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Abstract
In this article, we study n-variable mappings which are cubic in each variable. We also
show that such mappings can be described by an equation, say, multi-cubic
functional equation. Furthermore, we study the stability of such functional equations
in the modular space Xρ by applying�2-condition and the Fatou property (in some
cases) on the modular function ρ . Finally, we show that, under some mild conditions,
one of these new multi-cubic functional equations can be hyperstable.
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1 Introduction
The main motivation for the investigation of the stability of functional equations was given
by Ulam in 1940 in his talk at the University of Wisconsin [47], where he presented a
number of unsolved problems. Among these was the famous Ulam stability question con-
cerning the stability of group homomorphisms as follows: Let G be a group and let H be
a metric group with the metric d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a
homomorphism h : G −→ H satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G,
then there exists a homomorphism g : G −→ H with d(h(x), g(x)) < ε for all x ∈ G? In other
words, we are looking for situations when the homomorphisms are stable, i.e., if a mapping
is almost a homomorphism, then there exists a true homomorphism near it. If we turn our
attention to the case of functional equations, we can ask the equation: Under what condi-
tions does there exist a true solution near an approximate mapping differing slightly from
a functional equation? If the answer is affirmative, we say that the functional equation is
stable. Hyers [16] gave a first affirmative answer to the question of Ulam for Banach spaces
as follows: Let X and Y be Banach spaces. Suppose that f : X −→ Y satisfies

∥
∥f (x + y) – f (x) – f (y)

∥
∥ ≤ ε
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for all x, y ∈ X and for some ε ≥ 0. Then, there exists a unique additive mapping T : X −→
Y such that

∥
∥f (x) – T(x)

∥
∥ ≤ ε

for all x ∈ X, and if f (tx) is continuous in t for each fixed x, then f is a linear mapping. Later
on, various generalizations and extensions of Hyers’ result were established by Aoki [1],
Th.M. Rassias [44], Găvruţa [15], and J.M. Rassias [43] in different versions for the Cauchy
(additive) functional equation A(x + y) = A(x) + A(y) in Banach spaces. Since then, the
stability problems of various functional equations on miscellaneous normed spaces have
been extensively investigated by a number of authors; for instance, see [12–14, 28, 30, 31],
and [33]. Moreover, for some results on positive linear operators, we refer to [32] and [34].

Let V be a commutative group, W a linear space, and n ≥ 2 an integer. Recall from [10]
that a mapping f : V n −→ W is called multi-additive if it is additive (satisfies the Cauchy
functional equation) in each variable. Some facts on such mappings can be found in [23]
and many other sources. Besides, f is said to be multi-quadratic if it is quadratic (satisfies
the quadratic functional equation Q(x + y) + Q(x – y) = 2Q(x) + 2Q(y)) in each variable [11].
In [50], Zhao et al. proved that the mapping f : V n −→ W is multi-quadratic if and only if
the following relation holds:

∑

t∈{–1,1}n

f (x1 + tx2) = 2n
∑

j1,j2,...,jn∈{1,2}
f (x1j1 , x2j2 , . . . , xnjn ) (1.1)

where xj = (x1j, x2j, . . . , xnj) ∈ V n with j ∈ {1, 2}. In [10] and [11], Ciepliński studied the gen-
eralized Hyers–Ulam stability of multi-additive and multi-quadratic mappings in Banach
spaces, respectively (see also [50]). The Jensen-type multi-quadratic mappings and their
characterization can be found in [46].

The cubic functional equation

f (x + 2y) – 3f (x + y) + 3f (x) – f (x – y) = 6f (y)

was introduced by J.M. Rassias in [43] for the first time. He investigated the Ulam–Hyers
stability problem for this functional equation. After that, the next alternative cubic func-
tional equation

f (2x + y) + f (2x – y) = 2f (x + y) + 2f (x – y) + 12f (x) (1.2)

has been introduced by Jun and Kim in [17]. They also presented the cubic functional
equation

f (x + 2y) + f (x – 2y) + 6f (x) = 4f (x + y) + 4f (x – y), (1.3)

found its general solution, and studied the Hyers–Ulam stability problem for it [18]. For
other forms of the (generalized) cubic functional equations and their stability on the var-
ious Banach spaces, we refer to [3–7, 29, 35, 36], and [49]. Recently, the stability of multi-
cubic and multi-quartic mappings in Banach spaces via the fixed point method were in-
vestigated in [9] and [8], respectively.
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The concept of modular spaces was first introduced by Nakano [39], and then Luxem-
burg [24] and Mazur, Musielak and Orlicz [27, 37, 38] developed it extensively. Since then,
the theory of modulars and modular spaces is widely applied in the study of interpola-
tion theory [22, 26] and various Orlicz spaces [40]. A modular yields less properties than
a norm, but it makes more sense in many special situations. When we work in a modular
space, it is frequently assumed that the modular satisfies extra additional properties like
some relaxed continuity or some �2-condition. As for the mentioned condition, Khamsi
[19] studied the stability of quasicontraction mappings in modular spaces without �2-
condition by using the fixed point theorem. Concerning the stability theory in modular
spaces, Sadeghi [45] has established generalized Hyers–Ulam stability via the Khamsi fixed
point method of a generalized Jensen functional equation f (rx + sy) = rg(x) + sh(y) in con-
vex modular spaces with the Fatou property satisfying the �2-condition with 0 < κ ≤ 2.
In addition, the stability of quadratic functional equations in modular spaces satisfying
the Fatou property without using the �2-condition was investigated in [48]. Park et al.
[41] investigated the stability of additive and Jensen-additive functional equations with-
out using the �2-condition by a fixed point method. An alternative generalized Hyers–
Ulam stability theorem of a modified quadratic functional equation in a modular spaces
using �3-condition without the Fatou property on a modular function was presented in
[20]. Furthermore, a refined stability result and alternative stability results for additive
and quadratic functional equations using the direct method in modular spaces are given
in [21]. For the stability of mixed additive-quadratic-cubic mappings in modular spaces
which were recently studied, we refer to [25].

In this paper we define multi-cubic mappings and include two characterizations of such
mappings. In other words, we prove that every multi-cubic mapping can be shown to sat-
isfy a single functional equation, and vice versa. Moreover, we investigate the generalized
Hyers–Ulam stability and hyperstability for multi-cubic mappings in modular spaces by
applying the direct method. As a direct consequence of our main results, we show that
under some mild conditions these new multi-cubic mappings are hyperstable.

2 Preliminary notations
In this section, we recall some basic definitions and remarks concerning modular spaces
with modular functionals, which are primitive notions corresponding to norms and met-
rics, as in [20, 27, 37]:

Definition 2.1 Let X be a linear space over a field K (R or C). A generalized function
ρ : X −→ [0,∞] is called a modular if it satisfies the following three conditions for elements
α,β ∈ K, x, y ∈ X:

(i) ρ(x) = 0 if and only if x = 0;
(ii) ρ(αx) = ρ(x) for all scalar α with |α| = 1;

(iii) ρ(αx + βy) ≤ ρ(x) + ρ(y) for all scalar α,β ≥ 0 with α + β = 1.

If condition (iii) is replaced by ρ(αx +βy) ≤ αtρ(x) +β tρ(y) when αt +β t = 1 and α,β ≥ 0
with an t ∈ (0, 1], then ρ is called t-convex modular. 1-convex modular are called convex
modular. For a modular ρ , there corresponds a linear subspace Xρ of X, given by Xρ :=
{x ∈ X : ρ(λx) → 0 as λ → 0}. In this case Xρ is called a modular space.

Let ρ be a convex modular. Then, the modular space Xρ can be equipped with a norm
called the Luxemburg norm, defined by ‖x‖ρ = inf{λ > 0 : ρ( x

λ
) ≤ 1}.
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Here, we have some observations:
(1) If ρ is a modular on X , then ρ(tx) is an increasing function of t ≥ 0 for each fixed

x ∈ X , that is, ρ(ax) ≤ ρ(bx) whenever 0 ≤ a < b;
(2) If ρ is a convex modular on X and |α| ≤ 1, then ρ(ax) ≤ |α|ρ(x) for all x ∈ X . In

particular, if αj ≥ 0 (j = 1, 2, . . . , n) with 0 <
∑n

j=1 αj ≤ 1, then
ρ(

∑n
j=1 αjxj) ≤ ∑n

j=1 αjρ(xj) for all xj ∈ X .

Definition 2.2 Let Xρ be a modular space and let {xn} be a sequence in Xρ . Then
(i) {xn} is ρ-convergent to a point x∗ ∈ Xρ , and we write xn

ρ→ x∗, if ρ(xn – x∗) → 0 as
n → ∞;

(ii) {xn} is a ρ-Cauchy sequence if for any ε > 0 one has ρ(xn – xm) < ε for all sufficiently
large m, n ∈ N;

(iii) A subset Y ⊆ Xρ is called ρ-complete if any ρ-Cauchy sequence is ρ-convergent to
a point in Y .

Example 2.3 ([42]) Let ψ : [0,∞) −→R be a function defined by ψ(0) = 0 and ψ(t) > 0 for
all t > 0, and limt→∞ ψ(t) = ∞. If, moreover, ψ is convex, continuous and nondecreasing,
then ψ is called an Orlicz function. For a measure space (X,

∑
,μ), suppose that L0(μ) is

the set of all measurable functions on X. For each f ∈ L0(μ), define ρψ (f ) =
∫

X ψ(|f |) dμ.
Then, ρψ is a modular and the corresponding modular space is called an Orlicz space and
denoted by

Lψ =
{

f ∈ L0(μ)|ρψ (λf ) → 0 as λ → 0
}

.

One can check that Lψ is ρψ -complete.

A modular function ρ is said to satisfy the �s-condition if there exists κ > 0 such that
ρ(sx) ≤ κρ(x) for all x ∈ Xρ . Throughout this paper, we say that the constant κ is a �s-
constant related to �s-condition. Suppose that ρ is convex and satisfies �s-condition with
�s-constant κ . If κ < s, then ρ(x) ≤ κρ( x

s ) ≤ κ
s ρ(x), which implies ρ = 0. Hence, we must

have the �s-constant κ ≥ s if ρ is convex modular. It is said that a modular ρ has the Fatou
property if and only if ρ(x) ≤ lim infn→∞ ρ(xn) whenever the sequence {xn} is ρ-convergent
to x in the modular space Xρ .

3 Characterization of multi-cubic mappings
Motivated by equation (1.3), we consider the functional equation

8f
(

x + 2y
2

)

+ 8f
(

x – 2y
2

)

= 4f (x + y) + 4f (x – y) – 6f (x). (3.1)

It is easy to check that f (x) = ax3 is a solution of (3.1). Hence, it said to be a cubic functional
equation. The above equation leads us to define n-multi-cubic mappings and characterize
them in this section.

Throughout this paper, N stands for the set of all positive integers, N0 := N ∪ {0}, R+ :=
[0,∞), n ∈ N. For any l ∈ N0, n ∈ N, q = (q1, . . . , qn) ∈ {–2, –1, 1, 2}n and x = (x1, . . . , xn) ∈
V n, we write lx := (lx1, . . . , lxn) and qx := (q1x1, . . . , qnxn), where lx stands, as usual, for the
scalar product of an element l on x of the vector space V .
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In the sequel, let V and W be vector spaces over the rationals, n ∈ N and xn
i =

(xi1, xi2, . . . , xin) ∈ V n, where i ∈ {1, 2}. We shall denote xn
i by xi if there is no risk of am-

biguity. Let x1, x2 ∈ V n and T ∈ N0 with 0 ≤ T ≤ n. Put M = {Nn = (N1, N2, . . . , Nn)|Nj ∈
{x1j ± x2j, x1j}}, where j ∈ {1, . . . , n}. Consider

Mn
T :=

{

Nn = (N1, N2, . . . , Nn) ∈M|Card{Nj : Nj = x1j} = T
}

.

We say that a mapping f : V n −→ W is n-multi-cubic or multi-cubic if f is cubic in each
variable (see equation (3.1)). From now on, for such mappings, we use the following nota-
tions:

f
(

Mn
T
)

:=
∑

Nn∈Mn
T

f (Nn), (3.2)

f
(

Mn
T , z

)

:=
∑

Nn∈Mn
T

f (Nn, z) (z ∈ V ).

We say that a mapping f : V n −→ W satisfies the r-power condition in the jth variable if

f (z1, . . . , zj–1, 2zj, zj+1, . . . , zn) = 2rf (z1, . . . , zj–1, zj, zj+1, . . . , zn),

for all z1, . . . , zn ∈ V n

Remark 3.1 It is easily verified that if f is a multi-cubic mapping, then it satisfies the 3-
power condition in all variables. But the converse is not true. Here, by means of an example
we show that the 3-power condition in all variables for a mapping f does not imply that it
is multi-cubic. Let (A,‖ ·‖) be a Banach algebra. Fix a vector a0 in A (not necessarily unit).
Define the mapping h : An −→ A by h(a1, . . . , an) =

∏n
j=1 ‖aj‖3a0 for (a1, . . . , an) ∈ An. It is

easily verified that the mapping h satisfies the 3-power condition in all variables but is not
multi-cubic even for n = 1, that is, h does not satisfy equation (3.1).

In what follows,
(n

k
)

is the binomial coefficient defined for all n, k ∈ N0 with n ≥ k by
n!/(k!(n – k)!). In the upcoming result, we show that a multi-cubic mapping f : V n −→ W
has the form

8n
∑

q∈{–2,2}n

f
(

x1 + qx2

2

)

=
n

∑

k=0

4n–k(–6)kf
(

Mn
k
)

(3.3)

for all x1, x2 ∈ V n, where f (Mn
k ) is defined in (3.2).

Theorem 3.2 Consider the mapping f : V n −→ W . Then, the following assertions are
equivalent:

(i) f is multi-cubic;
(ii) f satisfies equation (3.3) with the 3-power condition in all variables.

Proof (i) ⇒ (ii) We first note that it is not hard to show that f satisfies the 3-power condi-
tion in all variables. Assume that f is multi-cubic. We prove that f satisfies equation (3.3)
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by induction on n. For n = 1, it is trivial that f satisfies equation (3.1). If (3.3) is valid for
some positive integer n > 1, then

8n+1
∑

q∈{–2,2}n+1

f
(

xn+1
1 + qxn+1

2
2

)

= 4 × 8n
∑

q∈{–2,2}n

f
(

xn
1 + qxn

2
2

, x1n+1 + x2n+1

)

+ 4 × 8n
∑

q∈{–2,2}n

f
(

xn
1 + qxn

2
2

, x1n+1 – x2n+1

)

– 6 × 8n
∑

q∈{–2,2}n

f
(

xn
1 + qxn

2
2

, x1n+1

)

= 4
n

∑

k=0

∑

q∈{–2,2}
4n–k(–6)kf

(

Mn
k , x1n+1 + qx2n+1

)

– 6
n

∑

k=0

4n–k(–6)kf
(

Mn
k , x1n+1

)

=
n+1
∑

k=0

4n+1–k(–6)kf
(

Mn+1
k

)

.

This means that (3.3) holds for n + 1.
(ii) ⇒ (i) Fix j ∈ {1, . . . , n} and put

f ∗(x1j, x2j) := f (x11, . . . , x1j–1, x1j + x2j, x1j+1, . . . , x1n)

+ f (x11, . . . , x1j–1, x1j – x2j, x1j+1, . . . , x1n). (3.4)

Putting x2k = 0 for all k ∈ {1, . . . , n}\{j} in (3.3) and using the assumption, we get

2n–1

8n–1 × 8nf
(

x11, . . . , x1j–1,
x1j + 2x2j

2
, x1j+1, . . . , x1n

)

+
2n–1

8n–1 × 8nf
(

x11, . . . , x1j–1,
x1j – 2x2j

2
, x1j+1, . . . , x1n

)

= 2n–1 × 8nf
(

x11

2
, . . . ,

x1j–1

2
,

x1j + 2x2j

2
,

x1j+1

2
, . . . ,

x1n

2

)

+ 2n–1 × 8nf
(

x11

2
, . . . ,

x1j–1

2
,

x1j – 2x2j

2
,

x1j+1

2
, . . . ,

x1n

2

)

= 2n–1 × 4nf ∗(x1j, x2j)

+
n–1
∑

k=1

[(

n – 1
k – 1

)

4n–k × 2n–k × (–6)k

]

f (x11, . . . , x1n)

+
n–1
∑

k=1

[(

n – 1
k

)

4n–k × 2n–k–1 × (–6)k

]

f ∗(x1j, x2j)

+ (–6)nf (x11, . . . , x1n)
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=

[

2n–1 × 4n +
n–1
∑

k=1

[(

n – 1
k

)

4n–k × 2n–k–1 × (–6)k

]]

f ∗(x1j, x2j)

+

[

(–6)n +
n–1
∑

k=1

[(

n – 1
k – 1

)

8n–k × (–6)k

]]

f (x11, . . . , x1n). (3.5)

On the other hand, we have

2n–1 × 4n +
n–1
∑

k=1

(

n – 1
k

)

4n–k × 2n–k–1 × (–6)k

= 2n–1 × 4n + 4
n–1
∑

k=1

(

n – 1
k

)

4n–k–1 × (–3)k

= 4 × 2n–1(4 – 3)n–1 = 4 × 2n–1. (3.6)

In addition,

(–6)n +
n–1
∑

k=1

(

n – 1
k – 1

)

8n–k × (–6)k = (–6)n +
n–2
∑

k=0

(

n – 1
k

)

8n–k–1 × (–6)k+1

= (–6)n + (–6)
n–2
∑

k=0

(

n – 1
k

)

8n–k–1(–6)k

= (–6)n – 6
(

2n–1 – (–6)n–1) = –6 × 2n–1. (3.7)

Relations (3.5), (3.7), and (3.6) imply that

8f
(

x11, . . . , x1j–1,
x1j + 2x2j

2
, x1j+1, . . . , x1n

)

+ 8f
(

x11, . . . , x1j–1,
x1j – 2x2j

2
, x1j+1, . . . , x1n

)

= 4f ∗(x1j, x2j) – 6f (x11, . . . , x1n).

This means that f is cubic in the jth variable. Since j is arbitrary, we obtain the desired
result. �

4 An alternative characterization of multi-cubic mappings
It is easy to check that equation (1.2) implies that f ( x

2 ) = 1
8 f (x). On the other hand, the

equation

8f
(

2x + y
2

)

+ 8f
(

2x – y
2

)

= 2f (x + y) + 2f (x – y) + 12f (x) (4.1)

shows that f (2x) = 8f (x). Summing up, we have

Proposition 4.1 A mapping f : V −→ W satisfies equation (1.2) if and only if it satisfies
equation (4.1).
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Here, we introduce a different multi-cubic mapping by using equation (4.1). In other
words, a mapping f : V n −→ W is said to be n-multi-cubic or multi-cubic if f is cubic in
each variable (see equation (4.1)).

Analogous to Theorem 3.2, we show that multi-cubic mappings in the sense above can
be unified using an equation without any extra condition on the components as follows:

Theorem 4.2 A mapping f : V n −→ W is multi-cubic (in the sense above) if and only if f
satisfies the equation

8n
∑

q∈{–1,1}n

f
(

2x1 + qx2

2

)

=
n

∑

k=0

2n–k12kf
(

Mn
k
)

. (4.2)

for all x1, x2 ∈ V n, where f (Mn
k ) is defined in (3.2).

Proof (Necessity) Assume that f is multi-cubic. We prove that f satisfies equation (4.2) by
induction on n. For n = 1, it is trivial that f satisfies equation (4.1). If (4.2) is valid for some
positive integer n > 1, then

8n+1
∑

q∈{–1,1}n+1

f
(

2xn+1
1 + qxn+1

2
2

)

= 2 × 8n
∑

q∈{–1,1}n

f
(

2xn
1 + qxn

2
2

, x1n+1 + x2n+1

)

+ 2 × 8n
∑

q∈{–1,1}n

f
(

2xn
1 + qxn

2
2

, x1n+1 – x2n+1

)

+ 12 × 8n
∑

q∈{–1,1}n

f
(

2xn
1 + qxn

2
2

, x1n+1

)

= 2
n

∑

k=0

∑

q∈{–1,1}
2n–k12kf

(

Mn
k , x1n+1 + qx2n+1

)

+ 12
n

∑

k=0

2n–k12kf
(

Mn
k , x1n+1

)

=
n+1
∑

k=0

2n+1–k12kf
(

Mn+1
k

)

.

This means that (4.2) holds for n + 1.
(Sufficiency) Fix j ∈ {1, . . . , n} and f ∗(x1j, x2j) as in (3.4). Putting x2k = 0 for all k ∈

{1, . . . , n}\{j} in (4.2), we get

2n–1 × 8n
[

f
(

x11, . . . , x1j–1,
2x1j + x2j

2
, x1j+1, . . . , x1n

)

+ f
(

x11, . . . , x1j–1,
2x1j – x2j

2
, x1j+1, . . . , x1n

)]

= 2n–1 × 2nf ∗(x1j, x2j)

+
n–1
∑

k=1

[(

n – 1
k – 1

)

22(n–k) × 12k

]

f (x11, . . . , x1n)
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+
n–1
∑

k=1

[(

n – 1
k

)

22(n–k)–1 × 12k

]

f ∗(x1j, x2j)

+ 12nf (x11, . . . , x1n)

=

[

22n–1 × 2n +
n–1
∑

k=1

[(

n – 1
k

)

22(n–k)–1 × 12k

]]

f ∗(x1j, x2j)

+

[

12n +
n–1
∑

k=1

[(

n – 1
k – 1

)

22(n–k) × 12k

]]

f (x11, . . . , x1n). (4.3)

On the other hand, we have

22n–1 +
n–1
∑

k=1

(

n – 1
k

)

22(n–k)–1 × 12k = 22n–1

(

1 +
n–1
∑

k=1

(

n – 1
k

)

3k

)

= 22n–1(1 + 3)n–1 = 24n–3. (4.4)

Furthermore,

12n +
n–1
∑

k=1

(

n – 1
k – 1

)

22(n–k) × 12k = 12n +
n–1
∑

k=1

(

n – 1
k – 1

)

22(n–k) × 22k × 3k

= 12n + 3 × 22n
n–2
∑

k=0

(

n – 1
k – 1

)

3k

= 12n + 3 × 22n

( n–1
∑

k=0

[(

n – 1
k – 1

)

3k

]

– 3n–1

)

= 12n + 3 × 22n((1 + 3)n–1 – 3n–1)

= 12n + 3 × 22n(22(n–1) – 3n–1)

= 12 × 24(n–1). (4.5)

Relations (4.3), (4.4), and (4.5) imply that

8f
(

x11, . . . , x1j–1,
2x1j + x2j

2
, x1j+1, . . . , x1n

)

+ 8f
(

x11, . . . , x1j–1,
2x1j – x2j

2
, x1j+1, . . . , x1n

)

= 2f ∗(x1j, x2j) + 12f (x11, . . . , x1n).

This means that f is cubic in the jth variable, and so it is a multi-cubic mapping. �

5 Stability results for (3.3)
In this section, we prove the generalized Hyers–Ulam stability of multi-cubic functional
equation (3.3) in the modular space Xρ by applying the �2-condition and Fatou property
on the modular function ρ .
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Here and subsequently, given a mapping f : V n −→ W , we define the difference operator
Γ f : V n × V n −→ W through

Γ f (x1, x2) := 8n
∑

q∈{–2,2}n

f
(

x1 + qx2

2

)

–
n

∑

k=0

4n–k(–6)kf
(

Mn
k
)

for x1, x2 ∈ V n, where f (Mn
k ) is defined in (3.2).

From now on we assume that V is a real vector space and Xρ is a complete modular
space satisfying the �2-condition, which has the Fatou property unless otherwise stated
explicitly. In the next theorem, we establish the stability of functional equation (3.3).

Theorem 5.1 Let s ∈ {1, –1}, and let φ : V n × V n −→R+ be a function such that

∞
∑

j= |s–1|
2

κ3n|s–1|j

23nj φ
(

2sj+1x1, 2sj+1x2
)

< ∞ (5.1)

for all x1, x2 ∈ V n. Suppose that f : V n −→ Xρ is a mapping satisfying the inequality

ρ
(

Γ f (x1, x2)
) ≤ φ(x1, x2) (5.2)

for all x1, x2 ∈ V n. Then, there exists a unique multi-cubic mapping C : V n −→ Xρ such that

ρ
(

f (x) – Q(x)
) ≤ 1

2n+ 3
2 |s+1|n

∞
∑

j= |s–1|
2

κ3n|s–1|jφ(2js+1x, 0)
23nj (5.3)

for all x ∈ V n.

Proof We first consider the case s = 1. Replacing (x1, x2) by (2x1, 0) in (5.2), we have

ρ

(

2n × 8nf (x) –
n

∑

k=0

(

n
k

)

4n–k2n–k(–6)kf (2x)

)

≤ φ(2x, 0)

for all x = x1 ∈ V n. Hence,

ρ
(

16nf (x) – 2nf (2x)
) ≤ φ(2x, 0) (5.4)

for all x ∈ V n. Inequality (5.4) implies that

ρ

(

f (x) –
f (2x)
23n

)

≤ 1
24n φ(2x, 0) (5.5)

for all x ∈ V n. Once more, by induction on k, one can prove the following functional in-
equality:

ρ

(

f (x) –
f (2kx)
23nk

)

≤ 1
24n

k–1
∑

j=0

φ(2j+1x, 0)
23nj (5.6)
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for all x ∈ V n. Now, interchanging x by 2lx in (5.6), we have

ρ

(
f (2lx)
23nl –

f (2k+lx)
23n(k+l)

)

≤ 1
24n

k+l–1
∑

j=l

φ(2j+1x, 0)
23nj

for all x ∈ V n. Since the right-hand side of the above inequality tends to zero as l goes to
infinity, the sequence { f (2kx)

23nk } is a ρ-Cauchy sequence in Xρ and so the mentioned sequence
is ρ-convergent on Xρ . Thus, we may define the mapping C : V −→ Xρ via C(x) = ρ –
limk→∞ f (2k x)

23nk for all x ∈ V n. In other words, limk→∞ ρ( f (2k x)
23nk – C(x)) = 0. Replacing (x1, x2)

by (2kx1, 2kx2) in (5.2), and dividing the resulting inequality by 23nk , we get

ρ

(
1

23nk Γ f
(

2kx1, 2kx2
)
)

≤ 1
23nk ρ

(

Γ f
(

2kx1, 2kx2
)) ≤ 1

23nk φ
(

2kx1, 2kx2
)

(5.7)

for all x1, x2 ∈ V n. Consider a fixed real number M such that M ≥ 8n + 2n. By the property
ρ(αt) ≤ αρ(t) when 0 < α ≤ 1, we have

ρ

(
1
M

Γ C(x1, x2)
)

= ρ

(
1
M

[

Γ C(x1, x2) –
Γ f (2kx1, 2kx2)

23nk +
Γ f (2kx1, 2kx2)

23nk

])

≤ 8n

M
∑

q∈{–2,2}n

ρ

(

C
(

x1 + qx2

2

)

–
1

23nk f
(

2k(x1 + qx2)
2

))

+
1
M

n
∑

k=0

4n–k(–6)k
∑

Nn∈Mn
T

ρ

(

C(Nn) –
f (2kNn)

23nk

)

+
1
M

ρ

(
Γ f (2kx1, 2kx2)

23nk

)

for all x1, x2 ∈ V n and all positive integers k. Taking the limit as k → ∞ and using (5.7), we
see that ρ( 1

M Γ C(x1, x2)) = 0, and hence Γ C(x1, x2) = 0 for all x1, x2 ∈ V n. This means that
C is a multi-cubic mapping. Now, the Fatou property of modular ρ implies that

ρ
(

f (x) – C(x)
) ≤ lim inf

ρ→∞

(

f (x) –
f (2kx)
23nk

)

≤ 1
24n

k–1
∑

j=0

φ(2j+1x, 0)
23nj

for all x ∈ V n, which shows that the relation (5.3) holds. For the uniqueness of C , we assume
that there exists another multi-cubic mapping C0 : V n −→ Xρ such that

ρ
(

f (x) – C0(x)
) ≤ 1

24n

∞
∑

j=0

φ(2j+1x, 0)
23nj (5.8)

for all x ∈ V n such that C0(x∗) �= C(x∗) for some x∗ ∈ V n. In other words, there is a positive
constant δ > 0 such that ρ(C0(x∗) –C(x∗)) > δ. On the other hand, there is a positive integer
p0 ∈N such that 1

24n
∑∞

j=p0
φ(2j+1x,0)

23nj < δ. Since C and C0 are multi-cubic mappings, we have
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C0(2p0 x) = 23np0C0(x) and C(2p0 x) = 23np0C(x). Thus,

δ < ρ
(

C0(x) – C(x)
) ≤ 1

23np0
ρ
(

C0
(

2p0 x
)

– f
(

2p0 x
))

+
1

23np0
ρ
(

f
(

2p0 x
)

– C
(

2p0 x
))

≤ 1
24n

∞
∑

j=0

φ(2j+1+p0 x, 0)
23n(j+1+p0) =

1
24n

∞
∑

j=p0

φ(2j+1x, 0)
23nj < δ,

which is a contradiction. Now, assume that s = –1. It follows (5.4) that

ρ

(

f (x) – 23nf
(

x
2

))

≤ 1
2n φ(x, 0) (5.9)

for all x ∈ V n. By the convexity of the modular ρ , �2-condition and (5.9), we have

ρ

(

f (x) – 26nf
(

x
22

))

≤ 1
23n ρ

(

23nf (x) – 26nf
(

x
2

))

+
1

23n ρ

(

26nf
(

x
2

)

– 29nf
(

x
22

))

≤ 1
2n

[
κ3n

23n φ(x, 0) +
κ6n

23n φ

(
x
2

, 0
)]

(5.10)

for all x ∈ V n. It is routine to show by induction on k > 1 that

ρ

(

f (x) – 23nkf
(

x
2k

))

≤ 1
2n

[ k–1
∑

j=1

κ3n(2j–1)

23nj φ

(
x

2j–1 , 0
)

+
κ6n(k–1)

23n(k–1) φ

(
x

2k–1 , 0
)]

(5.11)

for all x ∈ V n. Replacing x by x
2l in (5.11), we get

ρ

(

23nlf
(

x
2l

)

– 23n(k+l)f
(

x
2k+l

))

≤ κ3nlρ

(

f
(

x
2l

)

– 23nkf
(

x
2k+l

))

≤ κ3nl

2n

[ k–1
∑

j=1

κ3n(2j–1)

23nj φ

(
x

2j–1+l , 0
)

+
κ6n(k–1)

23n(k–1) φ

(
x

2k–1+l , 0
)]

≤ 1
2n

23nl

κ3nl

[k+l–1
∑

j=1+1

κ3n(2j–1)

23nj φ

(
x

2j–1 , 0
)

+
κ3n(k+l–1)

23n(k+l–1) φ

(
x

2k–1+l , 0
)]

(5.12)

for all x ∈ V n. It follows from (5.1) and (5.12) that the sequence {23nkf ( x
2k )} is a ρ-

Cauchy sequence in Xρ and so there exists the mapping C : V n −→ Xρ such that C(x) =
ρ – limk→∞ 23nkf ( x

2k ). This means that the mentioned sequence is a ρ-convergent to C(x).
Using the �2-condition without applying the Fatou property, we obtain

ρ
(

f (x) – C(x)
) ≤ 1

23n ρ

(

23nf (x) – 23(k+1)nf
(

x
2k

))

+
1

23n ρ

(

23(k+1)nf
(

x
2k

)

– 23nC(x)
)

≤ κ3n

23n ρ

(

f (x) – 23nkf
(

x
2k

))

+
κ3n

23n ρ

(

23nkf
(

x
2k

)

– C(x)
)
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≤ 1
2n

κ3n

23n

[ k–1
∑

j=1

κ3n(2j–1)

23nj φ

(
x

2j–1 , 0
)

+
κ6n(k–1)

23n(k–1) φ

(
x

2k–1 , 0
)]

+
κ3n

23n ρ

(

23nkf
(

x
2k

)

– C(x)
)

for all x ∈ V n. Letting k → ∞, we see that (5.3) holds. The rest of the proof is similar to
the previous case. This completes the proof. �

The following corollaries are the direct consequences of Theorem 5.1 concerning the
stability of (3.3).

Corollary 5.2 Suppose θ > 0 and let r > 0 be such that r �= 3n, log
κ6n
23n
2 . Let V be a normed

space and let Xρ be a ρ-complete convex modular space. If f : V n −→ Xρ is a mapping
satisfying

ρ
(

Γ f (x1, x2)
) ≤ θ

2
∑

k=1

n
∑

j=1

‖xkj‖r

for all x1, x2 ∈ V n, then there exists a unique multi-cubic mapping C : V n −→ Xρ such that

ρ
(

f (x) – C(x)
) ≤

⎧

⎪⎨

⎪⎩

2rθ
2n(23n–2r)

∑n
j=1 ‖x1j‖r r ∈ (0, 3n),

2r×κ6nθ

2n(23n+r–κ6n)

∑n
j=1 ‖x1j‖r r ∈ (log

κ6n
23n
2 ,∞),

for all x = x1 ∈ V n.

Proof Putting φ(x1, x2) = θ
∑2

k=1
∑n

j=1 ‖xkj‖r in Theorem 5.1, one can obtain the first and
second inequalities for s = 1 and s = –1, respectively. �

Here, we have the following observations:
• In the case s = 1 of Theorem 5.1, we have used the Fatou property, while the

�2-condition was not applied, and vice versa for the case s = –1.

• In Corollary 5.2, if the �2-constant is κ = 2, then log
κ6n
23n
2 = 3n. Hence, in this case the

second condition converts to r ∈ (3n,∞).

Corollary 5.3 Consider a δ > 0, let V be a normed space, and let Xρ a ρ-complete convex
modular space. If f : V n −→ Xρ is a mapping satisfying

ρ
(

Γ f (x1, x2)
) ≤ δ

for all x1, x2 ∈ V n, then there exists a unique multi-cubic mapping C : V n −→ Xρ such that

ρ
(

f (x) – C(x)
) ≤ δ

2n(23n – 1)

for all x ∈ V n.
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Proof Letting φ(x1, x2) = δ in Theorem 5.1 for the case s = 1, we establish the desired re-
sult. �

Recall that a functional equation F is hyperstable if any mapping f satisfying equation
F approximately is a true solution of F . Under some conditions, the functional equation
(3.3) can be hyperstable as follows.

Corollary 5.4 Suppose θ > 0, let V be a normed space, and let Xρ be a ρ-complete convex
modular space. Suppose that αkj > 0 for k ∈ {1, 2} and j ∈ {1, . . . , n} fulfill

∑2
k=1

∑n
j=1 αkj �=

3n, log
κ6n
23n
2 . If f : V n −→ Xρ is a mapping satisfying

ρ
(

Γ f (x1, x2)
) ≤ θ

2
∏

k=1

n
∏

j=1

‖xkj‖αkj

for all x1, x2 ∈ V n, then it is multi-cubic.

6 Conclusion
We studied n-variable mappings which are cubic in each variable and showed that such
mappings can be characterized by an equation. We also established the stability and hy-
perstability of such functional equation by using the direct method in the modular spaces.

7 Conventions
1 Multi-cubic mapping: An n-variable mapping f is multi-cubic if it is cubic in each

variable.
2 Stability: A functional equation F is stable when a mapping that approximately

satisfies F is close to an exact solution of F .
3 Hyperstability: A functional equation F is hyperstable if any mapping f satisfying

equation F approximately is a true solution of F .
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