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Abstract
In this paper, we discuss the stability of generalized phase retrieval and generalized
affine phase retrieval in the complex case. By the realification method, we obtain the
bi-Lipschitz property in the absence of noise case and Cramer–Rao lower bound
under noise conditions.
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1 Introduction
The problem of phase retrieval aims to recover a signal from its intensity measure-
ments, it naturally arises in various fields of physics, such as crystallography [14], radar
[12], electron-microscopy [11]. Most of the successful instances are corresponding to
two-dimensional signals. For one-dimensional signals, the uniqueness and algorithms of
Fourier phase retrieval problems are discussed in [5]. The frame-based phase retrieval,
which addresses the signal reconstruction from the absolute value of frame coefficients,
was introduced by Balan et al. [2]. It is crucial that the measurement mapping is of bi-
Lipschitz property, since it preserves the density and dispersion point [6]. The Cramer–
Rao lower bound (CRLB) is the lower bound on the variance of any unbiased estimation,
which allows us to assert that an estimator is minimum variance unbiased estimator. The
bi-Lipschitz property and CRLB of frame-based phase retrieval is given in [1, 3, 4]. Gen-
eralized phase retrieval (GPR) is introduced by Yang Wang and Zhiqiang Xu [16], which
unifies and enhances results from the standard phase retrieval, phase retrieval by projec-
tions, and low-rank matrix. Affine phase retrieval aims to recover signals from the magni-
tudes of affine measurements [8]. Necessary and sufficient conditions as well as minimal
number of measurements are given in [10]. The bi-Lipschitz property and CRLB of GPR
and GAPR for real signals are discussed in [17]. However, the GPR and GAPR problems
with complex signals are also encountered frequently in some fields like optics [15], quan-
tum information [9], interferometry [7], which leads us to addressing the complex case in
this paper.
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Let Hn(C) denote the set of n×n Hermitian matrices over complex field C. For any given
matrix sequence A = {Aj}m

j=1 ⊂ Hn(C), define the map MA : Cn →R
m by

MA(x) =
(
x∗A1x, . . . , x∗Amx

)
,

where x∗ denotes the conjugate transpose of x. We say that A is generalized phase retriev-
able if MA is injective up to a global phase, which means

{
x ∈C

n : MAx = MAx0
}

=
{

cx0 : |c| = 1, c ∈C
}

.

Similarly, if Aj is positive semidefinite for j = 1, . . . , m, we can define the map
√

MA : Cn →
R

m by

√
MA(x) =

(√
x∗A1x, . . . ,

√
x∗Amx

)
.

Let B(Cn) and B(R2n) denote the sets of bounded linear operators on C
n and R

2n respec-
tively. For any T ∈ B(Cn), the nuclear norm of T denoted by ‖T‖1 is given by the 1-norm
of its singular values. We still denote the operator norm of T by ‖T‖. Given two vectors
x, y ∈C

n, we define metrics d(x, y) = ‖x – y‖, d1(x, y) = min|α|=1‖x – αy‖ and matrix metric

d2(x, y) =
∥∥xx∗ – yy∗∥∥

1 =
√(‖x‖2 + ‖y‖2

)2 – 4
∣∣〈x, y〉∣∣2,

which is corresponding to the nuclear norm.
Let Bj ∈ C

rj×n and bj ∈ C
rj , where rj is a positive integer. The GAPR problem aims to

recover a signal x ∈ C
n from the norms of the affine linear measurements {‖Bjx + bj‖}m

j=1.
Let B = {Bj}m

j=1 and b = {bj}m
j=1. We define the map MB,b : Cn →R

m by

MB,b(x) =
(‖B1x + b1‖2,‖B2x + b2‖2, . . . ,‖Bmx + bm‖2).

The pair (B, b) is said to be generalized affine phase retrievable for Cn if MB,b is injective
on C

n. Note that if (B, b) is generalized affine phase retrievable, one can recover the signal
x exactly but not up to a global phase.

Our study mainly focuses on the stability of GPR and GAPR in the complex case. In
Sect. 2, we establish the bi-Lipschitz inequalities of GPR and GAPR with appropriate met-
rics. In Sect. 3, we present the Cramer–Rao lower bound of noised GPR and GAPR.

2 Bi-Lipschitz stability
In this section, we discuss the bi-Lipschitz property of GPR and GAPR in the complex case.
Realification of the complex vectors and operators is our main method to deal with the
phase retrieval problems in the complex case. We consider the R-linear map j : Cn →R2n

defined by

j(z) =

[

(z)
�(z)

]

, z ∈C
n,



Zhuang Journal of Inequalities and Applications        (2019) 2019:316 Page 3 of 12

where 
(z) and �(z) are the real part and the imaginary part of z respectively. Then, for
any x, y ∈R

n, the inverse operator of j is given by

j–1

[
x
y

]

= x + iy.

We transfer operators in B(Cn) to operators in B(R2n) by

τ : B
(
C

n) → B
(
R

2n), τ (T) = jT j–1.

As in reference [1], for any two vectors u, v ∈C
n, we define their symmetric outer product

by

[[u, v]] =
1
2
(
uv∗ + vu∗).

Let In be the n × n identity matrix and

J =

[
0 –In

In 0

]

.

Then the transpose of J is JT = –J , and by direct computation we have

τ
(
[[u, v]]

)
= [[ξ ,η]] + J[[ξ ,η]]JT ,

where ξ = j(u), η = j(v), and [[ξ ,η]] = 1
2 (ξηT + ηξT ).

Denote the real part and the imaginary part of a complex matrix Aj ∈ Hn(C) by Dj and
Cj respectively. Then we have Aj = Dj + iCj, DT

j = Dj, CT
j = –Cj, and

τ (Aj) =

[
Dj –Ci

Cj Dj

]

.

Let Tr(Aj) be the trace of Aj. Then it is only related to the real part of Aj since Tr(Aj) =
Tr(Dj + iCj) = Tr(Dj). Furthermore, the trace of the realification of Aj can be computed by
Tr(τ (Aj)) = 2 Tr(Dj) = 2 Tr(Aj). Let 〈T , G〉HS = Tr(TG∗) be the Hilbert–Schmidt inner prod-
uct of T and G. Since the trace of the product of a symmetric matrix and an antisymmetric
matrix equals zero, one can easily prove that

〈
τ (T), τ (G)

〉
HS = 2〈T , G〉HS, ∀T , G ∈ Hn(C). (2.1)

Since JTτ (Aj)J = τ (Aj), we have

〈
τ (Aj), J[[ξ ,η]]JT 〉

HS = Tr
(
τ (Aj)J[[ξ ,η]]JT)

= Tr
(
JTτ (Aj)J[[ξ ,η]]

)

=
〈
τ (Aj), [[ξ ,η]]

〉
HS.
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Therefore, we obtain the relationship before and after the realification:

〈
τ (Aj), τ [[u, v]]

〉
HS =

〈
τ (Aj), [[ξ ,η]]

〉
HS +

〈
τ (Aj), J[[ξ ,η]]JT 〉

HS = 2
〈
τ (Aj), [[ξ ,η]]

〉
HS.

Since τ (Aj) is symmetric, the Hilbert–Schmidt inner product can be simplified as follows:

〈
τ (Aj), [[ξ ,η]]

〉
HS = ηTτ (Aj)ξ =

〈
τ (Aj)ξ ,η

〉
.

It follows that

〈
τ (Aj), τ [[u, v]]

〉
HS = 2

〈
τ (Aj)ξ ,η

〉
.

Let

R(ξ ) =
m∑

j=1

τ (Aj)ξξTτ (Aj).

The summation can be written as

m∑

j=1

∣
∣〈τ (Aj), τ [[u, v]]

〉
HS

∣
∣2 = 4

〈
R(ξ )η,η

〉
. (2.2)

The following theorem gives an equivalent condition for a set of matrices to be phase
retrievable.

Theorem 2.1 ([16]) Let A = {Aj}m
j=1 ⊂ Hn(C). The following are equivalent:

(1) A has the phase retrieval property.
(2) There exist no v, u 
= 0 in Cn with u 
= icv for any c ∈R such that 
(v∗Aju) = 0 for all

1 ≤ j ≤ m.

2.1 Stability of GPR
In this subsection, we discuss the bi-Lipschitz property of GPR in the complex case. For a
set A = {Aj}m

j=1 ⊂ Hn(C), we define the map A on the set B(Cn) by

A : B
(
C

n) →C
m,

(
A(T)

)
j = Tr

(
TA∗

j
)
, 1 ≤ j ≤ m.

We denote by S1,1 the set of Hermitian matrices that have at most one positive eigenvalue
and at most one negative eigenvalue. Then we have the following equivalent conditions
for the set A to be phase retrievable.

Theorem 2.2 Let A = {Aj}m
j=1 ⊂ Hn(C), then the following are equivalent:

(1) A has the phase retrieval property.
(2) ker(A) ∩ S1,1 = {0}.
(3) There is a constant a0 > 0 such that, for every u, v ∈C

n,

m∑

j=1

(
(
v∗Aju

))2 ≥ a0
[‖u‖2‖v‖2 –

(�〈u, v〉)2] = a0
∥∥[[u, v]]

∥∥2
1. (2.3)
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(4) There is a constant a0 > 0 such that, for all nonzero ξ ∈R
2n,

R(ξ ) ≥ a0‖ξ‖2P⊥
Jξ , (2.4)

where the inequality is in the sense of quadratic forms and P⊥
Jξ = I – 1

‖ξ‖2 JξξT JT .
(5) For any nonzero ξ ∈ R

2n, rank(R(ξ )) = 2n – 1.

Proof (1) ⇔ (2). If there exists a nonzero operator T ∈ ker(A) ∩ S1,1, by [1, Lemma 3.7],
there exist nonzero vectors u, v such that T = [[u, v]]. Since T 
= 0, we have u 
= icv for any
c ∈ R. Furthermore, T ∈ ker(A) implies

∥∥A(T)
∥∥2 =

m∑

j=1

∣∣〈Aj, [[u, v]]
〉
HS

∣∣2 =
m∑

j=1

(
(
v∗Aju

))2 = 0,

which contradicts (2) of Theorem 2.1. The necessity can be proved similarly.
(3) ⇒ (2). If T ∈ ker(A) ∩ S1,1, then there exist vectors u, v such that T = [[u, v]] and

0 =
m∑

j=1

∣
∣〈Aj, [[u, v]]

〉
HS

∣
∣2 ≥ a0

∥
∥[[u, v]]

∥
∥2

1,

which means T = 0.
(2) ⇒ (3). Since ker(A) ∩ S1,1 = {0}, we have ‖A(T)‖2 =

∑m
j=1 |〈Aj, [[u, v]]〉HS|2 > 0 for all

nonzero T = [[u, v]] ∈ S1,1. Let

a0 = min
T∈S1,1,‖T‖1=1

m∑

j=1

∣
∣〈Aj, T〉HS

∣
∣2.

Since S1,1 is a cone in B(Cn), the homogeneity and continuousness of mapping T →
∑m

j=1 |〈Aj, T〉HS|2 implies

m∑

j=1

∣∣〈Aj, [[u, v]]
〉
HS

∣∣2 ≥ a0
∥∥[[u, v]]

∥∥2
1. (2.5)

By [1, Lemma 3.8], we have

∥
∥[[u, v]]

∥
∥2

1 =
[‖u‖2‖v‖2 –

(�〈u, v〉)2]. (2.6)

Substituting 〈Aj, [[u, v]]〉HS = 
(v∗Aju) and (2.6) to (2.5), we get the desired inequality.
(3) ⇔ (4). By formula (2.1), we have

〈
τ (Aj), τ [[u, v]]

〉
HS = 2

〈
Aj, [[u, v]]

〉
HS = 2
(

v∗Aju
)
.

Hence (2.3) is equivalent to

1
4

m∑

k=1

∣∣〈τ (Aj), τ
(
[[u, v]]

)〉
HS

∣∣2 ≥ a0
[‖u‖2‖v‖2 –

(�〈u, v〉)2]. (2.7)



Zhuang Journal of Inequalities and Applications        (2019) 2019:316 Page 6 of 12

Since ‖u‖ = ‖ξ‖,‖v‖ = ‖η‖, and (�〈u, v〉)2 = ηT JξξT JTη, we have

‖u‖2‖v‖2 –
(�〈u, v〉)2 = ‖ξ‖2ηTη – ηT JξξT JTη =

〈(‖ξ‖2I2n – JξξT JT)
η,η

〉
. (2.8)

Substituting (2.2) and (2.8) to (2.7), we obtain the desired inequality.
(4) ⇔ (5). The symmetry of Dj and the antisymmetry of Cj imply ξTτ (Aj)Jξ = 0. As a

result, we have

R(ξ )Jξ = 0.

Considering that R(ξ ) is a 2n × 2n real matrix, the rank of R(ξ ) can not be greater than
2n – 1. If it is less than 2n – 1, then there exists a nonzero vector η such that 〈η, Jξ 〉 = 0 and
R(ξ )η = 0. Consequently, we have ηT R(ξ )η = 0 and

a0η
T‖ξ‖2P⊥

Jξ η = a0
(‖ξ‖2‖η‖2 – ηT JξξT JTη

)
= a0‖ξ‖2‖η‖2 > 0,

which contradicts (2.4). This proves (5). Conversely, assume rank(R(ξ )) = 2n – 1 for all
ξ 
= 0. Let a(ξ ) be the smallest nonzero eigenvalue of R(ξ ). Then we have R(ξ ) ≥ a(ξ )P⊥

Jξ .
Define a0 = min‖ξ‖=1 a(ξ ). Then the constant a0 > 0. By the homogeneity of R(ξ ), we have
a(ξ ) = a0‖ξ‖2. This proves (4). �

Theorem 2.3 Let {Aj}m
j=1 ⊂ Hn(C) be generalized phase retrievable. Then MA is bi-

Lipschitz with respect to metric ‖xx∗ – yy∗‖2
1 with the upper Lipschitz bound

B0 =
√

max
ξ∈R2n ,‖ξ‖=1

∥∥R(ξ )
∥∥

and the lower Lipschitz bound

A0 =
√

min
ξ∈R2n ,‖ξ‖=1

a2n–1
(
R(ξ )

)
,

where a2n–1(R(ξ )) is the smallest nonzero eigenvalue of R(ξ ).

Proof For any x, y ∈C
n, the definition of MA gives

∥
∥MA(x) – MA(y)

∥
∥2 =

m∑

j=1

∣
∣x∗Ajx – y∗Ajy

∣
∣2 =

m∑

j=1

∣
∣〈Aj, xx∗ – yy∗〉

HS

∣
∣2.

Substituting u = x + y and v = x – y into the above equation and applying (2.1), we have

∥
∥MA(x) – MA(y)

∥
∥2 =

m∑

j=1

∣
∣〈Aj, [[u, v]]

〉
HS

∣
∣2 =

1
4

m∑

j=1

∣
∣〈τ (Aj), τ [[u, v]]

〉
HS

∣
∣2 =

〈
R(ξ )η,η

〉
,

where ξ = j(u), η = j(v). As shown in (2.8), ‖[[u, v]]‖2
1 = ‖ξ‖2〈P⊥

Jξ η, P⊥
Jξ η〉 holds true. This

implies that, for η ∈ {span{Jξ}}⊥, we have

sup
ξ ,η 
=0

〈R(ξ )η,η〉
‖[[u, v]]‖2

1
= sup

ξ ,η 
=0

〈R(ξ )η,η〉
‖ξ‖2〈η,η〉 = sup

ξ 
=0

‖R(ξ )‖
‖ξ‖2 = max

‖ξ‖=1

∥
∥R(ξ )

∥
∥ = B2

0.
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Since 〈R(ξ )η,η〉 = 0 and ‖[[u, v]]‖2
1 = 0 for η ∈ span{Jξ}, we conclude that

∥∥MA(x) – MA(y)
∥∥ ≤ B0

∥∥[[u, v]]
∥∥

1 = B0
∥∥xx∗ – yy∗∥∥

1.

Similarly, we have

∥
∥MA(x) – MA(y)

∥
∥ ≥ A0

∥
∥xx∗ – yy∗∥

∥
1. �

The following lemma states the relationship between the metrics d1 and d2 defined in
Sect. 1.

Lemma 2.1 For any x, y ∈ C
n with ‖x‖ + ‖y‖ 
= 0, the metrics d1 and d2 have the relation-

ship

d2
1(x, y) ≤ d2

2(x, y)
‖x‖2 + ‖y‖2 .

Proof Take α0 = α0(x, y) = 〈x,y〉
|〈x,y〉| . Then the modulus of α0 equals one and

d2
1(x, y) = min|α|=1

‖x – αy‖2 ≤ min
{‖x – α0y‖2,‖x + α0y‖2}.

The parallelogram law gives ‖x – α0y‖2 + ‖x + α0y‖2 = 2(‖x‖2 + ‖y‖2). It follows that

min
{‖x – α0y‖2,‖x + α0y‖2} ≤ ‖x – α0y‖2‖x + α0y‖2

‖x‖2 + ‖y‖2 .

Since 〈x,α0y〉 = |〈x, y〉|, direct computation gives

‖x – α0y‖2‖x + α0y‖2 =
(‖x‖2 + ‖y‖2)2 – 4

(
〈x,α0y〉)2

=
(‖x‖2 + ‖y‖2)2 – 4

∣
∣〈x, y〉∣∣2

= d2
2(x, y).

Combining the above inequalities, we get the relationship of two metrics:

d2
1(x, y) = min|α|=1

‖x – αy‖2 ≤ d2
2(x, y)

‖x‖2 + ‖y‖2 . �

With Lemma 2.1 in hand, one can prove the bi-Lipschitz property of map
√

MA by the
similar process of Theorem 2.4 in [17].

Theorem 2.4 Let {Aj}m
j=1 ⊂ Hn(C) be generalized phase retrievable and all Aj be positive

semidefinite. Then
√

MA is bi-Lipschitz with respect to metric d1(x, y) = minα=1{‖x – αy‖}
as follows:

a0

2C
d2

1(x, y) ≤ ∥∥
√

MA(x) –
√

MA(y)
∥∥2 ≤ λ1d2

1(x, y),

where C is the uniform upper operator bound for {Aj}m
j=1 and λ1 is the maximum eigenvalue

of matrix
∑m

j=1 Aj.
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2.2 Stability of GAPR
In this subsection, we discuss the bi-Lipschitz property of GAPR in the complex case. We
show that the bi-Lipschitz bound is related to two metrics.

Theorem 2.5 Let Ãj = (B∗
j , b∗

j )∗(Bj, bj). Suppose that Ã = {Ãj}m
j=1 is a generic set with m ≥

4n, then (B, b) is generalized affine phase retrievable. Furthermore, there exist positive con-
stants c0, c1, C0, C1 depending on (B, b) such that, for any x, y ∈C

n,

c0
(
d2

2(x, y) + d2(x, y)
) ≤ ∥

∥MB,b(x) – MB,b(y)
∥
∥2 ≤ c1

(
d2

2(x, y) + d2(x, y)
)
, (2.9)

C0d2
1(x, y) ≤ ∥

∥
√

MB,b(x) –
√

MB,b(y)
∥
∥2 ≤ C1d2(x, y). (2.10)

Proof Since Ã is generic, so is (B, b). By Theorem 4.3 in [16], the pair (B, b) is generalized
affine phase retrievable. Notice that the equation ‖Bjx + bj‖2 = x̃∗Ãx̃ implies that the equa-
tion MB,b(x) = MÃ(x̃) holds true for x̃ = (x∗, 1)∗ with x ∈C

n. Combining with Theorem 2.3,
we have

∥
∥MB,b(x) – MB,b(y)

∥
∥2 � d2

2(x̃, ỹ),

where the symbol “�” denotes the bi-Lipschitz relationship. Direct computation of the
metric yields

d2
2(x̃, ỹ) =

(‖x̃‖2 + ‖ỹ‖2)2 – 4
∣∣〈x̃, ỹ〉∣∣2 = d2

2(x, y) + 4d2(x, y).

Therefore, there exist constants c0, c1 such that (2.9) holds. Similarly, by Theorem 2.4, we
have

∥∥
√

MB,b(x) –
√

Mb,b(y)
∥∥2 � d2

1(x̃, ỹ).

Since d2
1(x̃, ỹ) = min|α|=1{‖x – αy‖2 + |1 – α|2}, we have the inequities

d2
1(x, y) ≤ d2

1(x̃, ỹ) ≤ d2(x, y).

Therefore, there exist constants C0, C1 such that (2.10) holds. �

3 Cramer–Rao stability
In this section, we discuss the stability of GPR and GAPR in the noised measurement case.
Given signal x ∈ R

n and ϕ(x) is a real differentiable vector-valued function of x. Assume
that the measurement has the form Y = ϕ(x) + Z, where the entries of Z are independent
Gaussian random variables with mean value 0 and variance σ 2. The noised generalized
phase retrieval problem is to estimate x from measurement Y . In this scenario, we apply
the Fisher information theory to evaluate the Cramer–Rao lower bound of any unbiased
estimator of signal x. The Fisher information matrix is defined entrywise by

(
I(x)

)
m,	 = –E

[
∂ log p(y; x)

∂xm

∂ log p(y; x)
∂x	

]
,
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where p(y; x) is the probability density function of random vector Y with vector parameter
x and the expectation E is taken with respect to p(y; x), resulting in a function of x only.
As assumption, Y is a random vector with probability density function

p(y; x) =
1

(2πσ 2)m/2 e– 1
2σ2 ‖y–ϕ(x)‖2

, y ∈X, x ∈ Θ .

By some regular computations, the Fisher information matrix entry (I(x))m,	 equals

(
I(x)

)
m,	 =

1
σ 2

m∑

j=1

∂

∂xm
ϕj(x)

∂

∂x	

ϕj(x), (3.1)

where ϕj(x) is the jth element of ϕ(x).
We are now ready to state the Cramer–Rao lower bound theorem.

Theorem 3.1 It is assumed that the probability density function p(y; x) satisfies conditions
in an open set Θ ⊂R

n as follows:
(1) For any y ∈X and x ∈ Θ , the probability density function p(y; x) > 0;
(2) The derivative ∂p(y; x)/∂xj exists and

∫

X

∂p(y; x)
∂xj

dy = 0, 1 ≤ j ≤ n;

(3) The expectation E| ∂ log p(y;x)
∂xi

∂ log p(y;x)
∂xj

| is finite and the Fisher information matrix is
positive semidefinite.

For any unbiased estimator δ̂(y) of a differentiable function g(x), if integration and dif-
ferentiation by x can be interchanged in

∫
X

δ̂j(y)p(y; x) dy, then we have

Cov
(
δ̂(y)

) ≥ D(x)I†(x)D(x)T , (3.2)

where I†(x) is the Moore–Penrose inverse of the Fisher information matrix I(x) and D(x) is
the matrix with elements ∂gi(x)/∂xj.

Proof Define the vector-valued function S = (S1, S2, . . . , Sn)T , where Sj = ∂p(y; x)/∂xj . Con-
dition (2) implies that E[S] = 0. By condition (3), the covariance matrix Cov(S) exists and
is exactly the Fisher information matrix I(x). The condition assumed on the estimator δ̂

gives

Cov

(
δ̂i(y),

∂p(y; x)
∂xj

)
=

∂gi(x)
∂xj

.

Therefore, we have

0 ≤ Cov

(
δ̂

S

)

=

(
Cov(δ̂) D(x)
D(x)T

I(x)

)

.

Since I(x) is positive semidefinite and the set Θ is open, we have the desired inequality
(3.2). In fact, if this is not the case, there exists a nonzero vector ξ such that

ξT Cov(δ̂)ξ – ξT D(x)I†(x)D(x)Tξ < 0.
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By taking η = (ξT , (–I†(x)D(x)Tξ )T )T , matrix multiplication shows that

ηT Cov

(
δ̂

S

)

η = ξT Cov(δ̂)ξ – ξT D(x)I†(x)D(x)Tξ < 0.

This contradicts Cov
(

δ̂

S

) ≥ 0. �

3.1 Cramer–Rao lower bound of GPR
Since we consider phase retrieval of complex signals, the above theorem can not be used
directly. We still deal with this by realification of complex vectors and matrices. Let ξ = j(x)
be the realification of x. Then we have ϕ(x) = x∗Ajx = ξTτ (Aj)ξ . We use ξ to take the place
of x in formula (3.1). Consequently, we get the Fisher information matrix

(
I(ξ )

)
m,	 =

4
σ 2

m∑

j=1

τ (Aj)ξξTτ (Aj).

In order to obtain a unique solution, we make an assumption of the signal x introduced
in [1]: the signal x satisfies 〈x, z0〉 > 0 for a fixed normalized vector z0 ∈ C

n. Define Hz0 =
{ξ = j(x) : 〈x, z0〉 > 0, x ∈ C

n}. We have the Cramer–Rao lower bound of the noised GPR
problem as follows.

Theorem 3.2 Assume that the nonlinear map MA is injective and fix a vector z0 ∈ C
n.

For any vector x ∈ C
n with 〈x, z0〉 > 0, the covariance of any unbiased estimator δ̂ of x is

bounded below by the Cramer–Rao lower bound given by

Cov
(
j(δ̂)

) ≥ σ 2

4

( m∑

j=1

τ (Aj)ξξTτ (Aj)

)†

, ξ ∈ Hz0 , (3.3)

where † denotes the Moore–Penrose pseudoinverse operator. In particular, the mean-square
error of δ̂ is bounded below by

MSE(δ̂) = E
[‖x – δ̂‖2] ≥ σ 2

4
Tr

{( m∑

j=1

τ (Aj)ξξTτ (Aj)

)†}

. (3.4)

Proof By taking g(ξ ) = ξ , inequality (3.3) is the direct result of applying Theorem 3.1
to j(δ̂), the realification of δ̂. Taking trace of inequality (3.3) and considering ‖x – δ̂‖ =
‖ξ – j(δ̂)‖, we get inequality (3.4). �

3.2 Cramer–Rao lower bound of GAPR
In this subsection, we need not make an extra assumption to guarantee the uniqueness
since the signal can be retrieved exactly with the generalized affine phase retrievable set.
Furthermore, one can prove that if the pair (B, b) is generalized affine phase retrievable,
then the collection {BT

j Bj}m
j=1 is a g-frame for Cn. We denote the upper frame bound by �,

which means

m∑

j=1

∥
∥BT

J Bjx
∥
∥2 ≤ �‖x‖2.
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In the noised GAPR problem, we have

ϕ(x) =
(‖Bjx + bj‖

)m
j=1 =

(∥∥τ (Bj)ξ + j(bj)
∥
∥)m

j=1.

Define Ra
x =

∑m
j=1 BT

j (Bjx + bj)(Bjx + bj)T Bj. By direct computation, the Fisher information
matrix of the noised GAPR problem is given by

I
a(ξ ) =

4
σ 2 τ

(
Ra

x
)

=
m∑

j=1

τ
(
BT

j
)(

τ (Bj)ξ + j(bj)
)(

τ (Bj)ξ + j(bj)
)T

τ (Bj).

Theorem 3.3 The Fisher information matrix for the noised generalized affine phase re-
trieval model is 4

σ 2 τ (Ra
x). Consequently, for any unbiased estimator δ̂ of x, the covariance

matrix is bounded below by the Cramer–Rao lower bound as follows:

Cov
[
j(δ̂)

] ≥ (
I

a(x)
)–1 =

σ 2

4
(
τ
(
Ra

x
))–1. (3.5)

Therefore, the mean square error of any unbiased estimator δ̂ is given by

E
[‖x – δ̂‖2] ≥ σ 2n2

16(�‖x‖2 + C)
.

Proof By applying Theorem 3.2 in [13] to the realification model Y = ϕ(x) + Z, we get
inequality (3.5) directly. Taking trace of the two sides of inequality (3.5) yields

E
[‖x – δ̂‖2] ≥ σ 2

4
Tr

((
τ
(
Ra

x
))–1).

Since Tr(Q) · Tr(Q–1) ≥ n2 holds for any invertible n × n matrix Q, we have

Tr
((

τ
(
Ra

x
))–1) ≥ n2

Tr(τ (Ra
x))

. (3.6)

Furthermore, the g-frame property of the collection {BT
j Bj}m

j=1 gives

Tr τ
(
Ra

x
)

= 2 Tr
(
Ra

x
)

= 2
m∑

j=1

∥∥BT
j Bjx + BT

j bj
∥∥2 ≤ 4�‖x‖2 + 4C,

where C =
∑m

j=1‖BT
j bj‖2. Substituting the above inequality into (3.6), we have

E
[‖x – δ̂‖2] ≥ σ 2

4
· n2

4(�‖x‖2 + C)
=

σ 2n2

16(�‖x‖2 + C)
. �

Acknowledgements
The authors would like to thank the referees for their useful comments and remarks.

Funding
This study was partially supported by the National Natural Science Foundation of China (Grant No. 11601152).

Availability of data and materials
Not applicable.



Zhuang Journal of Inequalities and Applications        (2019) 2019:316 Page 12 of 12

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 July 2019 Accepted: 12 December 2019

References
1. Balan, R.: Reconstruction of signals from magnitudes of redundant representations: the complex case. Found.

Comput. Math. 16(3), 677–721 (2016)
2. Balan, R., Casazza, P., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20(3), 345–356

(2006)
3. Balan, R., Wang, Y.: Invertibility and robustness of phaseless reconstruction. Appl. Comput. Harmon. Anal. 38(3),

469–488 (2015)
4. Bandeira, A.S., Cahill, J., Mixon, D.G., Nelson, A.A.: Saving phase: injectivity and stability for phase retrieval. Appl.

Comput. Harmon. Anal. 37(1), 106–125 (2014)
5. Bendory, T., Beinert, R., Eldar, Y.C.: Fourier phase retrieval: uniqueness and algorithms. In: Compressed Sensing and Its

Applications, Applied and Computational Harmonic Analysis, pp. 55–91. Springer, Cham (2017)
6. Buczolich, Z.: Density points and bi-Lipschitz functions in Rm . Proc. Am. Math. Soc. 116(1), 53–59 (1992)
7. Demanet, L., Jugnon, V.: Convex recovery from interferometric measurements. IEEE Trans. Comput. Imaging 3(2),

282–295 (2017)
8. Gao, B., Sun, Q., Wang, Y., Xu, Z.: Phase retrieval from the magnitudes of affine linear measurements. Adv. Appl. Math.

93, 121–141 (2018)
9. Heinosaari, T., Mazzarella, L., Wolf, M.M.: Quantum tomography under prior information. Commun. Math. Phys. 318(2),

355–374 (2013)
10. Huang, M., Xu, Z.: Phase retrieval from the norms of affine transformations (2018). arXiv:1805.07899
11. Huiser, A.M.J., Drenth, A.J.J., Ferwerda, H.A.: Phase retrieval in electron-microscopy from image and diffraction pattern.

Optik 45(4), 303–316 (1976)
12. Jaming, P.: Phase retrieval techniques for radar ambiguity problems. J. Fourier Anal. Appl. 5(4), 309–329 (1999)
13. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, New York (1993)
14. Millane, R.P.: Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A 7(3), 394–411 (1990)
15. Walther, A.: The question of phase retrieval in optics. Opt. Acta 10, 41–49 (1963)
16. Wang, Y., Xu, Z.: Generalized phase retrieval: measurement number, matrix recovery and beyond. Appl. Comput.

Harmon. Anal. 47(2), 423–446 (2019)
17. Zhuang, Z.: On stability of generalized phase retrieval and generalized affine phase retrieval. J. Inequal. Appl. 2019,

Article ID 14 (2019)

http://arxiv.org/abs/arXiv:1805.07899

	On stability of generalized (afﬁne) phase retrieval in the complex case
	Abstract
	MSC
	Keywords

	Introduction
	Bi-Lipschitz stability
	Stability of GPR
	Stability of GAPR

	Cramer-Rao stability
	Cramer-Rao lower bound of GPR
	Cramer-Rao lower bound of GAPR

	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


