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1 Introduction
The integral inequality provides a useful tool for investigating the existence, uniqueness,
boundedness and other qualitative properties of the solutions of differential equations
and integral equations and provides an explicit bound for unknown functions. Gronwall
established the essential integral inequality in 1919 [1]:

If u is a continuous function defined on the interval D = [α,α + h] and

0 ≤ u(t) ≤
∫ t

0

[
bu(s) + a

]
ds, ∀t ∈ D,

where a and b are nonnegative constants. Then

0 ≤ u(t) ≤ (ah) exp(bh), ∀t ∈ D.

Bellman proved the Gronwall–Bellman inequality [2] in 1943, which was one of the most
useful inequalities in the study of differential and integral equations:

If u and f are nonnegative continuous functions on an interval [a, b] satisfying

u(t) ≤ c +
∫ t

a
f (s)u(s) ds, t ∈ [a, b],
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for some constant c ≥ 0, then

u(t) ≤ c exp

(∫ t

a
f (s) ds

)
, t ∈ [a, b].

In the past few years, many scholars have extended the Gronwall–Bellman inequality
and applied it to many aspects. There can be found many generalizations and analogs of
it in various cases from literature (see [3–6]). In 2007, Jiang Fangcui and Meng Fanwei [3]
investigated the estimation of the unknown function of the integral inequality:

up(t) ≤ c +
∫ t

0
f (s)up(s) ds +

∫ t

0
h(s)uq(σ (s)

)
ds, ∀t ∈ [0,∞).

In recent years, many researchers have made a great contribution to studying weakly
singular integral inequalities and their applications (see [7, 8]). In [7], Xu Run and Meng
Fanwei studied the following weakly singular integral inequality:

⎧⎪⎪⎨
⎪⎪⎩

up(t) ≤ a(t) +
∫ t

t0
(t – s)β–1b(s)uq(s) ds +

∫ t
t0

(t – s)β–1c(s)ul(s – γ ) ds,

t ∈ [t0, T) ⊂ R+,

u(t) ≤ ϕ(t), t ∈ [t0 – γ , t0).

Ma and Pečairé [8] considered the following nonlinear singular inequalities:

up(t) ≤ a(t) + b(t)
∫ t

t0

(
tα – sα

)β–1sγ –1f (s)uq(s) ds, t ≥ 0.

In this paper, we extend certain results that were proved in [9, 10]. Abdeldaim and Yakout
[9] obtained the explicit bound to the unknown function of the following integral inequal-
ities:

u(t) ≤ u0 +
∫ t

0
f (s)u(s)

[
u(s) +

∫ s

0
g(λ)u(λ) dλ

]r

ds, ∀t ∈ [0,∞), (1)

un(t) ≤ u0 +
∫ t

0
f (s)un(s) ds +

∫ t

0
h(s)ul(s) ds, ∀t ∈ [0,∞), (2)

u(t) ≤ u0 +
[∫ t

0
f (s)u(s) ds

]2

+
∫ t

0
f (s)u(s)

[
u(s)

+ 2
∫ s

0
f (λ)u(λ) dλ

]
ds, ∀t ∈ [0,∞). (3)

In 2012, Wu-sheng Wang [10] studied the following integral inequality:

u(t) ≤ u0 +
∫ α(t)

0
f (s)ϕ1

(
u(s)

)[
u(s) +

∫ s

0
g(λ)ϕ2

(
u(λ)

)
dλ

]r

ds. (4)

In 2017, Wang and Huang [11] studied the weakly singular integral inequality:

u(t) ≤ b(t) +
∫ t

a
(t – s)β–1f1(s)ϕ1

(
u(s)

){
u(s) +

∫ s

a
(s – τ )β–1f2(τ )

× ϕ2
(
u(τ )

)[
u(τ ) +

∫ τ

a
(τ – ξ )β–1f3(ξ )ϕ3

(
u(ξ )

)
dξ

]
dτ

}
ds. (5)
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The aim of this paper is to extend certain results that were proved in [9, 10], and general-
ize (1)–(4) to some weakly singular integral inequalities. The upper bound estimations of
the unknown functions are given by means of discrete Jensen inequality, the Hölder inte-
gral inequality and amplification techniques. Furthermore, we apply our result to integral
equations for estimation.

2 Preliminaries and basic lemmas
In this section,we give some lemmas.

Lemma 2.1 ([12]; Hölder integral inequality) We assume that f (x) and g(x) are nonnega-
tive continuous functions defined on [c, d] and p > 1, 1

p + 1
q = 1, then we have

∫ d

c
f (x)g(x) dx ≤

(∫ d

c
f p(x) dx

) 1
p
(∫ d

c
gq(x) dx

) 1
q

. (6)

Lemma 2.2 ([12]) If β ∈ (0, 1
2 ], p = 1 + β , then

∫ t

t0

(t – s)p(β–1)eps ds ≤ ept

p1+p(β–1) Γ
(
1 + p(β – 1)

)
, ∀t0 ∈ R+, (7)

where Γ (β) =
∫ ∞

0 τβ–1e–τ dτ is the Gamma function.

Lemma 2.3 ([13]; Discrete Jensen inequality) Let A1, A2, . . . , An, l > 1 be nonnegative real-
valued constants and n a constant natural number, then

(A1 + A2 + · · · + An)l ≤ nl–1(Al
1 + Al

2 + · · · + Al
n
)
. (8)

3 Main results
In this section, we discuss some nonlinear weakly singular integral inequalities. Through-
out this paper, let I = [t0,∞).

Theorem 3.1 We assume that β ∈ (0, 1
2 ] is a constant, u(t), f (t) and g(t) are nonnegative

and nondecreasing real-valued continuous functions defined on I and satisfy the inequality

u(t) ≤ u0 +
∫ t

t0

(t – s)β–1f (s)u(s)
[

u(s)

+
∫ s

t0

(s – λ)β–1g(λ)u(λ) dλ

]r

ds, ∀t ∈ I,

2(q–1)(2r+1)urq
0 rP(t)

∫ t

t0

f q(s)e–qsC1(s) ds < 1, ∀t ∈ I,

(9)

where u0 and r are positive constants. Then

u(t) ≤ 2
q–1

q u0

[
exp

(∫ t

t0

2(q–1)(r+1)P(s)f q(s)e–qsB1(s) ds
)] 1

q
, ∀t ∈ I, (10)
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where

P(t) =
[

ept

p1+p(β–1) Γ
(
1 + p(β – 1)

)] q
p

, (11)

B1(t) =
(2q–1uq

0)rC1(t)
1 – 2(q–1)(2r+1)urq

0 rP(t)
∫ t

t0
f q(s)e–qsC1(s) ds

, ∀t ∈ I, (12)

C1(t) = exp

(
rP(t)

∫ t

t0

gq(s)e–qs ds
)

, ∀t ∈ I, (13)

and p = 1 + β , q = 1+β

β
.

Proof Using (6) and (7), from (9) we get

u(t) ≤ u0 +
∫ t

t0

(t – s)β–1esf (s)e–su(s)
[

u(s)

+
∫ s

t0

(s – λ)β–1g(λ)u(λ) dλ

]r

ds

≤ u0 +
[

ept

p1+p(β–1) Γ
(
1 + p(β – 1)

)] 1
p
{∫ t

t0

f q(s)e–qsuq(s)
[

u(s)

+
∫ s

t0

(s – λ)β–1g(λ)u(λ) dλ

]rq

ds
} 1

q
, ∀t ∈ I. (14)

Using (8), from (14) we have

uq(t) ≤ 2q–1uq
0 + 2q–1P(t)

∫ t

t0

f q(s)e–qsuq(s)
[

u(s)

+
∫ s

t0

(s – λ)β–1g(λ)u(λ) dλ

]rq

ds, ∀t ∈ I, (15)

where P(t) is defined by (11).
Also using (6), (7) and (8), ∀t ∈ I , we have

[
u(s) +

∫ s

t0

(s – λ)β–1g(λ)u(λ) dλ

]rq

≤
[

2q–1uq(s) + 2q–1P(s)
∫ s

t0

gq(λ)e–qλuq(λ) dλ

]r

. (16)

Substituting (16) into (15) we get

uq(t) ≤ 2q–1uq
0 + 2q–1P(t)

∫ t

t0

f q(s)e–qsuq(s)
[

2q–1uq(s)

+ 2q–1P(s)
∫ s

t0

gq(λ)e–qλuq(λ) dλ

]r

ds

≤ 2q–1uq
0 + 2(q–1)(r+1)P(T)

∫ t

t0

f q(s)e–qsuq(s)
[

uq(s)
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+ P(T)
∫ s

t0

gq(λ)e–qλuq(λ) dλ

]r

ds, (17)

for all t ∈ [t0, T], where t0 < T < ∞ is chosen arbitrarily.
Let z1(t) equal the right hand side in (17), we have z1(t0) = 2q–1uq

0 and

u(t) ≤ z
1
q
1 (t). (18)

Differentiating z1(t) with respect to t, and using (18) we obtain

dz1(t)
dt

= 2(q–1)(r+1)P(T)f q(t)e–qtuq(t)
[

uq(t)

+ P(T)
∫ t

t0

gq(λ)e–qλuq(λ) dλ

]r

≤ 2(q–1)(r+1)P(T)f q(t)e–qtz1(t)
[

z1(t)

+ P(T)
∫ t

t0

gq(λ)e–qλz1(λ) dλ

]r

, ∀t ∈ [t0, T]. (19)

Letting z2(t) = z1(t) + P(T)
∫ t

t0
gq(λ)e–qλz1(λ) dλ, we have z2(t0) = 2q–1uq

0 and

z1(t) ≤ z2(t). (20)

Differentiating z2(t) with respect to t, and using (19) and (20) we have

dz2(t)
dt

=
dz1(t)

dt
+ P(T)gq(t)e–qtz1(t)

≤ 2(q–1)(r+1)P(T)f q(t)e–qtzr+1
2 (t) + P(T)gq(t)e–qtz2(t),

for all t ∈ [t0, T], but z2(t) > 0 (where u0 > 0), then we have

z–(r+1)
2 (t)

dz2(t)
dt

– P(T)gq(t)e–qtz–r
2 (t) ≤ 2(q–1)(r+1)P(T)f q(t)e–qt . (21)

If we let

S1(t) = z–r
2 (t), ∀t ∈ [t0, T], (22)

then we get S1(t0) = z–r
2 (t0) = (2q–1uq

0)–r , thus from (21) and (22) we obtain

dS1(t)
dt

+ rP(T)gq(t)e–qtS1(t) ≥ –r2(q–1)(r+1)P(T)f q(t)e–qt , ∀t ∈ [t0, T].

The above inequality implies the following estimation for S1(t):

S1(t) ≥ (2q–1uq
0)–r –

∫ t
t0

r2(q–1)(r+1)P(T)f q(s)e–qsc1(s) ds
c1(t)

, ∀t ∈ [t0, T],

where c1(t) = exp
∫ t

t0
rP(T)gq(s)e–qs ds.
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Let t = T , because t0 < T < ∞ is chosen arbitrarily, we get

S1(t) ≥ 1 – 2(q–1)(2r+1)urq
0 rP(t)

∫ t
t0

f q(s)e–qsC1(s) ds
(2q–1uq

0)rC1(t)
, ∀t ∈ I, (23)

where C1(t) is defined by (13). Then from (23) in (22), we have

zr
2(t) ≤ (2q–1uq

0)rC1(t)
1 – 2(q–1)(2r+1)urq

0 rP(t)
∫ t

t0
f q(s)e–qsC1(s) ds

= B1(t), ∀t ∈ I,

where B1(t) is defined by (12), thus from (19) we have

dz1(t)
dt

≤ 2(q–1)(r+1)P(t)f q(t)e–qtz1(t)B1(t), ∀t ∈ I,

the above inequality implies an estimation for z1(t) as in the following:

z1(t) ≤ 2q–1uq
0 exp

(∫ t

t0

2(q–1)(r+1)P(s)f q(s)e–qsB1(s) ds
)

, ∀t ∈ I, (24)

and from (18) and (24) we have

u(t) ≤ 2
q–1

q u0

[
exp

(∫ t

t0

2(q–1)(r+1)P(s)f q(s)e–qsB1(s) ds
)] 1

q
, ∀t ∈ I. �

Theorem 3.2 We assume that β ∈ (0, 1
2 ] is a constant, u(t), f (t) and g(t) are nonnegative

and nondecreasing real-valued continuous functions defined on I . Suppose ϕ1,ϕ2 ∈ C1(I, I)
are increasing functions with ϕi(t) > 0, ∀t > t0, i = 1, 2, and ϕ1

ϕ2
is increasing and nonnegative

function too. If the inequality

u(t) ≤ u0 +
∫ t

t0

(t – s)β–1f (s)ϕ1
(
u(s)

)[
u(s)

+
∫ s

t0

(s – λ)β–1g(λ)ϕ2
(
u(λ)

)
dλ

]r

ds, ∀t ∈ I, (25)

is satisfied, where u0 and r are positive constants, then

u(t) ≤ {
Φ–1

1
[
Φ–1

2
[
U(t)

]]} 1
q , ∀t ∈ I, (26)

where P(t) is defined as (11), p = 1 + β , q = 1+β

β
and

U(t) = Φ2

[
Φ1

(
2q–1uq

0
)

+
∫ t

t0

P(s)gq(s)e–qs ds
]

+
∫ t

t0

2(q–1)(r+1)P(s)f q(s)e–qs ds, ∀t ∈ I, (27)

Φ1 =
∫ k

1

ds

ϕ
q
2 (s

1
q )

, k > 0, (28)
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Φ2 =
∫ k

1

ϕ
q
2 [[Φ–1

1 (s)]
1
q ]

ϕ
q
1 [[Φ–1

1 (s)]
1
q ][Φ–1

1 (s)]r
ds, k > 0, (29)

and satisfied U(t) ≤ Φ2(∞), Φ–1
2 [U(t)] ≤ Φ1(∞).

Proof Using (6) and (7), from (25) we get

u(t) ≤ u0 +
∫ t

t0

(t – s)β–1esf (s)e–sϕ1
(
u(s)

)[
u(s)

+
∫ s

t0

(s – λ)β–1g(λ)ϕ2
(
u(λ)

)
dλ

]r

ds

≤ u0 +
[

ept

p1+p(β–1) Γ
(
1 + p(β – 1)

)] 1
p
{∫ t

t0

f q(s)e–qsϕ
q
1
(
u(s)

)[
u(s)

+
∫ s

t0

(s – λ)β–1g(λ)ϕ2
(
u(λ)

)
dλ

]rq

ds
} 1

q
, ∀t ∈ I. (30)

Using (8), from (30) we have

uq(t) ≤ 2q–1uq
0 + 2q–1P(t)

∫ t

t0

f q(s)e–qsϕ
q
1
(
u(s)

)[
u(s)

+
∫ s

t0

(s – λ)β–1g(λ)ϕ2
(
u(λ)

)
dλ

]rq

ds, ∀t ∈ I, (31)

where P(t) is defined by (11).
Also using (6), (7) and (8), ∀t ∈ I , we have

[
u(s) +

∫ s

t0

(s – λ)β–1g(λ)ϕ2
(
u(λ)

)
dλ

]rq

≤
[

2q–1uq(s) + 2q–1P(s)
∫ s

t0

gq(λ)e–qλϕ
q
2
(
u(λ)

)
dλ

]r

. (32)

Substituting (32) into (31) we get

uq(t) ≤ 2q–1uq
0 + 2q–1P(t)

∫ t

t0

f q(s)e–qsϕ
q
1
(
u(s)

)[
2q–1uq(s)

+ 2q–1P(s)
∫ s

t0

gq(λ)e–qλϕ
q
2
(
u(λ)

)
dλ

]r

ds

≤ 2q–1uq
0 + 2(q–1)(r+1)P(T)

∫ t

t0

f q(s)e–qsϕ
q
1
(
u(s)

)[
uq(s)

+ P(T)
∫ s

t0

gq(λ)e–qλϕ
q
2
(
u(λ)

)
dλ

]r

ds, (33)

for all t ∈ [t0, T], where t0 < T < ∞ is chosen arbitrarily.
Let z3(t) equal the right hand side in (33), we have z3(t0) = 2q–1uq

0 and

u(t) ≤ z
1
q
3 (t). (34)
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Differentiating z3(t) with respect to t, and using (34) we obtain

dz3(t)
dt

= 2(q–1)(r+1)P(T)f q(t)e–qtϕ
q
1
(
u(t)

)[
uq(t)

+ P(T)
∫ t

t0

gq(λ)e–qλϕ
q
2
(
u(λ)

)
dλ

]r

≤ 2(q–1)(r+1)P(T)f q(t)e–qtϕ
q
1
(
z

1
q
3 (t)

)[
z3(t)

+ P(T)
∫ t

t0

gq(λ)e–qλϕ
q
2
(
z

1
q
3 (λ)

)
dλ

]r

, ∀t ∈ [t0, T]. (35)

Letting z4(t) = z3(t) + P(T)
∫ t

t0
gq(λ)e–qλϕ

q
2 (z

1
q
3 (λ)) dλ, then we have z4(t0) = 2q–1uq

0 and

z3(t) ≤ z4(t). (36)

Differentiating z4(t) with respect to t, and using (35) and (36) we have

dz4(t)
dt

=
dz3(t)

dt
+ P(T)gq(t)e–qtϕ

q
2
(
z

1
q
4 (t)

)

≤ 2(q–1)(r+1)P(T)f q(t)e–qtϕ
q
1
(
z

1
q
4 (t)

)
zr

4(t)

+ P(T)gq(t)e–qtϕ
q
2
(
z

1
q
4 (t)

)
, ∀t ∈ [t0, T]. (37)

Since ϕ
q
2 (z

1
q
4 (t)) > 0, ∀t > t0, we have

dz4(t)
dt

ϕ
q
2 (z

1
q
4 (t))

≤ P(T)gq(t)e–qt

+
2(q–1)(r+1)P(T)f q(t)e–qtϕ

q
1 (z

1
q
4 (t))zr

4(t)

ϕ
q
2 (z

1
q
4 (t))

, ∀t ∈ [t0, T]. (38)

By taking t = s in (38) and integrating it from t0 to t, and using (28) we get

Φ1
(
z4(t)

) ≤ Φ1
(
z4(t0)

)
+

∫ t

t0

P(T)gq(s)e–qs ds

+
∫ t

t0

2(q–1)(r+1)P(T)f q(s)e–qsϕ
q
1 (z

1
q
4 (s))zr

4(s)

ϕ
q
2 (z

1
q
4 (s))

ds

≤ Φ1
(
z4(t0)

)
+

∫ T

t0

P(T)gq(s)e–qs ds

+
∫ t

t0

2(q–1)(r+1)P(T)f q(s)e–qsϕ
q
1 (z

1
q
4 (s))zr

4(s)

ϕ
q
2 (z

1
q
4 (s))

ds (39)

for all t ∈ [t0, T], where Φ1 is defined by (28).
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Let z5(t) equal the right hand side in (39), we have z5(t0) = Φ1(2q–1uq
0) +

∫ T
t0

P(T)gq(s) ×
e–qs ds, and

z4(t) ≤ Φ–1
1

(
z5(t)

)
. (40)

Differentiating z5(t) with respect to t, and using (40) we get

dz5(t)
dt

=
2(q–1)(r+1)P(T)f q(t)e–qtϕ

q
1 (z

1
q
4 (t))zr

4(t)

ϕ
q
2 (z

1
q
4 (t))

≤ 2(q–1)(r+1)P(T)f q(t)e–qtϕ
q
1 [(Φ–1

1 (z5(t)))
1
q ][Φ–1

1 (z5(t))]r

ϕ
q
2 [(Φ–1

1 (z5(t)))
1
q ]

, (41)

for all t ∈ [t0, T].
By taking t = s in (41) and integrating it from t0 to t, and using (29) we get

Φ2
(
z5(t)

) ≤ Φ2
(
z5(t0)

)
+

∫ t

t0

2(q–1)(r+1)P(T)f q(s)e–qs ds, ∀t ∈ [t0, T]. (42)

Let t = T , from (42) we have

Φ2
(
z5(T)

) ≤ Φ2
(
z5(t0)

)
+

∫ T

t0

2(q–1)(r+1)P(T)f q(s)e–qs ds, ∀t ∈ [t0, T]. (43)

Because t0 < T < ∞ is chosen arbitrarily, from (34), (36) and (40), we have

u(t) ≤ {
Φ–1

1
[
Φ–1

2
[
U(t)

]]} 1
q , ∀t ∈ I,

where U(t) is defined by (27). �

Remark It is interesting to note that in the special case when ϕ1(t) = t and ϕ2(t) = t the
inequality given in Theorem 3.2 reduces to Theorem 3.1.

Theorem 3.3 We assume that β ∈ (0, 1
2 ] is a constant, u(t), f (t) and h(t) are nonnegative

real-valued continuous functions defined on I , and they satisfy the inequality

un(t) ≤ u0 +
∫ t

t0

(t – s)β–1f (s)un(s) ds +
∫ t

t0

(t – s)β–1h(s)ul(s) ds, ∀t ∈ I, (44)

where u0 > 0, and n > l ≥ 0 are constants. Then

u(t) ≤ exp

(
1

nq
ω1(t)

){(
3q–1uq

0
)n1 + 3q–1P(t)n1

×
∫ t

t0

hq(s)e–qs[exp
(
–n1ω1(s)

)]} 1
(n–l)q

, ∀t ∈ I, (45)

where P(t) is defined by (11), n1 = n–l
n , p = 1 + β , q = 1+β

β
and

ω1(t) = 3q–1P(t)
∫ t

t0

f q(s)e–qs ds, ∀t ∈ I. (46)
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Proof Using (6) and (7), from (44) we get

un(t) ≤ u0 +
∫ t

t0

(t – s)β–1esf (s)e–sun(s) ds

+
∫ t

t0

(t – s)β–1esh(s)e–sul(s) ds

≤ u0 +
[

ept

p1+p(β–1) Γ
(
1 + p(β – 1)

)] 1
p
[∫ t

t0

f q(s)e–qsunq(s) ds
] 1

q

+
[

ept

p1+p(β–1) Γ
(
1 + p(β – 1)

)] 1
p
[∫ t

t0

hq(s)e–qsulq(s) ds
] 1

q
,

∀t ∈ I. (47)

Using (8) and from (47) we have

unq(t) ≤ 3q–1uq
0 + 3q–1P(t)

∫ t

t0

f q(s)e–qsunq(s) ds

+ 3q–1P(t)
∫ t

t0

hq(s)e–qsulq(s) ds

≤ 3q–1uq
0 + 3q–1P(T)

[∫ t

t0

f q(s)e–qsunq(s) ds

+
∫ t

t0

hq(s)e–qsulq(s) ds
]

, (48)

for all t ∈ [t0, T], where t0 < T < ∞ is chosen arbitrarily, and P(t) is defined by (11).
Let zn

6(t) equal the right hand side in (48), we have z6(t0) = (3q–1uq
0) 1

n and

u(t) ≤ z
1
q
6 (t). (49)

Differentiating zn
6(t) with respect to t, and using (48) and (49) we have

nzn–1
6 (t)

dz6(t)
dt

= 3q–1P(T)
[
f q(t)e–qtunq(t) + hq(t)e–qtulq(t)

]

≤ 3q–1P(T)
[
f q(t)e–qtzn

6(t) + hq(t)e–qtzl
6(t)

]
, ∀t ∈ [t0, T]. (50)

Since u0 > 0 we have z6(t) > 0. Thus, we have

nzn–l–1
6 (t)

dz6(t)
dt

≤ 3q–1P(T)f q(t)e–qtzn–l
6 (t)

+ 3q–1P(T)hq(t)e–qt , ∀t ∈ [t0, T], (51)

if we let

zn–l
6 (t) = z7(t), ∀t ∈ [t0, T], (52)
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then we have z7(t0) = (3q–1uq
0)n1 , and nzn–l–1

6 (t) dz6(t)
dt = 1

n1
dz7(t)

dt , thus from (51) we obtain

dz7(t)
dt

≤ 3q–1P(T)n1f q(t)e–qtz7(t) + 3q–1P(T)n1hq(t)e–qt , ∀t ∈ [t0, T]. (53)

The inequality (53) implies the estimation for z7(t), as

z7(t) ≤ exp

(
n13q–1P(T)

∫ t

t0

f q(s)e–qs ds
){(

3q–1uq
0
)n1 + 3q–1P(T)n1

×
∫ t

t0

hq(s)e–qs
[

exp

(
–n13q–1P(T)

∫ s

t0

f q(λ)e–qλ dλ

)]
ds

}
, (54)

for all t ∈ [t0, T].
Letting t = T , because t0 < T < ∞ is chosen arbitrarily, then we get

z7(t) ≤ exp
(
n1ω1(t)

){(
3q–1uq

0
)n1 + 3q–1P(t)n1

×
∫ t

t0

hq(s)e–qs[exp
(
–n1ω1(s)

)]
ds

}
, ∀t ∈ I, (55)

where ω1(t) is defined by (46).
Then from (55) in (52), we have

z6(t) ≤ exp

(
1
n

ω1(t)
){(

3q–1uq
0
)n1 + 3q–1P(t)n1

×
∫ t

t0

hq(s)e–qs[exp
(
–n1ω1(s)

)]
ds

} 1
n–l

, ∀t ∈ I, (56)

thus from (49) we can get (45). �

Theorem 3.4 We assume that β ∈ (0, 1
2 ] is a constant, u(t) and f (t) are nonnegative real-

valued continuous functions defined on I , and they satisfy the inequality

u(t) ≤ u0 +
[∫ t

t0

(t – s)β–1f (s)u(s) ds
]2

+
∫ t

t0

(t – s)β–1f (s)u(s)
[

u(s)

+ 2
∫ s

t0

(s – λ)β–1f (λ)u(λ) dλ

]
ds, ∀t ∈ I,

108q–1P2(t)uq
0

∫ t

t0

f q(s)e–qs[exp
(
ω2(s)

)]
ds < 1,

(57)

where u0 > 0 is constant. Then

u(t) ≤ 3
q–1

q u0 exp

[
1
q

∫ t

t0

f q(s)e–qsB2(s) ds
]

, ∀t ∈ I, (58)

where

B2(t) =
18q–1P(t)uq

0 exp(ω2(t))
1 – 108q–1P2(t)uq

0
∫ t

t0
f q(s)e–qs[exp(ω2(s))] ds

, ∀t ∈ I, (59)



Yan and Meng Journal of Inequalities and Applications        (2019) 2019:319 Page 12 of 16

where ω2(t) = 2 × 3q–1(1 + 2q–1)P2(t)
∫ t

t0
f q(s)e–qs ds, p = 1 + β , q = 1+β

β
, and P(t) is defined

by (11).

Proof Using (6) and (7), from (57) we get

u(t) ≤ u0 +
[∫ t

t0

(t – s)β–1esf (s)e–su(s) ds
]2

+
∫ t

t0

(t – s)β–1esf (s)e–su(s)
[

u(s) + 2
∫ s

t0

(s – λ)β–1f (λ)u(λ) dλ

]
ds

≤ u0 +
[(

ept

p1+p(β–1) Γ
(
1 + p(β – 1)

)) 1
p
(∫ t

t0

f q(s)e–qsuq(s) ds
) 1

q
]2

+
(

ept

p1+p(β–1) Γ
(
1 + p(β – 1)

)) 1
p
{∫ t

t0

f q(s)e–qsuq(s)
[

u(s)

+ 2
∫ s

t0

(s – λ)β–1f (λ)u(λ) dλ

]q

ds
} 1

q
, ∀t ∈ I. (60)

Using (8) and from (60) we have

uq(t) ≤ 3q–1uq
0 + 3q–1P2(t)

[∫ t

t0

f q(s)e–qsuq(s) ds
]2

+ 3q–1P(t)
∫ t

t0

f q(s)e–qsuq(s)
[

u(s)

+ 2
∫ s

t0

(s – λ)β–1f (λ)u(λ) dλ

]q

ds, ∀t ∈ I, (61)

where P(t) is defined by (11).
Also using (6), (7) and (8), ∀t ∈ I , we have

[
u(s) + 2

∫ s

t0

(s – λ)β–1f (λ)u(λ) dλ

]q

≤ 2q–1uq(s) + 2 × 2q–1P(s)
∫ s

t0

f q(λ)e–qλuq(λ) dλ. (62)

Substituting (62) into (61) we get

uq(t) ≤ 3q–1uq
0 + 3q–1P2(t)

[∫ t

t0

f q(s)e–qsuq(s) ds
]2

+ 6q–1P(t)

×
∫ t

t0

f q(s)e–qsuq(s)
[

uq(s) + 2P(s)
∫ s

t0

f q(λ)e–qλuq(λ) dλ

]
ds

≤ 3q–1uq
0 + 3q–1P2(T)

[∫ t

t0

f q(s)e–qsuq(s) ds
]2

+ 6q–1P(T)

×
∫ t

t0

f q(s)e–qsuq(s)
[

uq(s) + 2P(T)
∫ s

t0

f q(λ)e–qλuq(λ) dλ

]
ds, (63)

for all t ∈ [t0, T], where t0 < T < ∞ is chosen arbitrarily.
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Let z8(t) equal the right hand side in (63), we have z8(t0) = 3q–1uq
0 and

u(t) ≤ z
1
q
8 (t). (64)

Differentiating z8(t) with respect to t, and using (64) we obtain

dz8(t)
dt

= 2 × 3q–1P2(T)f q(t)e–qtuq(t)
∫ t

t0

f q(s)e–qsuq(s) ds

+ 6q–1P(T)f q(t)e–qtuq(t)
[

uq(t) + 2P(T)
∫ t

t0

f q(s)e–qsuq(s) ds
]

≤ f q(t)e–qtz8(t)
[

6q–1P(T)z8(t) + 2 × 3q–1(1 + 2q–1)P2(T)

×
∫ t

t0

f q(s)e–qsz8(s) ds
]

= f q(t)e–qtz8(t)Y (t), ∀t ∈ [t0, T], (65)

where Y (t) = 6q–1P(T)z8(t) + 2 × 3q–1(1 + 2q–1)P2(T)
∫ t

t0
f q(s)e–qsz8(s) ds, hence Y (t0) =

18q–1P(T)uq
0, and z8(t) ≤ Y (t).

Differentiating Y (t) with respect to t and using (65) we obtain

dY (t)
dt

≤ 6q–1P(T)f q(t)e–qtY 2(t)

+ 2 × 3q–1(1 + 2q–1)P2(T)f q(t)e–qtY (t), ∀t ∈ [t0, T]. (66)

Since Y (t) > 0, we have

Y –2(t)
dY (t)

dt
≤ 2 × 3q–1(1 + 2q–1)P2(T)f q(t)e–qtY –1(t)

+ 6q–1P(T)f q(t)e–qt , ∀t ∈ [t0, T]. (67)

If we let

S2(t) = Y –1(t), ∀t ∈ [t0, T], (68)

then we get S2(t0) = Y –1(t0) = (18q–1P(T)uq
0)–1 and Y –2(t) dY (t)

dt = – dS2(t)
dt , thus from (67) we

obtain

dS2(t)
dt

≥ –2 × 3q–1(1 + 2q–1)P2(T)f q(t)e–qtS2(t)

– 6q–1P(T)f q(t)e–qt , ∀t ∈ [t0, T]. (69)

The above inequality implies the following estimation for S2(t):

S2(t) ≥ 1 – 108q–1P2(T)uq
0
∫ t

t0
f q(s)e–qs exp(c2(s)) ds

18q–1P(T)uq
0 exp(c2(t))

, ∀t ∈ [t0, T],

where c2(t) = 2 × 3q–1(1 + 2q–1)P2(T)
∫ t

t0
f q(s)e–qs ds.
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Let t = T , because t0 < T < ∞ is chosen arbitrarily, then we get

S2(t) ≥ 1 – 108q–1P2(t)uq
0
∫ t

t0
f q(s)e–qs exp(ω2(s)) ds

18q–1P(t)uq
0 exp(ω2(t))

, ∀t ∈ I, (70)

then from (68) and (70) we obtain

Y (t) ≤ 18q–1P(t)uq
0 exp(ω2(t))

1 – 108q–1P2(t)uq
0
∫ t

t0
f q(s)e–qs[exp(ω2(s))] ds

= B2(t), ∀t ∈ I,

where B2(t) is defined by (59), thus from (65) we have

dz8(t)
dt

≤ f q(t)e–qtz8(t)B2(t), ∀t ∈ I.

The above inequality implies the following estimation for z8(t):

z8(t) ≤ 3q–1uq
0 exp

(∫ t

t0

f q(s)e–qsB2(s) ds
)

. (71)

Then from (64) we get (58). �

4 Application
In this section, we present two applications of our results to the estimation of unknown
functions of the integral equations.

As an application of the inequality given in Theorem 3.1, we consider the following in-
tegral equation:

x(t) = x0 +
∫ t

t0

(t – s)β–1F1

(
s, x(s),

∫ s

t0

(s – τ )β–1F2
(
τ , x(τ )

)
dτ

)
ds,

∀t ∈ I, (72)

where x0 is a positive constant. We assume that F1 ∈ C([t0,∞) × R2, R), F2 ∈ C([t0,∞) ×
R, R) satisfy the following conditions:

∣∣F1(t, x, y)
∣∣ ≤ f (t)|x|[|x| + |y|]r , (73)

∣∣F2(t, x)
∣∣ ≤ g(t)|x|, (74)

where f , g are nonnegative and nondecreasing real-valued continuous functions defined
on I .

Theorem 4.1 Consider the integral equation (72) and suppose that F1, F2 satisfy the con-
ditions (73) and (74), and f , g are nonnegative and nondecreasing real-valued continuous
functions defined on I . Then

x(t) ≤ 2
q–1

q x0

[
exp

(∫ t

t0

2(q–1)(r+1)P(t)f q(s)e–qsB3(s) ds
)] 1

q
, ∀t ∈ I,

1 – 2(q–1)(r+1)(2q–1xq
0
)rrP(t)

∫ t

t0

f q(s)e–qs exp

(
rP(t)

∫ s

t0

gq(τ )e–qτ dτ

)
ds < 1,

(75)
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where P(t) is defined by (11), p = 1 + β , q = 1+β

β
and

B3(t) =
(2q–1xq

0)r exp[rP(t)
∫ t

t0
gq(s)e–qs ds]

1 – 2(q–1)(r+1)(2q–1xq
0)rrP(t)

∫ t
t0

f q(s)e–qs exp[rP(t)
∫ s

t0
gq(τ )e–qτ dτ ] ds

.

Proof Substituting (73) and (74) into (72), we get

∣∣x(t)
∣∣ ≤ |x0| +

∫ t

t0

(t – s)β–1f (s)
∣∣x(s)

∣∣
[∣∣x(s)

∣∣

+
∫ s

t0

(s – τ )β–1g(τ )
∣∣x(τ )

∣∣dτ

]r

ds, ∀t ∈ I. (76)

Obviously, (76) satisfies the conditions of Theorem 3.1 and is of the form of (9). Applying
Theorem 3.1 to (76), we can get the estimation (75).

As an application of the inequality given in Theorem 3.4, we consider the following in-
tegral equation:

x(t) = x0 +
[∫ t

t0

(t – s)β–1F2
(
s, x(s)

)
ds

]2

+
∫ t

t0

(t – s)β–1F1

(
s, x(s),

∫ s

t0

(s – λ)β–1F2
(
λ, x(λ)

)
dλ

)
ds, ∀t ∈ I, (77)

where x0 is a positive constant. We assume that F1 ∈ C([t0,∞) × R2, R), F2 ∈ C([t0,∞) ×
R, R) satisfy the following conditions:

∣∣F1(t, x, y)
∣∣ ≤ f (t)|x|[|x| + 2|y|], (78)

∣∣F2(t, x)
∣∣ ≤ f (t)|x|, (79)

where f is a nonnegative real-valued continuous functions defined on I . �

Theorem 4.2 Consider the integral equation (77) and suppose that F1, F2 satisfy the con-
ditions (78) and (79), and f is a nonnegative and nondecreasing real-valued continuous
function defined on I . Then

x(t) ≤ 3
q–1

q x0 exp

[
1
q

∫ t

t0

f q(s)e–qsB4(s) ds
]

, ∀t ∈ I,

108q–1P2(t)xq
0

∫ t

t0

f q(s)e–qs[exp
(
ω2(s)

)]
ds < 1,

(80)

where P(t) is defined by (11), p = 1 + β , q = 1+β

β
and

B4(t) =
18q–1P(t)xq

0 exp(ω2(t))
1 – 108q–1P2(t)xq

0
∫ t

t0
f q(s)e–qs[exp(ω2(s))] ds

,

ω2(t) = 2 × 3q–1(1 + 2q–1)P2(t)
∫ t

t0

f q(s)e–qs ds.
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Proof Substituting (78) and (79) into (77), we get

∣∣x(t)
∣∣ ≤ |x0| +

[∫ t

t0

(t – s)β–1f (s)x(s) ds
]2

+
∫ t

t0

(t – s)β–1f (s)x(s)
[

x(s)

+ 2
∫ s

t0

(s – λ)β–1f (λ)x(λ) dλ

]
ds, ∀t ∈ I. (81)

Obviously, (81) satisfies the conditions of Theorem 3.4 and is of the form of (57). Applying
Theorem 3.4 to (81), we can get the estimation (80). �
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