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Abstract
This paper is concerned with a class of Nicholson’s blowflies model involving
nonlinear density-dependent mortality terms and multiple pairs of time-varying
delays. By using differential inequality techniques and the fluctuation lemma, we
establish a delay-independent criterion on the global asymptotic stability of the
addressed model, which improves and complements some existing ones. The
effectiveness of the obtained result is illustrated by some numerical simulations.
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1 Introduction
Just as pointed out by Berezansky and Braverman [1], in the study of mathematical biol-
ogy, many models of population dynamics can be characterized by the following delayed
differential equation:

x′(t) =
m∑

j=1

Fj
(
t, x

(
t – τ1(t)

)
, . . . , x

(
t – τl(t)

))
– G

(
t, x(t)

)
, t ≥ t0, (1.1)

where m and l are positive integers, Fj and G are nonnegative continuous functions. Here
the functions Fj describe productions incorporating delay, and G corresponds to the in-
stantaneous mortality. Clearly, (1.1) includes the modified Nicholson’s blowflies model
with a nonlinear density-dependent mortality term

x′(t) = –
a(t)x(t)

b(t) + x(t)
+

m∑

j=1

βj(t)x
(
t – hj(t)

)
e–γj(t)x(t–gj(t)), t ≥ t0, (1.2)

which in the case hj ≡ gj coincides with the classical models [2–6]; a(t)x(t)
b(t)+x(t) is the death rate

of the population which depends on time t and the current population level x(t), βj(t)x(t –
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hj(t))e–γj(t)x(t–gj(t)) is the time-dependent birth function which involves maturation delay
hj(t) and incubation delay gj(t), and reproduces at its maximum rate 1

γj(t) ; a(t), b(t), βj(t),
gj(t), hj(t), and γj(t) are all nonnegative, continuous and bounded functions; a(t), b(t) and
γj(t) are bounded below by positive constants, and j ∈ I := {1, 2, . . . , m}.

For the past decade or so, for the special case of (1.1) with hj ≡ gj(j ∈ I), the existence
of positive solutions, permanence, oscillation, periodicity, and stability of such equations
and similar models have been studied extensively [7–14]. In particular, the authors in [1]
illustrated that two or more delays involved in the same nonlinear function Fj can lead
to chaotic oscillations, and they also gave some examples to show that having two delays
instead of one can produce sustainable oscillations. In fact, if two or more delays occur,
the time delay feedback function Fj should be considered as a function of several variables.
This will add difficulty when studying the dynamics of (1.1) and (1.2). So far, results of
global stability analysis for models (1.1) and (1.2) involving two or more delays are very few,
we only find that the global stability results of Mackey–Glass equation with two different
delays

x′(t) = r(t)
[

ax(t – h(t))
1 + xν(t – g(t))

– x(t)
]

, a > 1,ν > 0, t ≥ t0, (1.3)

are established under the additional technical conditions on the delay terms [1].
Most recently, Győri et al. [15] established the permanence in the following two

constant-delay differential equation:

x′(t) = α(t)H
(
x(t – σ ), x(t – τ )

)
– β(t)f

(
x(t)

)
. (1.4)

On the other hand, El-Morshedy and Ruiz-Herrera [16] used the classical approach of
“decomposing + embedding” to derive some criteria to guarantee the global attraction to
a positive equilibrium for the autonomous equation

x′(t) = –βx(t) + βF
(
x(t – σ ), x(t – τ )

)
, (1.5)

where β ,σ , τ ∈ (0, +∞), and σ ≤ τ . However, as in [1–14], the above two works shed no
light on the global stability on the modified Nicholson’s blowflies model (1.2).

For convenience, given a bounded continuous function g defined on R, let g+ and g– be
defined as

g+ = sup
t∈[t0,+∞)

g(t), g– = inf
t∈[t0,+∞)

g(t).

It should be mentioned that some delay-independent criteria ensuring the global asymp-
totic stability of for the Nicholson’s blowflies model (1.2) with hj ≡ gj(j ∈ I) have been es-
tablished in [17]. More precisely, the author in [17] obtained the main result as follows.

Theorem 1.1 Suppose that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

maxj∈I γ +
j ≤ 1,

supt∈R
∑m

j=1
βj(t)
γj(t) < a–

max{1,b+} ,

limt→+∞
∑m

j=1
βj(t)
γj(t)

1
e < a–

b++1 .

(1.6)
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Then 0 is a globally asymptotically stable equilibrium point on C([–τ , 0], (0, +∞)), where
τ := max{max1≤j≤m g+

j , max1≤j≤m h+
j } > 0.

Unfortunately, there are some mistakes in the proof of main results in [17]. In fact, in
lines 3–4 of page 856 in [17], letting t → η(ϕ) cannot lead to limt→+∞

∑m
j=1

βj(t)
γj(t)a(t)

1
e ≥

1 since η(ϕ) = +∞ has not been proved. We find that the conclusion of Theorem 1.1 is
correct, and the above mistake can be corrected. This has been done in the first half of the
proof of Lemma 2.1; please see Sect. 2.

Inspired by the above discussions, in this paper, we consider the nonlinear density-
dependent mortality Nicholson’s blowflies model with multiple pairs of time-varying de-
lays described in (1.2). Here, we develop an approach based on differential inequality
techniques coupled with an application of the Fluctuation Lemma to establish a delay-
independent criterion to ensure the global asymptotic stability of (1.2) in the important,
yet difficult case where the two delays are asymptotically apart, i.e., hj 	≡ gj (j ∈ I). The ob-
tained results have not been investigated till now. Moreover, the proposed results extend
and improve all known ones in [17], and the error mentioned above has been corrected.
In particular, our analysis can also be applied to the nonautonomous Mackey–Glass equa-
tion, and our work partially solves an open problem posed for the Mackey–Glass equation
in [1].

2 Preliminary results
We first recall some notions. Let C = C([–τ , 0],R) be the Banach space of all contin-
uous functions from [–τ , 0] to R equipped with the supremum norm ‖ · ‖ and C+ =
C([–τ , 0], [0, +∞)). Let t0 ∈R. Then for a continuous function x : [t0 – τ , t0 + σ ) →R with
σ > 0 and t ∈ [t0, t0 + σ ), xt ∈ C is defined by xt(θ ) = x(t + θ ) for θ ∈ [–τ , 0]. Denote by
xt(t0,ϕ) (x(t; t0,ϕ)) a solution of (1.2) with the initial condition

xt0 = ϕ, ϕ ∈ C+. (2.1)

In addition, let [t0,η(ϕ)) be the maximal right-interval of the existence of xt(t0,ϕ).

Lemma 2.1 Assume that

lim
t→+∞

m∑

j=1

βj(t)
γj(t)a(t)

1
e

< 1, (2.2)

as well as

gj(t) ≥ hj(t), and lim
t→+∞

(
gj(t) – hj(t)

)
e
∫ t

t0
(
∑m

j=1 βj(v)) dv = 0, (2.3)

where t ∈ [t0, +∞), j ∈ I , hold. Then, the solution x(t) = x(t; t0,ϕ) ≥ 0 for all t ∈ [t0,η(ϕ)),
the set of {xt(t0,ϕ) : t ∈ [t0,η(ϕ))} is bounded, and η(ϕ) = +∞.

Proof From Theorem 5.2.1 in [18], we obtain x(t) = x(t; t0,ϕ) ≥ 0 for all t ∈ [t0,η(ϕ)). Now,
we show that η(ϕ) = +∞. For all t ∈ [t0,η(ϕ)), defining y(t) = maxt0–τ≤s≤t x(s), we gain

x′(t) ≤
m∑

j=1

βj(t)x
(
t – hj(t)

) ≤
m∑

j=1

βj(t)y(t),
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and

x(t) ≤ x(t0) +
∫ t

t0

[ m∑

j=1

βj(v)y(v)

]
dv ≤ ‖ϕ‖ +

∫ t

t0

( m∑

j=1

βj(v)

)
y(v) dv,

which suggests that

y(t) ≤ ‖ϕ‖ +
∫ t

t0

( m∑

j=1

βj(v)

)
y(v) dv, ∀t ∈ [

t0,η(ϕ)
)
.

Hence, by the Gronwall–Bellman inequality, we obtain

x(t) ≤ y(t) ≤ ‖ϕ‖e
∫ t

t0
(
∑m

j=1 βj(v)) dv, ∀t ∈ [
t0,η(ϕ)

)
.

This follows from Theorem 2.3.1 in [19] that η(ϕ) = +∞, and then

x(t) ≤ y(t) ≤ ‖ϕ‖e
∫ t

t0
(
∑m

j=1 βj(v)) dv, ∀t ∈ [t0, +∞). (2.4)

Furthermore, for each t ∈ [t0 – τ , +∞), we define

M(t) = max
{
ξ : ξ ≤ t, x(ξ ) = max

t0–τ≤s≤t
x(s)

}
.

Next, we show that x(t) is bounded on [t0,η(ϕ)). Assume on the contrary that

lim
t→+∞ x

(
M(t)

)
= +∞ and lim

t→+∞ M(t) = +∞. (2.5)

Let T∗ ≥ t0 be such that M(t) ≥ t0 + τ for t ≥ T∗. Note that for t ≥ t0, it follows from (1.2)
that

x′(s) ≤
m∑

j=1

βj(s)x
(
M(t)

)
=

m∑

j=1

βj(s)y
(
M(t)

)
, (2.6)

for all s ∈ [t0, t] and t ∈ [t0, +∞).
This, combined with (1.2), (2.3), (2.4), and the fact that supw≥0 we–w = 1

e , gives us

0 ≤ x′(M(t)
)

= –
a(M(t))x(M(t))

b(M(t)) + x(M(t))

+
m∑

j=1

βj
(
M(t)

)
x
(
M(t) – gj

(
M(t)

))
e–γj(M(t))x(M(t)–gj(M(T)))

+
m∑

j=1

βj
(
M(t)

) ∫ M(t)–hj(M(t))

M(t)–gj(M(t))
x′(s) dse–γj(M(t))x(M(t)–gj(M(t)))

≤ a
(
M(t)

)
{[

–
x(M(t))

b(M(t)) + x(M(t))
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+
m∑

j=1

βj(M(t))
γj(M(t))a(M(t))

γj
(
M(t)

)
x
(
M(t) – gj

(
M(t)

))
e–γj(M(t))x(M(t)–gj(M(t)))

]

+
1

a(M(t))

m∑

j=1

βj
(
M(t)

)∫ M(t)–hj(M(t))

M(t)–gj(M(t))

m∑

j=1

βj(s)y
(
M(t)

)
ds

}

≤ a
(
M(t)

)
{[

–
x(M(t))

b(M(t)) + x(M(t))
+

m∑

j=1

βj(M(t))
γj(M(t))a(M(t))

1
e

]

+
1

a(M(t))

m∑

j=1

βj
(
M(t)

)[(
gj
(
M(t)

)
– hj

(
M(t)

))
e
∫ M(t)

t0 (
∑m

j=1 βj(v)) dv]

×
[( m∑

j=1

β+
j

)
‖ϕ‖

]}

and

0 ≤
[

–
x(M(t))

b(M(t)) + x(M(t))
+

m∑

j=1

βj(M(t))
γj(M(t))a(M(t))

1
e

]

+
1

a(M(t))

m∑

j=1

βj
(
M(t)

)[(
gj
(
M(t)

)
– hj

(
M(t)

))
e
∫ M(t)

t0 (
∑m

j=1 βj(v)) dv]

×
[( m∑

j=1

β+
j

)
‖ϕ‖

]
, (2.7)

where M(t) > 2τ + t0.
Letting t → +∞, due to the facts

lim
t→+∞

(
gj(t) – hj(t)

)
e
∫ t

t0
(
∑m

j=1 βj(v)) dv = 0 and lim
t→+∞ M(t) = +∞,

inequality (2.7) yields

0 ≤ –1 + lim
t→+∞

m∑

j=1

βj(t)
γj(t)a(t)

1
e

,

which contradicts assumption (2.2). This implies that x(t) is bounded on [t0, +∞), and
ends the proof of Lemma 2.1. �

3 Main result
Theorem 3.1 Assume that (2.3) and

⎧
⎨

⎩
max1≤j≤m limt→+∞ γj(t) ≤ 1, supt∈[t0,+∞)

∑m
j=1

βj(t) max{1,b(t)}
a(t) < 1,

limt→+∞
∑m

j=1
βj(t)(1+b(t))

a(t)γj(t)
1
e < 1, limt→+∞

∑m
j=1

βj(t) max{1,b(t)}
a(t)γj(t) < 1.

(3.1)

are satisfied. Then 0 is a globally asymptotically stable equilibrium point on C+.

Proof Let x(t) = x(t; t0,ϕ). From Lemma 2.1, one can see that the set {xt(t0,ϕ) : t ∈ [t0, +∞)}
is bounded, and 0 ≤ u = lim supt→+∞ x(t) < +∞.
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We now prove that 0 is a stable equilibrium point. Without loss of generality, let 0 < ε < 1
satisfy

sup
t∈[t0,+∞)

m∑

j=1

βj(t) max{1, b(t)}
a(t)

< e–ε . (3.2)

Choosing 0 < δ < ε, we claim that, for ‖ϕ‖ < δ,

x(t) = x(t; t0,ϕ) < ε for all t ∈ [t0, +∞). (3.3)

We can pick t∗ ∈ (t0, +∞) such that

x(t∗) = ε, x(t) < ε for all t ∈ [t0 – τ , t∗). (3.4)

Noting that

b(t) + x ≤ max
{

1, b(t)
}

ex for all (t, x) ∈ [t0, +∞) × [0, +∞), (3.5)

(1.2), (3.2) and (3.4) result in

0 ≤ x′(t∗)

= –
a(t∗)x(t∗)

b(t∗) + x(t∗)
+

m∑

j=1

βj(t∗)x
(
t∗ – hj(t∗)

)
e–γj(t∗)x(t∗–gj(t∗))

≤ a(t∗)

{
–

1
max{1, b(t∗)}x(t∗)e–x(t∗) +

m∑

j=1

βj(t∗)
a(t∗)

}

= a(t∗)

{
–

1
max{1, b(t∗)}εe–ε +

m∑

j=1

βj(t∗)
a(t∗)

ε

}

= a(t∗)
1

max{1, b(t∗)}

{
–e–ε +

m∑

j=1

βj(t∗) max{1, b(t∗)}
a(t∗)

}
ε

< 0,

which is a contradiction, so that (3.3) holds. Thus, 0 is a stable equilibrium point.
Hereafter, it is sufficient to show that u = lim supt→+∞ x(t) = 0. By the Fluctuation Lemma

[20, Lemma A.1], there exists a sequence {tk}k≥1 such that

tk → +∞, x(tk) → u, x′(tk) → 0 as k → +∞.

Moreover, from (3.1) and the boundedness of the coefficients and delay functions in (1.2),
without loss of generality, we can assume that

lim
k→+∞

a(tk) = a∗ ∈ [
a–, a+]

, lim
k→+∞

b(tk) = b∗ ∈ [
b–, b+]

,

lim
k→+∞

βj(tk) = β∗
j ∈ [

β–
j ,β+

j
]
, lim

k→+∞
γj(tk) = γ ∗

j ∈ [
γ –

j ,γ +
j
]
, j ∈ I,
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lim
k→+∞

gj(tk) = g∗
j ∈ [

g–
j , g+

j
]
, lim

k→+∞
hj(tk) = h∗

j ∈ [
h–

j , h+
j
]
, j ∈ I,

lim
k→+∞

γj(tk)x
(
tk – gj(tk)

)
= μ∗

j ∈ [0, u], j ∈ I,

lim
k→+∞

m∑

j=1

βj(tk)(1 + b(tk))
γj(tk)a(tk)

1
e

=
m∑

j=1

β∗
j (b∗ + 1)
γ ∗

j a∗
1
e

≤ lim
t→+∞

m∑

j=1

βj(t)(1 + b(t))
a(t)γj(t)

1
e

< 1,

and

lim
k→+∞

m∑

j=1

βj(tk) max{1, b(tk)}
γj(tk)a(tk)

=
m∑

j=1

β∗
j max{1, b∗}

a∗γ ∗
j

≤ lim
t→+∞

m∑

j=1

βj(t) max{1, b(t)}
a(t)γj(t)

< 1.

Furthermore, from (1.2), (2.3), (2.4), we get

x′(tk) = –
a(tk)x(tk)

b(tk) + x(tk)

+
m∑

j=1

βj(tk)x
(
tk – gj(tk)

)
e–γj(tk )x(tk–gj(tk ))

+
m∑

j=1

βj(tk)
∫ tk –hj(tk )

tk –gj(tk )
x′(s) dse–γj(tk )x(tk –gj(tk ))

≤ a(tk)

[
–

x(tk)
b(tk) + x(tk)

+
m∑

j=1

βj(tk)
γj(tk)a(tk)

γj(tk)x
(
tk – gj(tk)

)
e–γj(tk )x(tk –gj(tk ))

]

+
m∑

j=1

βj(tk)
∫ tk –hj(tk )

tk –gj(tk )

m∑

j=1

βj(s)y(tk) ds

≤ a(tk)

[
–

x(tk)
b(tk) + x(tk)

+
m∑

j=1

βj(tk)
γj(tk)a(tk)

γj(tk)x
(
tk – gj(tk)

)
e–γj(tk )x(tk –gj(tk ))

]

+
m∑

j=1

βj(tk)
[(

gj(tk) – hj(tk)
)
e
∫ tk

t0 (
∑m

j=1 βj(v)) dv]
[( m∑

j=1

β+
j

)
‖ϕ‖

]
,

and

1
a(tk)

x′(tk) ≤
[

–
x(tk)

b(tk) + x(tk)

+
m∑

j=1

βj(tk)
γj(tk)a(tk)

γj(tk)x
(
tk – gj(tk)

)
e–γj(tk )x(tk–gj(tk ))

]
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+
1

a(tk)

m∑

j=1

βj(tk)
[(

gj(tk) – hj(tk)
)
e
∫ tk

t0 (
∑m

j=1 βj(v)) dv]

×
[( m∑

j=1

β+
j

)
‖ϕ‖

]
, (3.6)

where tk > 2τ + t0.
If u ≥ 1, from (2.3), (3.1), (3.6) and the facts that u

b∗+u ≥ 1
b∗+1 and supu≥0 ue–u = 1

e , letting
k → +∞ leads to

0 ≤ –
1

b∗ + 1
+

m∑

j=1

β∗
j

γ ∗
j a∗

1
e

=
1

b∗ + 1

{
–1 +

m∑

j=1

β∗
j (b∗ + 1)
γ ∗

j a∗
1
e

}
< 0,

which a contradiction, so that 0 ≤ u < 1.
If 0 < u < 1, from (2.3), (3.1), (3.5), (3.6), and the fact that xe–x is monotone increasing

on [0, 1], we have

1
a(tk)

x′(tk)

≤
[

–
1

max{1, b(tk)}x(tk)e–x(tk )

+
m∑

j=1

βj(tk)
γj(tk)a(tk)

γj(tk)x
(
tk – gj(tk)

)
e–γj(tk )x(tk –gj(tk ))

]

+
1

a(tk)

m∑

j=1

βj(tk)
[(

gj(tk) – hj(tk)
)
e
∫ tk

t0 (
∑m

j=1 βj(v)) dv]
[( m∑

j=1

β+
j

)
‖ϕ‖

]

=
1

max{1, b(tk)} [–x(tk)e–x(tk )

+
1

a(tk)

m∑

j=1

βj(tk)
[(

gj(tk) – hj(tk)
)
e
∫ tk

t0 (
∑m

j=1 βj(v)) dv]
[( m∑

j=1

β+
j

)
‖ϕ‖

]
,

where tk > 2τ + t0, and

0 ≤ 1
max{1, b∗}

[
–ue–u +

m∑

j=1

β∗
j max{1, b∗}

a∗γ ∗
j

μ∗
j e–μ∗

j

]

≤ 1
max{1, b∗}

[
–ue–u +

m∑

j=1

β∗
j max{1, b∗}

a∗γ ∗
j

ue–u

]

=
1

max{1, b∗}

[
–1 +

m∑

j=1

β∗
j max{1, b∗}

a∗γ ∗
j

]
ue–u

≤ 0,

which is also a contradiction, proving that u = 0. This completes the proof of Theo-
rem 3.1. �
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By applying Theorem 3.1, we can obtain the following result.

Corollary 3.1 Suppose that (3.1) holds, and gj(t) ≡ hj(t), for all t ∈ [t0, +∞), j ∈ I . Then 0
is a globally asymptotically stable equilibrium point on C+.

Remark 3.1 It is obvious that all results in Theorem 1.1 are special cases of Corollary 3.1
since the assumptions adopted are weaker than those ones in Theorem 1.1.

4 A numerical example
This section presents an example with graphical illustration to show the applicability of
the analytical results derived in this article.

Example 4.1 Consider the following nonautonomous Nicholson’s blowflies equation with
two pairs of different time-varying delays:

x′(t) = –
(3 + | cos

√
2t|)x(t)

(5.1 + t4

t4+1 ) + x(t)

+
1

200
(
1 + sin2 t

)
x
(
t – 2e| arctan t|)

× e– 1+23e–t
12 (1+| arctan t|)x(t–2e| arctan t|–100e–2t )

+
1

200
(
1 + sin2 2t

)
x
(
t – 2e| arctan t|)

× e– 1+25e–t
13 (1+| arctan t|)x(t–2e| arctan t|–150e–2t ), t ≥ t0 = 0. (4.1)

Obviously, it is easy to check that assumptions (2.3) and (3.1) are satisfied in (4.1). Hence,
from Theorem 3.1, we have that the zero equilibrium point for the model (3.1) is globally
asymptotically stable on C+ = C([–(2e π

2 + 150), 0], [0, +∞)). Figure 1 supports this result
with the numerical solutions involving different initial values.

Remark 4.1 It should be mentioned that the global asymptotic stability on the Nicholson’s
blowflies model involving nonlinear density-dependent mortality terms and multiple pairs
of time-varying delays has not been touched in the previous literature. As for [1–17, 21–
51], the authors still give no clues on the global asymptotic stability of the Nicholson’s
blowflies model involving multiple pairs of time-varying delays. One can see that all the

Figure 1 Trajectories of system (4.1) involving
differential initial values
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results in the above mentioned references cannot be applied to prove that all the solutions
of model (4.1) converge to the zero equilibrium.

5 Conclusions
In this article, the global asymptotic stability of the zero equilibrium for a Nicholson’s
blowflies model involving nonlinear density-dependent mortality terms and multiple pairs
of time-varying delays is established. To the best of our knowledge, this is the first paper
to study the global dynamics for the nonlinear density-dependent mortality Nicholson’s
blowflies model involving multiple pairs of time-varying delays and the obtained results
are new. Some sufficient conditions set up here are easily verified and these conditions are
independent of the multiple pairs of time-varying delays in the addressed model, which
improves and complements some existing results mentioned in the Introduction. More-
over, the method used in this paper provides a possible approach for studying the global
asymptotic stability of other population dynamic models involving multiple pairs of time-
varying delays.
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