorem 3, we have the following:

Corollary 1 Assuming that . — A1 — Ay € (—pr1,p(A — A1), the constant factor

I(MZ)B%(A LA+1=A)Bi( +1,A+1-24)
+LA+1- +LA+1-
(. 2 2 ! !

in (22) is the best possible if and only if A1 + Ay = A (A1, A2 € (0, ).
In the case of A + Ay = A, (22) reduces to the following Hilbert-type integral inequality
with nonhomogeneous kernel and the best possible constant factor AjiyB(A1, Ay):

/w © f(x)g(y) dxdy < AAaB(A1,A9)
0

o (1T+xy)*
X {/0 x’p’\l_lFf(x)dx}p{/o y’qkz_le()/)dy}q, (23)

which is equivalent to (16).

Page 9 of 12
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Remark3 In (16)and (23), for A; = %, Ay = ;\—7, we have the following equivalent inequalities:

2
/ f(x)g(y) dy<A—B(&,&>
o Jo (x+y* pqg \p q
X (/oox(l_”))\‘ll-"p(x) dx)ﬁ
0
([ rmenas) 24)
0
<[ flxgly) A2 <k )\)
dxdy< —B[=,=
/0 o (L+xy* i y<pq pq
X (/‘oox(l—P))»—lFf(x) dx>1_7
0

x ( f " gy dy)q, (25)
0

, Ag = %, we have the following equivalent inequalities:

and for A; = ?—]

/‘” * f(x)g(») dudy < AzB(/\ k)
o Jo (x+p* rq \pr q
Teemax) ([ e a !
X(/o x (%) x) (/0 y ) J/) (26)
/"" ® fx)gy) dudy < /\2B<A )\)
o Jo (1+xy)? pq \p q

X </0 x U (x) dx)P (/0 y 7 1GA(y) dy) q. (27)

In particular, for p = g = 2, both inequalities (24) and (26) reduce to

/ / f(x)g()’)dd 2 (?\ &)
(x + y)* 2’2

X </wx_1_1F2(x) dx/ooy_k_le(y) dy)i, (28)

0 0

and both (25) and (27) reduce to the following equivalent form of (25):

f f(xg@)d dy )»2 (l,&)
o Jo (1+xy)? 2" 2

X (/0 x_’\_lFf(x)dx/O y‘A_IGZ(y)dy) . (29)

The constant factors in the inequalities of Remark 3 are the best possible.

5 Conclusions

In this paper, following [21, 22], using the weight functions and the idea of introduced
parameters, we give a new Hilbert-type integral inequality with the kernel Gt (A>0)

Page 10 of 12
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involving the upper limit functions and the beta and gamma functions (Theorem 1). The
preliminaries and the equivalent statements of the best possible constant factor related to a
few parameters are considered in Theorems 2 and 3. As applications, we obtain a corollary
in the case of nonhomogeneous kernel and some particular inequalities (Corollary 1 and
Remark 3). The lemmas and theorems provide an extensive account of inequalities of this

type.
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