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1 Introduction
The classical convexity and concavity of functions are two fundamental notions in mathe-
matics. Mathematicians and scientists can see them in research papers, monographs, and
textbooks devoted to the theory of convex analysis [13]. The origin of the theory of convex
functions is generally attributed to Jensen [10], although he was not the first person to deal
with such functions. Among Jensen’s predecessors, there were Hermite [6], Hölder [7],
and Stolz [19], to name a few. The well-known book [5] played an indispensable role in
the popularization of the theory of convex functions.

The famous Hermite–Hadamard integral inequality in Theorem 2.1 for convex func-
tions below is the first fundamental conclusion for convex functions and has been at-
tracting a lot of interest from mathematicians and other scientists. In recent years, the
Hermite–Hadamard integral inequality has been the subject of very active research. Var-
ious improvements, generalizations, and variants of this inequality can be found in the
papers [1, 3, 8, 9, 11, 12, 14, 16, 20, 23, 24, 27, 28, 32] and closely related references therein.
In [15], the late Pachpatte established some Hadamard-type inequalities for the product
of two convex functions. Alternative Hadamard-type inequalities for the product of two
convex functions were also established in the papers [25, 30, 31]. In [22], the Hermite–
Hadamard inequality was applied to generalize and refine Young’s integral inequality in
terms of higher order derivatives.

Nowadays, many mathematicians have devoted their efforts to generalizations, refine-
ments, counterparts, and extensions of the convexity of functions for adapting to other
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geometries of the domain and/or for disclosing other laws of comparison of mathemat-
ical means. In [1, 4, 8], by replacing the weighted arithmetic means with the weighted
harmonic means, the notion of HA-convex functions was introduced. In [21], Tunç and
Yildrim defined the MT-convexity and obtained some new Hadamard-type inequalities for
MT-convex functions. The theory of various classes of convex functions is similar to that
of classical convex functions. Some inequalities are easier to state using these new con-
vex functions and some are easier to state using the classical convex functions. In many
cases the inequalities based on these new convexity notions are better than direct appli-
cations of inequalities of the classical convexity. Consequently, there is a strong interest in
investigating different classes of convex functions.

In Sect. 2, we will mathematically and technically quote some definitions of several
classes of convex functions and some inequalities of Hadamard-type. In Sect. 3, by us-
ing the weighted arithmetic and harmonic means, we will introduce the notion of “HT-
convex functions”, which is a generalization of the HA-convex functions defined in [1, 4, 8].
In Sect. 4, we will present some Hadamard-type inequalities for HT-convex functions and
for the product of two HT-convex functions. In Sect. 5, we will apply newly-established
inequalities to derive some inequalities for the arithmetic mean and the p-logarithmic
mean.

2 Preliminaries
In this section, we will mathematically quote some preliminary notations, definitions, and
known results about several classes of convex functions and the Hadamard-type inequal-
ities.

Definition 2.1 ([2]) A function Q defined on a nonempty interval J ⊆ R is said to be
convex if

Q
(
λτ + (1 – λ)μ

) ≤ λQ(τ ) + (1 – λ)Q(μ)

is true for all τ ,μ ∈ J and λ ∈ [0, 1].

Theorem 2.1 ([17]) Let Q be a convex function defined on a nonempty interval J ⊆R and
τ ,μ ∈ J with τ < μ. Then

Q
(

τ + μ

2

)
≤ 1

μ – τ

∫ μ

τ

Q(x) dx ≤ Q(τ ) + Q(μ)
2

. (1)

If Q is concave, the above double inequality holds reversed.

In the mathematics community, the double inequality (1) is known as the Hermite–
Hadamard integral inequality.

Theorem 2.2 ([15, Theorem 1]) Suppose that P, Q are two positive and convex functions
on a nonempty interval J ⊆ R, τ ,μ ∈ J with τ < μ, and the product of P and Q is Lebesgue



Bai et al. Journal of Inequalities and Applications          (2020) 2020:3 Page 3 of 12

integrable on [τ ,μ]. Then

2P
(

τ + μ

2

)
Q

(
τ + μ

2

)
–

1
6

M(τ ,μ) –
1
3

N(τ ,μ)

≤ 1
μ – τ

∫ μ

τ

P(x)Q(x) dx ≤ 1
3

M(τ ,μ) +
1
6

N(τ ,μ), (2)

where

M(τ ,μ) = P(τ )Q(τ ) + P(μ)Q(μ) and N(τ ,μ) = Q(τ )Q(μ) + P(μ)Q(τ ). (3)

Definition 2.2 ([1, 4, 8]) Let J ⊆ R \ {0} be a nonempty interval. A function Q : J → R is
said to be HA-convex, denoted by Q ∈ HA(J), if the inequality

Q
(

τμ

λτ + (1 – λ)μ

)
≤ λQ(τ ) + (1 – λ)f (μ)

holds for all τ ,μ ∈ J and λ ∈ [0, 1].

Definition 2.3 ([21]) A nonnegative function Q on a nonempty interval J is said to be
MT-convex, denoted by Q ∈ MT(J), if

Q
(
λτ + (1 – λ)μ

) ≤
√

λ

2
√

1 – λ
Q(τ ) +

√
1 – λ

2
√

λ
Q(μ)

is valid for all τ ,μ ∈ J and λ ∈ (0, 1).

Theorem 2.3 ([21]) Let Q ∈ MT(J), τ ,μ ∈ J with τ < μ, and Q be Lebesgue integrable on
[τ ,μ]. Then

π

2
Q

(
τ + μ

2

)
≤ Q(τ ) + Q(μ), Q

(
τ + μ

2

)
≤ 1

μ – τ

∫ μ

τ

Q(x) dx,

and

2
μ – τ

∫ μ

τ

ν(x)Q(x) dx ≤ Q(τ ) + Q(μ)
2

,

where

ν(x) =
2
√

(μ – x)(x – τ )
μ – τ

, x ∈ [τ ,μ].

Lemma 2.1 ([4]) Suppose that J ⊆ (0,∞) is a nonempty interval and τ ,μ ∈ J with τ < μ.
Let Q : [τ ,μ] →R be Lebesgue integrable on [τ ,μ]. Then, for λ ∈ [0, 1],

∫ 1

0
Q

(
τμ

(1 – s)τ + sμ

)
ds = (1 – λ)

∫ 1

0
Q

(
τμ

(1 – s)[(1 – λ)τ + λμ] + sμ

)
ds

+ λ

∫ 1

0
Q

(
τμ

(1 – s)τ + s[(1 – λ)τ + λμ]

)
ds.
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Definition 2.4 ([18]) Two functions P, Q : J ⊆R →R are said to be similarly ordered if

[
P(τ ) – P(μ)

][
Q(τ ) – Q(μ)

] ≥ 0, τ ,μ ∈ J .

3 HT-convexity
We now define the concept of the HT-convexity and give several basic properties.

Definition 3.1 Let J ⊆R \ {0} be a nonempty interval. A function Q is called HT-convex
on J , denoted by Q ∈ HT(J), if the inequality

Q
(

τμ

λτ + (1 – λ)μ

)
≤

√
λ

2
√

1 – λ
Q(μ) +

√
1 – λ

2
√

λ
Q(τ ) (4)

holds for all τ ,μ ∈ J and λ ∈ (0, 1). If the inequality in (4) is reversed, then Q is called an
HT-concave function.

Remark 3.1 Taking λ = 1
2 in inequality (4) yields

Q
(

2τμ

τ + μ

)
≤ Q(τ ) + Q(μ)

2
.

Remark 3.2 Suppose that J ⊆R\{0} is a nonempty interval and Q : J →R is an HT-convex
function.

1 If J ⊆ (0,∞) and Q is an MT-convex and nondecreasing function, then Q is
HT-convex.

2 If J ⊆ (0,∞) and Q is an HT-convex and nonincreasing function, then Q is
MT-convex.

3 If J ⊆ (–∞, 0) and Q is an MT-convex and nonincreasing function, then Q is
HT-convex.

4 If J ⊆ (–∞, 0) and Q is an HT-convex and nondecreasing function, then Q is
MT-convex.

Proposition 3.1 Suppose that J ⊆ (0,∞) is a nonempty interval. For τ ,μ ∈ J with τ < μ,
if P : [ 1

μ
, 1

τ
] →R is MT-convex, then Q : [τ ,μ] →R, Q(t) = P( 1

t ), is HT-convex.

Proof Let s, t ∈ [τ ,μ] and λ ∈ (0, 1). Then

Q
(

st
tλ + (1 – λ)t

)
= Q

(
1

λ 1
t + (1 – λ) 1

s

)
= P

(
λ

1
t

+ (1 – λ)
1
s

)

≤
√

λ

2
√

1 – λ
P
(

1
t

)
+

√
1 – λ

2
√

λ
P
(

1
s

)
=

√
λ

2
√

1 – λ
Q(t) +

√
1 – λ

2
√

λ
Q(s),

which shows that Q is HT-convex on [τ ,μ]. �

Proposition 3.2 All nonnegative HA-convex functions are HT-convex.
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Proof Suppose that Q is HA-convex. By the fact that λ ≤
√

λ

2
√

1–λ
and 1 – λ ≤

√
1–λ

2
√

λ
, it is easy

to obtain

Q
(

τμ

λτ + (1 – λ)μ

)
≤ λQ(μ) + (1 – λ)Q(τ ) ≤

√
λ

2
√

1 – λ
Q(μ) +

√
1 – λ

2
√

λ
Q(τ ),

where τ ,μ ∈ J ⊆ R \ {0} and λ ∈ (0, 1). This means that each HA-convex function is HT-
convex. �

4 Hadamard-type inequalities for HT-convex functions
Now we are in a position to establish some Hadamard-type inequalities for HT-convex
functions.

Theorem 4.1 Suppose that J ⊆ R \ {0} is a nonempty interval, Q ∈ HT(J), τ ,μ ∈ J with
τ < μ, and Q is Lebesgue integrable on [τ ,μ]. Then

Q
(

2τμ

τ + μ

)
≤ τμ

μ – τ

∫ μ

τ

Q(x)
x2 dx ≤ π

4
[
Q(τ ) + Q(μ)

]
. (5)

Proof Because Q is an HT-convex function, for τ ,μ ∈ J with τ < μ and λ ∈ (0, 1), we have

Q
(

τμ

λτ + (1 – λ)μ

)
≤

√
λ

2
√

1 – λ
Q(μ) +

√
1 – λ

2
√

λ
Q(τ ). (6)

Integrating the above inequality over λ ∈ (0, 1) and replacing τμ

λτ+(1–λ)μ by x yield easily the
right inequality of (5).

For any λ ∈ (0, 1), we have

Q
(

2τμ

τ + μ

)
≤ 1

2

[
Q

(
τμ

λμ + (1 – λ)τ

)
+ Q

(
τμ

λτ + (1 – λ)μ

)]
.

Integrating the above inequality with respect to λ ∈ [0, 1] gives

Q
(

2τμ

τ + μ

)
≤ 1

2

[∫ 1

0
Q

(
τμ

λμ + (1 – λ)τ

)
dλ +

∫ 1

0
Q

(
τμ

λτ + (1 – λ)μ

)
dλ

]
.

Making use of the fact that

∫ 1

0
Q

(
τμ

λμ + (1 – λ)τ

)
dλ =

∫ 1

0
Q

(
τμ

λτ + (1 – λ)μ

)
dλ

and replacing τμ

λτ+(1–λ)μ by x result in the left inequality of (5). �

Multiplying both sides of inequality (6) by 2
√

t(1 – t) for t ∈ (0, 1) and simultaneously
using the HT-convexity of f , we easily obtain the following corollaries.

Corollary 4.1 Suppose that J ⊆ R \ {0} is a nonempty interval, Q ∈ HT(J), τ ,μ ∈ J with
τ < μ, and Q is Lebesgue integrable on [τ ,μ]. Then

Q
(

2
1
μ

+ 1
τ

)
≤

∫ 1

0
Q

(
1

λ 1
τ

+ (1 – λ) 1
μ

)
dλ ≤ π

4
[
Q(τ ) + Q(μ)

]
. (7)



Bai et al. Journal of Inequalities and Applications          (2020) 2020:3 Page 6 of 12

Corollary 4.2 Suppose that J ⊆ R \ {0} is a nonempty interval, Q ∈ HT(J), τ ,μ ∈ J with
τ < μ, and Q is Lebesgue integrable on [τ ,μ]. Then

π

4
Q

(
2τμ

τ + μ

)
≤ τμ

μ – τ

∫ μ

τ

τ (x)
Q(x)

x2 dx ≤ Q(τ ) + Q(μ)
2

,

where

τ (x) = 2
√

τμ(x – τ )(μ – x)
(μ – τ )x

. (8)

Corollary 4.3 Suppose that J ⊆ R \ {0} is a nonempty interval, Q ∈ HT(J), τ ,μ ∈ J with
τ < μ, and Q is Lebesgue integrable on [τ ,μ]. Then

π

2
Q

(
2τμ

τ + μ

)
≤ Q(τ ) + Q(μ).

Theorem 4.2 Suppose that J ⊆ (0,∞) is a nonempty interval, Q ∈ HT(J), τ ,μ ∈ J with
τ < μ, and Q is Lebesgue integrable on [τ ,μ]. Then, for λ ∈ (0, 1),

2
√

λ(1 – λ)Q
(

2τμ

τ + μ

)
≤ (1 – λ)Q

(
2τμ

(1 – λ)τ + (1 + λ)μ

)

+ λQ
(

2τμ

(2 – λ)τ + λμ

)

≤ τμ

μ – τ

∫ μ

τ

Q(x)
x2 dx

≤ π

4

[
(1 – λ)Q(τ ) + λQ(μ) + Q

(
τμ

(1 – λ)τ + λμ

)]

≤ π

8
√

λ(1 – λ)
[
Q(τ ) + Q(μ)

]
.

Proof Using inequality (7), for λ ∈ (0, 1), we have

Q
(

2τμ

(1 – λ)τ + (1 + λ)μ

)
= Q

(
2

(1 – λ) 1
μ

+ λ 1
τ

+ 1
τ

)

≤
∫ 1

0
Q

(
1

(1 – s)[(1 – λ) 1
μ

+ λ 1
τ

] + s 1
τ

)
ds

=
∫ 1

0
Q

(
τμ

(1 – s)[(1 – λ)τ + λμ] + sμ

)
ds

≤ π

4

[
Q

(
τμ

(1 – λ)τ + λμ

)
+ Q(τ )

]
(9)

and

Q
(

2τμ

(2 – λ)τ + λμ

)
= Q

(
2

1
μ

+ (1 – λ) 1
μ

+ λ 1
τ

)

≤
∫ 1

0
Q

(
1

(1 – s) 1
μ

+ s[(1 – λ) 1
μ

+ λ 1
τ

]

)
ds
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=
∫ 1

0
Q

(
τμ

(1 – s)τ + s[(1 – λ)τ + λμ]

)
ds

≤ π

4

[
Q(μ) + Q

(
τμ

(1 – λ)τ + λμ

)]
. (10)

Multiplying both sides of (9) and (10) by 1 – λ and λ, respectively, adding the obtained
inequalities, and making use of Lemma 2.1, we arrive at

(1 – λ)Q
(

2τμ

(1 – λ)τ + (1 + λ)μ

)
+ λQ

(
2τμ

(2 – λ)τ + λμ

)

≤
∫ 1

0
Q

(
τμ

(1 – λ)τ + λμ

)
dλ

≤ π

4
(1 – λ)

[
Q

(
τμ

(1 – λ)τ + λμ

)
+ Q(τ )

]
+

π

4
λ

[
Q(μ) + Q

(
τμ

(1 – λ)τ + λμ

)]

=
π

4

[
(1 – λ)Q(τ ) + λQ(μ) + Q

(
τμ

(1 – λ)τ + λμ

)]
,

which proves the second and third inequalities in (9).
By the HT-convexity of Q, we have

(1 – λ)Q
(

2τμ

(1 – λ)τ + (1 + λ)μ

)
+ λQ

(
2τμ

(2 – λ)τ + λμ

)

= 2
√

λ(1 – λ)
√

1 – λ

2
√

λ
Q

(
2τμ

(1 – λ)τ + (1 + λ)μ

)

+ 2
√

λ(1 – λ)
√

λ

2
√

1 – λ
Q

(
2τμ

(2 – λ)τ + λμ

)

≥ 2
√

λ(1 – λ)Q
(

2τμ

(1 – λ)[(1 – λ)τ + (1 + λ)μ] + λ[(2 – λ)τ + λμ]

)

= 2
√

λ(1 – λ)Q
(

2τμ

τ + μ

)
,

which proves the first inequality in (10).
Similarly, we obtain

π

4

[
(1 – λ)Q(τ ) + λQ(μ) + Q

(
τμ

(1 – λ)τ + λμ

)]

≤ π

4

[
(1 – λ)Q(τ ) + λQ(μ) +

√
λ

2
√

1 – λ
Q(τ ) +

√
1 – λ

2
√

λ
Q(μ)

]

≤ π

4

( √
λ

2
√

1 – λ
+

√
1 – λ

2
√

λ

)
[
Q(τ ) + Q(μ)

]

=
π

8
√

λ(1 – λ)
[
Q(τ ) + Q(μ)

]
,

which proves the last inequality in (10). �
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Remark 4.1 With the assumptions of Theorem 4.2, taking λ = 1
2 leads to

Q
(

2τμ

τ + μ

)
≤ 1

2

[
Q

(
4τμ

τ + 3μ

)
+ Q

(
4τμ

3τ + μ

)]
≤ τμ

μ – τ

∫ μ

τ

Q(x)
x2 dx

≤ π

8

[
Q(τ ) + Q(μ) + 2Q

(
2τμ

τ + μ

)]
≤ π

4
[
Q(τ ) + Q(μ)

]
.

Theorem 4.3 Suppose that J ⊆R \ {0} is a nonempty interval, P, Q ∈ HT(J), τ ,μ ∈ J with
τ < μ, and PQ is Lebesgue integrable on [τ ,μ]. If P, Q are nonnegative, then

τμ

μ – τ

∫ μ

τ

τ 2(x)
x4 P(x)Q(x) dx ≤ 2M(τ ,μ) + N(τ ,μ)

6
, (11)

where τ (x) is defined in (8) and M(τ ,μ) and N(τ ,μ) are defined in (3).

Proof Because P, Q ∈ HT(J), for λ ∈ (0, 1), we have

Q
(

τμ

λτ + (1 – λ)μ

)
≤

√
λ

2
√

1 – λ
Q(μ) +

√
1 – λ

2
√

λ
Q(τ )

and

P
(

τμ

λτ + (1 – λ)μ

)
≤

√
λ

2
√

1 – λ
P(μ) +

√
1 – λ

2
√

λ
P(τ ).

Because P, Q are nonnegative, we obtain

Q
(

τμ

λτ + (1 – λ)μ

)
P
(

τμ

λτ + (1 – λ)μ

)

≤ λQ(μ)P(μ)
4(1 – λ)

+
(1 – λ)Q(τ )P(τ )

4λ
+

Q(τ )P(μ) + Q(μ)P(τ )
4

,

that is,

λ(1 – λ)Q
(

τμ

λτ + (1 – λ)μ

)
P
(

τμ

λτ + (1 – λ)μ

)

≤ λ2Q(μ)P(μ) + (1 – λ)2Q(τ )P(τ ) + λ(1 – λ)[Q(τ )P(μ) + Q(μ)P(τ )]
4

. (12)

Integrating the above inequality with respect to λ ∈ [0, 1] and replacing τμ

λτ+(1–λ)μ by x result
in (11). �

Remark 4.2 Choosing λ = 1
2 in inequality (12), we obtain

Q
(

2τμ

τ + μ

)
P
(

2τμ

τ + μ

)

≤ Q(τ )P(τ ) + Q(μ)P(μ) + Q(τ )P(μ) + Q(μ)P(τ )
4

.
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Corollary 4.4 Under conditions of Theorem 4.3, if P, Q are similarly ordered, then

τμ

μ – τ

∫ μ

τ

τ 2(x)
x4 P(x)Q(x) dx ≤ Q(τ )P(τ ) + Q(μ)P(μ)

2
,

where τ (x) is defined in (8).

Corollary 4.5 Under conditions of Theorem 4.3, if P, Q are nonnegative, then

τμP(μ)
μ – τ

∫ μ

τ

μ(x – τ )
x(μ – τ )

τ (x)Q(x)
x2 dx +

τμP(τ )
μ – τ

∫ μ

τ

τ (μ – x)
x(μ – τ )

τ (x)Q(x)
x2 dx

+
τμQ(μ)
μ – τ

∫ μ

τ

μ(x – τ )
x(μ – τ )

τ (x)P(x)
x2 dx +

τμQ(τ )
μ – τ

∫ μ

τ

τ (μ – x)
x(μ – τ )

τ (x)P(x)
x2 dx

≤ τμ

μ – τ

∫ μ

τ

τ 2(x)
x4 P(x)Q(x) dx +

2M(τ ,μ) + N(τ ,μ)
24

,

where τ (x) is defined in (8) and M(τ ,μ) and N(τ ,μ) are defined in (3).

Corollary 4.6 Under conditions of Corollary 4.5, if P, Q are similarly ordered, then

τμP(μ)
μ – τ

∫ μ

τ

μ(x – τ )
x(μ – τ )

τ (x)Q(x)
x2 dx +

τμP(τ )
μ – τ

∫ μ

τ

τ (μ – x)
x(μ – τ )

τ (x)Q(x)
x2 dx

+
τμQ(μ)
μ – τ

∫ μ

τ

μ(x – τ )
x(μ – τ )

τ (x)P(x)
x2 dx +

τμQ(τ )
μ – τ

∫ μ

τ

τ (μ – x)
x(μ – τ )

τ (x)P(x)
x2 dx

≤ τμ

μ – τ

∫ μ

τ

τ 2(x)
x4 P(x)Q(x) dx +

Q(τ )P(τ ) + Q(μ)P(μ)
8

,

where τ (x) is defined in (8).

Theorem 4.4 Suppose that J ⊆R \ {0} is a nonempty interval, P, Q ∈ HT(J), τ ,μ ∈ J with
τ < μ, and PQ is Lebesgue integrable on [τ ,μ]. If P, Q are nonnegative, then

Q
(

2τμ

τ + μ

)
P
(

2τμ

τ + μ

)
≤ π

16
[
M(τ ,μ) + N(τ ,μ)

]
,

where M(τ ,μ) and N(τ ,μ) are defined in (3).

Proof Because P, Q are nonnegative and HT-convex, for λ ∈ (0, 1),

Q
(

2τμ

τ + μ

)
= Q

(
2τμ

λτ + (1 – λ)μ + (1 – λ)τ + λμ

)

≤ 1
2

[
Q

(
τμ

λτ + (1 – λ)μ

)
+ Q

(
τμ

(1 – λ)τ + λμ

)]

≤ 1
2

( √
λ

2
√

1 – λ
+

√
1 – λ

2
√

λ

)
[
Q(τ ) + Q(μ)

]
. (13)

Similarly, we have

P
(

2τμ

τ + μ

)
≤ 1

2

( √
λ

2
√

1 – λ
+

√
1 – λ

2
√

λ

)
[
P(τ ) + P(μ)

]
. (14)
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Multiplying (13) and (14) reveals

Q
(

2τμ

τ + μ

)
P
(

2τμ

τ + μ

)
≤ 1

16

( √
λ√

1 – λ
+

√
1 – λ√

λ

)2

× [
Q(τ ) + Q(μ)

][
P(τ ) + P(μ)

]

=
1

16
1

λ(1 – λ)
[
Q(τ ) + Q(μ)

][
P(τ ) + P(μ)

]
. (15)

Integrating inequality (15) with respect to λ ∈ (0, 1) leads to the stated result. �

Again using inequalities (13) and (14), we derive the following corollaries.

Corollary 4.7 Under conditions of Theorem 4.4, if P, Q are similarly ordered, then

Q
(

2τμ

τ + μ

)
P
(

2τμ

τ + μ

)
≤ π

8
[
Q(τ )P(τ ) + Q(μ)P(μ)

]
.

Corollary 4.8 Under conditions of Theorem 4.4, if P, Q are nonnegative, then

Q
(

2τμ

τ + μ

)[
P(τ ) + P(μ)

]
+ P

(
2τμ

τ + μ

)[
Q(τ ) + Q(μ)

]

≤ 16
3π

Q
(

2τμ

τ + μ

)
P
(

2τμ

τ + μ

)
+

2
π

[
Q(τ ) + Q(μ)

][
P(τ ) + P(μ)

]
.

Corollary 4.9 Under conditions of Corollary 4.8, if P, Q are similarly ordered, then

Q
(

2τμ

τ + μ

)
[
P(τ ) + P(μ)

]
+ P

(
2τμ

τ + μ

)
[
Q(τ ) + Q(μ)

]

≤ 16
3π

Q
(

2τμ

τ + μ

)
P
(

2τμ

τ + μ

)
+

4
π

[
Q(τ )P(τ ) + Q(μ)P(μ)

]
.

5 Applications to some special means
In this section, we will consider applications of our newly-established results to the fol-
lowing special means.

For real numbers τ ,μ > 0, the arithmetic mean and the p-logarithmic mean are respec-
tively defined [26, 29] by

A = A(τ ,μ) =
τ + μ

2

and

Lp = Lp(τ ,μ) =

⎧
⎨

⎩
[ μp+1–τp+1

(p+1)(μ–τ ) ]1/p, τ 	= μ;

τ , τ = μ.

For the HT-convex function Q : (1,∞) → R, Q(x) = 1
xp for p ≥ 1, applying Theorem 4.2

and Corollary 4.1, we derive the following inequalities involving A and Lp.
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Theorem 5.1 Let 1 < τ < μ and p ≥ 1. Then

π

4
Ap

(
1
τ

,
1
μ

)
≤ π

4τ p F
(

–p,
3
2

, 3,
μ – τ

μ

)
≤ A

(
1

τ p+1 ,
1

μp+1

)

and

Ap
(

1
τ

,
1
μ

)
≤ 1

2p+1

[
Ap

(
3
τ

,
1
μ

)
+ Ap

(
1
τ

,
3
μ

)]
≤ Lp

p

(
1
τ

,
1
μ

)

≤ π

4

[
A

(
1
τ

,
1
μ

)
+ Ap

(
1
τ

,
1
μ

)]
≤ π

2
A

(
1

τ p+1 ,
1

μp+1

)
,

where F(α,β ,γ , x) is the hypergeometric function which can be represented by

F(α,β ,γ , x) =
Γ (γ )

Γ (β)Γ (γ – β)

∫ 1

0

tβ–1(1 – t)γ –β–1

(1 – xt)α
dt.

6 Conclusions
In [15] and [23], the HA- and MT-convexity were defined and some Hadamard-type in-
equalities were obtained. As a generalization of these two convexity notions a new notion
of “HT-convex functions” is introduced in this paper, some Hadamard-type inequalities
for the new class of HT-convex functions and for the product of any two HT-convex func-
tions are established, and, as applications, some inequalities for the arithmetic mean and
the p-logarithmic mean are derived.
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