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Abstract
A new way to study the harvested predator–prey system is presented by analyzing
the dynamics of two-prey and one-predator model, in which two teams of prey are
interacting with one team of predators and the harvesting functions for two prey
species takes different forms. Firstly, we make a brief analysis of the dynamics of the
two subsystems which include one predator and one prey, respectively. The positivity
and boundedness of the solutions are verified. The existence and stability of seven
equilibrium points of the three-species model are further studied. Specifically, the
global stability analysis of the coexistence equilibrium point is investigated. The
problem of maximum sustainable yield and dynamic optimal yield in finite time is
studied. Numerical simulations are performed using MATLAB from four aspects: the
role of the carrying capacity of prey, the simulation about the model equations
around three biologically significant steady states, simulation for the yield problem of
model system, and the comparison between the two forms of harvesting functions.
We obtain that the new form of harvesting function is more realistic than the
traditional form in the given model, which may be a better reflection of the role of
human-made disturbance in the development of the biological system.
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1 Introduction
The interaction between the predator and prey is one of basic relationships among bio-
logical species, which becomes one of the hot issues in ecology and biomathematics. The
predator–prey model is widely used in renewable resources management [1–5], marine
resource conservation [6–8], biological control [9–12], the research about animal infec-
tious diseases [13–15], and so on. Freedman and Wolkowicz [16] firstly put forward a
general model

⎧
⎨

⎩

dx
dt = xg(x, k) – yφ(x),
dy
dt = y(q(x) – m),

(1.1)
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where φ(x) denotes the predator response function, which reflects the capture ability of the
predator to prey. q(x) is the rate of conversion of prey, g(x, k) and m are the growth pattern
of prey and the per capita death rate of predator, respectively. The model proposed in this
paper is also based on model (1.1).

When it comes to human intervention, the harvesting function is essential and the re-
searching on the dynamics of harvested predator–prey system is necessary, which has
been extensively done by a number of researchers [17–20]. When we only harvest the
prey species in a predator–prey system, model (1.1) becomes

⎧
⎨

⎩

dx
dt = xg(x, k) – yφ(x) – H(x, E),
dy
dt = y(q(x) – m),

(1.2)

where H(x, E) is the harvesting function.
Several types of harvesting function have been widely studied, especially the follow-

ing three types [21]: (a) Constant harvesting H(x, E) = h, where h is a suitable constant;
(b) Proportionate harvesting H(x, E) = qEx, where q is the catchability coefficient and E
is the harvesting effort; and (c) Nonlinear harvesting H(x, E) = qEx

m1E+m2x , where m1, m2 are
suitable positive constants.

Xiao and Jennings [22] systematically studied the dynamical properties of the ratio-
dependent predator–prey model with nonzero constant harvesting. They have shown that
the harvested system can exhibit far richer dynamics compared to the model with no har-
vesting, such as numerous kinds of bifurcations. Das et al. [19] considered a simple two
species predator–prey model in which both species are harvested in proportion. The dy-
namical behavior of the exploited system has been examined and the optimal harvesting
policy has been studied. Li et al. [21] considered a bioeconomic predator–prey model with
Holling type II functional response and nonlinear prey harvesting. The effect of economic
profit on the proposed model has been analyzed by viewing it as a bifurcation parameter.

In these traditional harvested predator–prey models, the harvesting function appears as
a separate item. Human’s harvesting and the internal reproduction of a biological system
itself take place simultaneously. The change in prey population density is indicated directly
as the difference value between the number of growth and the number of prey captured
by predator and human. Considering the impact of harvesting on the system, we propose
that the changes in population density next time should not include the part harvested by
the human. We are likely to overlook the point that the part harvested by the human no
longer affects the reproduction of the species group; in other words, the part harvested
by the human has no concern with the whole, and they can not be captured by predator
species again. The relevant schematic is presented in Figure 1.

Some authors considered a prey–predator system with a proportion refuge [23–26]. Lv
et al. [23] studied the model incorporating a refuge protecting m1x of the prey, where m1

(m1 ∈ [0, 1]) is a constant, which leaves (1 – m1)x of the prey available to the predator.
Ma et al. [26] proposed a patchy predator–prey model with one patch as refuge and the
other as open habitat and incorporated prey refuge xR in the considered model explicitly.
Here, we regard the harvesting term H(x, E) as a special part which is no longer related to
the development of the predator–prey system. To give a more in-depth comparison and
analysis, we put forward a new form of harvested predator–prey system, in which two
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Figure 1 The sketch map of the two forms of harvesting functions. (a) A harvested predator–prey model with
traditional form of harvesting function. (b) A harvested predator–prey model with a new form of harvesting
function, where φ1 and φ2 denote the predator response function of two prey species, respectively. η1 and
η2 are the rate of conversion of prey. g1 and g2 are the growth pattern of two prey species.m is the per capita
death rate of predator

teams of prey interacting with one team of predators and the harvesting function for two
prey species takes different forms:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx1
dt = x1g1(x1, k1) – yφ1(x1) – H1(x1, E1) – σ (x1, x2 – H2(x2, E2)),

dx2
dt = (x2 – H2(x2, E2))g2(x2 – H2(x2, E2), k2) – yφ2(x2 – H2(x2, E2))

– σ (x1, x2 – H2(x2, E2)),
dy
dt = η1φ1(x1)y + η2φ2(x2 – H2(x2, E2))y – my.

(1.3)

In this model, the harvesting function for the first prey x1 adopts the traditional form and
the other harvesting function for the second prey x2 takes the new form we proposed, in
which the number of species at the next moment is the change of the part which is not
harvested by humans. Further, the harvesting of the prey also affects the growth of the
predator in that the prey harvested by humans can not be captured by predator again. σ

represents interspecific competition between the two prey species. Researching the dy-
namics of predator–prey system (1.3) is the focus of this paper. And this kind of model is
analyzed in detail through a concrete example.

This paper is organized as follows. The mathematical model is formulated in Sect. 2. In
Sect. 3, for underlining the importance of the two different systems before combining the
two harvesting forms into one model, we make a brief analysis of the dynamics of the two
subsystems, in which prey x1 or x2 does not exist. The analyses of positivity and bound-
edness of the solutions are given in Sect. 4. In Sect. 5, we investigate the existence and
local stability of the equilibrium points of the system in the closed first quadrant. What
is more, global stability analysis about the interior equilibrium point is given. The prob-
lem of maximum sustainable yield and dynamic optimal yield in finite time are studied
in Sect. 6. In Sect. 7, we perform the numerical simulations using MATLAB from four
aspects: investigating the role of the carrying capacity of prey, simulating the model equa-
tions around three equilibrium points, simulation for the yield problem of the model sys-
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tem, and making a more in-depth comparison and analysis between the two harvesting
functions. Discussion and concluding remarks are presented in Sect. 8.

2 Mathematical model
In this paper, in order to draw a precise comparison, based on the model presented in
[27], we make two prey species have the same growth function and functional response of
the predator, in addition, consider the two-prey one-predator system with proportionate
harvesting, then (1.3) takes the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt = r1x1(1 – x1

k1
) – β1x1y – q1E1x1 – σx1(x2 – q2E2x2)

� x1f1(x1, x2, y, E1, E2),
dx2
dt = r2(x2 – q2E2x2)(1 – x2–q2E2x2

k2
) – β2(x2 – q2E2x2)y

– σx1(x2 – q2E2x2) � (1 – q2E2)x2f2(x1, x2, y, E2),
dy
dt = η1β1x1y + η2β2(x2 – q2E2x2)y – my � yg(x1, x2, E2),

(2.1)

here

⎧
⎪⎪⎨

⎪⎪⎩

f1(x1, x2, y, E1, E2) = r1(1 – x1
k1

) – β1y – q1E1 – σx2(1 – q2E2),

f2(x1, x2, y, E2) = r2[1 – (1–q2E2)x2
k2

] – β2y – σx1,

g(x1, x2, E2) = η1β1x1 + η2β2(1 – q2E2)x2 – m.

(2.2)

The following assumptions are taken into account for system (2.1):
1. Assume that the three species are subject to the positive initial conditions.
2. The growth pattern of two prey species is simulated with logistic equation in the

absence of predator and harvesting, of which the parameter ri represents the
intrinsic growth rate of prey xi (i = 1, 2), ki is the carrying capacity of prey xi.

3. d is the per capita death rate of the predator y.
4. For simplicity, the feeding rate of the predator species is assumed to increase

linearly with prey density [18, 27]. The predator captures prey xi (i = 1, 2) at a rate
proportional to prey abundance with rate coefficient βi, and this contributes to an
increase in the predator population with a conversion rate of ηi [28]. Since ηi = 1
represents a biomass of foraged prey can be completely converted to predator
without any loss [29, 30], which could not possibly happen in real life. Therefore we
assumed 0 < η1 < 1 and 0 < η2 < 1 [31] in this paper.

5. The constant Ei is the harvesting effort of prey xi (i = 1, 2). qi is the catchability
coefficient of prey xi. It is biologically meaningful to consider the case when
1 – q2E2 > 0. Further, the predator population is not harvested.

6. ri, ki, βi, ηi, σ , m are positive rate constants.

3 The analysis of two subsystems
Firstly, we briefly analyze the two different systems before combining the two harvesting
forms into one model.
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3.1 In the absence of prey x2

Model (2.1) in the absence of prey x2 is equivalent to the predator–prey model with tra-
ditional harvesting function given by

⎧
⎨

⎩

dx1
dt = r1x1(1 – x1

k1
) – β1x1y – q1E1x1,

dy
dt = η1β1x1y – my,

(3.1)

subject to the positive initial conditions x1(0) > 0, y(0) > 0.
System (3.1) has a unique interior equilibrium point S∗

1(x̃1, ỹ) where

x̃1 =
m

η1β1
, ỹ =

1
β1

[

r1

(

1 –
d

η1β1k1

)

– q1E1

]

. (3.2)

We can easily prove that S∗
1(x̃1, ỹ) is locally as well as globally stable if E1 < r1

q1
(1 – m

β1η1k1
),

which is the condition of its existence.

3.2 In the absence of prey x1

Model (2.1) in the absence of prey x1 is equivalent to the predator–prey model with a new
form harvesting function given by

⎧
⎨

⎩

dx2
dt = r2(1 – q2E2)x2[1 – (1–q2E2)x2

k2
] – β2(1 – q2E2)x2y,

dy
dt = η2β2(1 – q2E2)x2y – my

(3.3)

subject to the positive initial conditions x2(0) > 0, y(0) > 0.
System (3.3) has a unique interior equilibrium point S∗

2(x̄2, ȳ) where

x̄2 =
m

η2β2(1 – q2E2)
, ȳ =

r2

β2

(

1 –
m

η2β2k2

)

. (3.4)

Similarly, S∗
2(x̄2, ȳ) is locally as well as globally stable if m < η2β2k2 and E2 < 1/q2, which

are also the conditions of its existence. Further, after rearranging the form of differential
equation (3.3), system (3.3) becomes of the following form:

⎧
⎨

⎩

dx2
dt = r2x2(1 – x2

k2
) – β2x2y – δ1(x2, y, E2),

dy
dt = η2β2x2y – my – δ2(x2, y, E2),

(3.5)

where

δ1(x2, y, E2) = q2E2x2

[

r2

(

1 –
2x2 – q2E2x2

k2

)

– β2y
]

,

δ2(x2, y, E2) = η2β2q2E2x2y.

Compared with the form of model (3.1), the terms δ1 and δ2 may be the correction terms
for the traditional harvesting function given in (3.1) that interpret the schematic presented
in Figure 1 better. From (3.5), the new form of harvesting function refines the effects of
human intervention, which shows that harvesting prey affects not only the growth of the
prey population, but also the growth of the predator population.
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In addition, observing the composition of the two interior equilibrium points

S∗
1(x̃1, ỹ) =

(
m

η1β1
,

1
β1

[

r1

(

1 –
m

η1β1k1

)

– q1E1

])

,

S∗
2(x̄2, ȳ) =

(
m

η2β2(1 – q2E2)
,

r2

β2

(

1 –
m

η2β2k2

))

,

we know that only x̄2 has connection with the harvesting effort E2 in the form of S∗
2 . The

opposite situation occurs in S∗
1 . As human harvesting is considered, the harvesting value

Ei may influence the quantity of prey xi (i = 1, 2) in equilibrium point directly, then the
form of S∗

2 is easier to be understood than the form of S∗
1 in biological terms. The further

comparison and analysis of two forms of harvesting functions are carried out by numerical
simulation in Sect. 7.

4 Positivity and boundedness of the solutions
In this section, we study the positivity and boundedness of the solutions of system (2.1).

Theorem 1 All the solutions of system (2.1) with the positive initial conditions are positive
for all t ≥ 0 and uniformly bounded.

Proof From system (2.1) with positive initial conditions, we have

x1(t) = x1(0) exp

{∫ t

0

[

r1x1(s)
(

1 –
x1(s)

k1

)

– β1x1(s)y(s) – s1x1(s) – σ s2x1(s)x2(s)
]

ds
}

> 0,

x2(t) = x2(0) exp

{∫ t

0

[

r2s2x2(s)
(

1 –
s2x2(s)

k2

)

– β2s2x2(s)y(s) – σ s2x1(s)x2(s)
]

ds
}

> 0,

y(t) = y(0) exp

{∫ t

0

[
η1β1x1(s)y(s) + η2β2s2x2(s)y(s) – my(s)

]
ds

}

> 0,

where s1 = q1E1, s2 = 1 – q2E2.
Now, we define the function Ω(t) = η1x1 + η2x2 + y.
Then differentiating Ω with respect to t and using the equations in system (2.1), we have

dΩ(t)
dt

= η1
dx1

dt
+ η2

dx2

dt
+

dy
dt

= η1r1x1(1 – x1/k1) – η1s1x1 – (η1 + η2)σ s2x1x2 + η2r2s2x2(1 – s2x2/k2) – my.

Therefore,

dΩ

dt
+ mΩ = –

η1r1

k1

[

x1 –
k1(r1 – s1 + m)

2r1

]2

+
k1η1(r1 – s1 + m)2

4r1

–
η2r2s2

2
k2

[

x2 –
k2(r2s2 + m)

2r2s2
2

]2

+
k2η2(r2s2 + m)2

4r2s2
2

– (η1 + η2)σ s2x1x2
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≤ k1η1(r1 – s1 + m)2

4r1
+

k2η2(r2s2 + m)2

4r2s2
2

� L > 0.

The right-hand side of the above inequality is bounded for (x1, x2, y) ∈ R
3
+.

Applying the theory of differential inequality, we have

0 < Ω(t) ≤ L
m

[
1 – e–mt] + Ω(0)e–mt . (4.1)

As t → ∞, we can see that the limit of the right-hand side of (4.1) is L/m. Hence, by the
definition of Ω(t), we can imply that all the solutions of system (2.1) are bounded in the
interior of R3

+.
The proof is complete. �

5 Existence and stability of equilibria
In this section we investigate the existence and stability of the equilibrium points of system
(2.1) in the closed first quadrant.

5.1 Existence of equilibria
Model system (2.1) possesses seven equilibrium points including one trivial, two axial,
three boundary, and one interior equilibrium point.

1. The trivial equilibrium point S0 = (0, 0, 0) exists irrespective of any parametric
restriction.

2. Two axial equilibrium points of model (2.1) are given by S1(0, x̂2, 0) and S2(x̆1, 0, 0),
where

x̂2 =
k2

1 – q2E2
, x̆1 = k1

(

1 –
q1E1

r1

)

. (5.1)

Clearly, S1 exists when the assumption E2 < 1/q2 holds, the feasibility condition for
S2 is E1 < r1/q1, which is E1 < BTPx1 . The ratio (r1/q1) of the biotic potential to the
catchability coefficient (q1) is known as the biotechnical productivity (BTP) of prey
x1 species [32].

3. In the absence of prey x1 the boundary equilibrium point in the x2y-plane is given
by S3(0, x̄2, ȳ), where x̄2 and ȳ are given in (3.4). The feasible condition for S3 is
m < η2β2k2.

4. In the absence of prey x2 the boundary equilibrium point in the x1y-plane is given
by S4(x̃1, 0, ỹ), where x̃1 and ỹ are given in (3.2). The feasible condition for S4 is
E1 < r1

q1
(1 – m

η1β1k1
).

5. The predator-free boundary equilibrium point in the x1x2-plane is given by
S5(x̌1, x̌2, 0), where

x̌1 =
r2k1(k2σ + q1E1 – r1)

σ 2k1k2 – r1r2
, x̌2 =

r1(k1 – x̌1) – q1E1k1

σk1(1 – q2E2)
. (5.2)

The feasible existence of S5 demands the parametric restriction

(k2σ + q1E1 – r1)
(
σ 2k1k2 – r1r2

)
> 0, r1(k1 – x̌1) – q1E1k1 > 0. (5.3)
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6. Apart from the axial and boundary equilibrium points, there is a unique interior
equilibrium point S∗(x∗

1, x∗
2, y∗) with

x∗
1 =

mv2 + η2β2[–r2β1 + β2(r1 – q1E1)]
η2β2v1 + η1β1v2

, x∗
2 =

m – η1β1x∗
1

η2β2(1 – q2E2)
,

y∗ =
1
β1

[

r1

(

1 –
x∗

1
k1

)

– q1E1 – σx∗
2(1 – q2E2)

]

,
(5.4)

where v1 = β2r1
k1

– σβ1, v2 = β1r2
k2

– σβ2.
The interior equilibrium point is feasible when each term of S∗(x∗

1, x∗
2, y∗) is

greater than zero. Due to the complexity of the calculation, we carry out detailed
analysis in Sect. 7.2.

5.2 Local stability of equilibria
Here we provide the local stability conditions for feasible equilibrium points of system
(2.1) based on the standard linearization technique, and then use the famous Routh–
Hurwitz criterion [33] to determine the properties of eigenvalues of the matrix associ-
ated with the linearized version. If y = 0, system (2.1) becomes a two-species competitive
model, in which we are not interested. In this section, we mainly study the following steady
states: S0(0, 0, 0), S3(0, x̄2, ȳ), S4(x̃1, 0, ỹ), and S∗(x∗

1, x∗
2, y∗).

The Jacobian matrix of system (2.1) at any point (x1, x2, y) takes the form

J(x1,x2,y) =

⎡

⎢
⎣

ζ11 ζ12 ζ13

ζ21 ζ22 ζ23

ζ31 ζ32 ζ33

⎤

⎥
⎦ , (5.5)

where

ζ11 = –q1E1 – β1y – r1

(
2x1

k1
– 1

)

– σ (1 – q2E2)x2, ζ12 = –σx1(1 – q2E2),

ζ13 = –β1x1, ζ21 = –σx2(1 – q2E2), ζ23 = –β2x2(1 – q2E2),

ζ22 = –(1 – q2E2)
[

2r2x2(1 – q2E2)
k2

+ β2y + σx1 – r2

]

,

ζ31 = β1η1y, ζ32 = β2η2y(1 – q2E2), ζ33 = β1η1x1 – m + β2η2(1 – q2E2)x2.

5.2.1 Stability of S0 = (0, 0, 0)
The eigenvalues of the Jacobian J(S0) evaluated at the trivial equilibrium point S0 = (0, 0, 0)
are λ1 = r1 – q1E1, λ2 = r2(1 – q2E2) > 0, and λ3 = –m < 0. Hence S0 is a saddle point with
dim W s(S0) = 2 and dim W u(S0) = 1 if condition (I) E1 > BTPx1 is satisfied and S0 is a saddle
point with dim W s(S0) = 1 and dim W u(S0) = 2 if condition (I) is violated, where dim W s

and dim W u denote the dimensions of stable and unstable subspaces, respectively.

5.2.2 Stability of S3 = (0, x̄2, ȳ)
One of the eigenvalues of J(S3) is given by

λ̄1 = r1 – q1E1 +
β1r2(m – β2η2k2)

β2
2η2k2

–
mσ

β2η2
,
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and the other eigenvalues λ̄± are determined by the quadratic equation (see Appendix 1).
Based on the existence condition of S3, we have

Tr[J̄S3 ] =
mr2(q2E2 – 1)

β2η2k2
< 0, λ̄+λ̄– = Det

mr2(m – β2η2k2)(q2E2 – 1)
η2β2k2

> 0.

Then we have S3 is locally asymptotically stable if the condition

(II) E1 >
1
q1

[

r1 +
β1r2(m – β2η2k2)

β2
2η2k2

–
mσ

β2η2

]

(= Ē1)

is satisfied. Otherwise, S3 is a saddle point with dim W s(S3) = 2 and dim W u(S3) = 1. Eco-
logically, we can say that in this case the coexistence of prey x2 and the predator is possible
if the harvesting effort of prey x1 exceeds the critical value Ē1.

5.2.3 Stability of S4 = (x̃1, 0, ỹ)
The characteristic equation for the variational matrix J(S4) is λ3 + ϕ1λ

2 + ϕ2λ + ϕ3 = 0 (see
Appendix 2).

According to the Routh–Hurwitz criterion, S4 is locally asymptotically stable if ϕ1 > 0,
ϕ3 > 0, and ϕ1ϕ2 – ϕ3 > 0.

5.2.4 Stability of S∗ = (x∗
1, x∗

2, y∗)
The characteristic equation associated with the matrix J(S∗) is given by λ3 + ξ1λ

2 + ξ2λ +
ξ3 = 0 (see Appendix 3).

According to the Routh–Hurwitz criterion, the interior equilibrium point S∗ is locally
asymptotically stable if ξ1 > 0, ξ3 > 0, and ξ1ξ2 – ξ3 > 0. It is quite difficult to find explicit
parametric restriction for the local asymptotic stability of S∗, so we discuss it for some
specific choice of system parameters in Sect. 7.2.

5.3 Global stability analysis
In this section, we consider the global asymptotic stability for the interior equilibrium
point S∗ with the help of Lyapunov functional construction method [34].

Theorem 2 The positive interior equilibrium point S∗(x∗
1, x∗

2, y∗) is globally asymptotically
stable if 4η1η2r1r2 > σ 2k1k2.

Proof Obviously, (x∗
1, x∗

2, y∗) satisfies the equalities

⎧
⎪⎪⎨

⎪⎪⎩

r1(1 – x∗
1

k1
) – β1y∗ – q1E1 – σx∗

2(1 – q2E2) = 0,

r2[1 – (1–q2E2)x∗
2

k2
] – β2y∗ – σx∗

1 = 0,

η1β1x∗
1 + η2β2(1 – q2E2)x∗

2 – m = 0,

(5.6)

which are equivalent to

⎧
⎪⎪⎨

⎪⎪⎩

r1 = q1E1 + β1y∗ + r1
k1

x∗
1 + σx∗

2(1 – q2E2),

r2 = β2y∗ + r2
k2

(1 – q2E2)x∗
2 + σx∗

1,

m = η1β1x∗
1 + η2β2(1 – q2E2)x∗

2.

(5.7)
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Now we show the global stability of interior equilibrium point S∗ by constructing the Lya-
punov function [35], V (x1, x2, y) : R3

+ →R, s.t.

V (x1, x2, y) = V1(x1, x2, y) + V2(x1, x2, y) + V3(x1, x2, y), (5.8)

where V1(x1, x2, y) = η1(x1 – x∗
1 – x∗

1 ln x1
x∗

1
), V2(x1, x2, y) = η2(x2 – x∗

2 – x∗
2 ln x2

x∗
2

), V3(x1, x2, y) =
y – y∗ – y∗ ln y

y∗ .
From (5.8), we have

∂V (x1, x2, y)
∂xi

= ηi

(

1 –
x∗

i
xi

)

(i = 1, 2),
∂V (x1, x2, y)

∂y
= 1 –

y∗

y
, (5.9)

which shows that the positive equilibrium (x∗
1, x∗

2, y∗) is the only extremum of the function
V (x1, x2, y) in the positive quadrant [36]. Then we can easily verify that

lim
x1→0

V (x1, x2, y) = lim
x2→0

V (x1, x2, y) = lim
y→0

V (x1, x2, y) = +∞,

lim
x1→+∞V (x1, x2, y) = lim

x2→+∞V (x1, x2, y) = lim
y→+∞V (x1, x2, y) = +∞.

(5.10)

Combining (5.9) and (5.10), we observe that the positive equilibrium is the global min-
imum. Further, it can be verified that the function V (x1, x2, y) is zero at (x∗

1, x∗
2, y∗). Then

we have V (x1, x2, y) > V (x∗
1, x∗

2, y∗) = 0 for all x1, x2, y > 0.
The time derivative of V1 along the solution of (2.1) is

dV1

dt
= η1

(
x1 – x∗

1
)
[

r1

(

1 –
x1

k1

)

– β1y – q1E1 – σx2(1 – q2E2)
]

. (5.11)

After some simplifications and with the help of the first equation of (5.7), (5.11) takes the
following form:

dV1

dt
= –

η1r1

k1

(
x1 – x∗

1
)2 – η1β1

(
x1 – x∗

1
)(

y – y∗)

– ση1(1 – q2E2)
(
x1 – x∗

1
)(

x2 – x∗
2
)
.

Similarly, we have

dV2

dt
= –

η2r2(1 – q2E2)2(x2 – x∗
2)2

k2
– η2β2(1 – q2E2)

(
x2 – x∗

2
)(

y – y∗)

– ση2(1 – q2E2)
(
x1 – x∗

1
)(

x2 – x∗
2
)
,

dV3

dt
= η1β1

(
x1 – x∗

1
)(

y – y∗) + η2β2(1 – q2E2)
(
x2 – x∗

2
)(

y – y∗).
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Then taking the time derivative of V (x1, x2, y) along the trajectories of (2.1), after proper
simplification [35], we have

dV (x1, x2, y)
dt

=
dV1

dt
+

dV2

dt
+

dV3

dt

= –
η1r1

k1

(
x1 – x∗

1
)2 – η1β1

(
x1 – x∗

1
)(

y – y∗)

– ση1(1 – q2E2)
(
x1 – x∗

1
)(

x2 – x∗
2
)

–
η2r2

k2
(1 – q2E2)2(x2 – x∗

2
)2 – η2β2(1 – q2E2)

(
x2 – x∗

2
)(

y – y∗)

– ση2(1 – q2E2)
(
x1 – x∗

1
)(

x2 – x∗
2
)

+ η1β1
(
x1 – x∗

1
)(

y – y∗)

+ η2β2(1 – q2E2)
(
x2 – x∗

2
)(

y – y∗)

= –
[

η1r1

k1

(
x1 – x∗

1
)2 +

η2r2

k2
(1 – q2E2)2(x2 – x∗

2
)2

+ σ (η1 + η2)(1 – q2E2)
(
x1 – x∗

1
)(

x2 – x∗
2
)
]

= –XTAX,

where X = [(x1 – x∗
1), (x2 – x∗

2)]T and

A =

[
η1r1
k1

σ
2 (η1 + η2)(1 – q2E2)

σ
2 (η1 + η2)(1 – q2E2) η2r2

k2
(1 – q2E2)2

]

.

Therefore dV /dt < 0 if A is positive definite. The A is positive definite if the hypothesis of
Theorem 2 is satisfied. �

From the above analysis, we can see that the interior equilibrium is globally asymp-
totically stable under certain conditions. If the system is stable prior to harvesting, the
harvested system does not change its stability.

6 The yield problem of system (2.1)
When it comes to biological conservation, there are many tools to do this. For exam-
ple, the maximum sustainable yield (MSY) policy [37], the optimal taxation policy [38],
the marine protected areas [7], the impulsive harvesting [39], and so on. As we all know,
the maximum sustainable yield policy is a classic and old strategy. Despite it has many
shortcomings [40], the concept of MSY has been a central theme for fisheries and legally
adopted by Johannesburg Implementation Plan, for world fisheries to catch a maximum
that is sustainable and to supposedly preserve over-fished stocks [41]. Ghosh et al. [41]
defined the total maximum sustainable yield (MSTY) as the maximum of the sum of the
yields obtained from both prey and predator under independent harvesting efforts. The
MSTY is obtained when the yield is maximized with respect to E1 and E2. In this section,
we investigate the maximum yield of system (2.1) and explore whether the system has
MSTY.

Firstly, we give a brief description of the MSY problem of the two subsystems. The yield
of system (3.1) is Y (E1) = q1E1x̃1 = q1E1m

η1β1
, which is a linear function of E1. The yield of
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system (3.3) is Y (E2) = q2E2x̄2 = m
η2β2(1/q2E2–1) . Further, Y ′(E2) = mq2

η2β2(1–q2E2)2 > 0. We can see
that the yield Y (Ei) (i = 1, 2) increases with the increase of harvesting effort Ei (i = 1, 2).
Hence, there is no MSY in either of two subsystems. In system (2.1), we have

Y (E1, E2) = q1E1x∗
1 + q2E2x∗

2

=
q1E1(v3 – η2β

2
2 q1E1)

v4
+

q2E2(v5 + v6E1)
1 – q2E2

= –
q2

1η2β
2
2

v4
E2

1 +
(

q1v3

v4
+

v6q2E2

1 – q2E2

)

E1 +
v5q2E2

1 – q2E2
, (6.1)

where v3 = mv2 – η2β2r2β1 + η2β
2
2 r1, v4 = η2β2v1 + η1β1v2, v5 = v4m–η1β1v3

v4η2β2
, v6 = η1β1η2β2

2 q1
η2β2v4

.
The Hessian matrix corresponding to Y is

H =

⎡

⎣
– 2β2

2 η2q2
1

v4
q2v6

(q2E2–1)2

q2v6
(q2E2–1)2 – 2q2

2(v5+E1v6)
(q2E2–1)3

⎤

⎦ . (6.2)

Obviously 
1 = – 2β2
2 η2q2

1
v4

< 0 if v4 > 0; meanwhile,


2 = –
q2

2[v2v2
6 + 4β2

2η2q2
1(1 – q2E2)(v5 + E1v6)]

v4(1 – q2E2)4 = –
β2

1β2
2η2

1q2
1q2

2
v2

4(1 – q2E2)4 < 0.

For the existence of maximum of Y at (E∗
1 , E∗

2), the sufficient conditions are not satisfied.
If we fix the parameter E2, let Y reach its maximum at EM

1 = v3q1(1–q2E2)+q2E2v6v4
2η2β2

2 q2
1(1–q2E2) for v4 > 0.

Then substituting EM
1 into (6.1), we have

Y (E) =
v4v2

6
4β2

2η2q2
1

E2 +
2v5β

2
2η2q1 + v3v6

2β2
2η2q1

E +
v2

3
4v4β

2
2η2

, (6.3)

where E = q2E2
1–q2E2

.
We find that Y (E) is a quadratic function of E going upwards for v4 > 0. Y (E) can not

get maximum in the feasible region about E2. Functions in (6.1) and (6.3) can not take the
maximum at the same time. We will give a concrete example to explain the problem in
detail in Sect. 7.3.

Since there is no MSTY in system (2.1), we establish a control problem for yield to find
a suboptimal control strategy. The form of objective function G is expressed as follows:

G(E1, E2) =
∫ tf

0
(q1E1x1 + q2E2x2) dt, (6.4)

which is subjected to the state equation (2.1) and the control variables Ei(t) are subjected
to

U =
{(

E1(t), E2(t)
) ∈ L1[0, tf ] × L1[0, tf ]|a1 ≤ E1(t) ≤ b1, a2 ≤ E2(t) ≤ b2

}
,

where ai, bi (i = 1, 2) are fixed normal quantities. The initial condition is (x1(0), x2(0),
y(0)) = (x10, x20, y0). To ensure the sustainable survival of the species, we set the state con-
straints as 0 < x1(t) < k1, 0 < x2(t) < k2, and y(t) > 0 for all t ∈ [0, tf ], ki is the carrying ca-
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pacity of prey xi (i = 1, 2). We hope to get the maximum yield in [0, tf ], which is equivalent
to minimizing –G. The optimal control problem (P) is as follows:

min
E1(t),E2(t)∈U

–G
(
E1(t), E2(t)

)
,

dx1

dt
= x1f1(x1, x2, y, E1, E2), x1(0) = x10,

dx2

dt
= (1 – q2E2)x2f2(x1, x2, y, E2), x2(0) = x20,

dy
dt

= yg(x1, x2, E2), y(0) = y0,

0 < x1(t) < k1, 0 < x2(t) < k2, y(t) > 0, ∀t ∈ [0, tf ].

(6.5)

We use the computational algorithms based on the concept of control parametrization
to solve the optimal control problem. First, we partition the interval [0, tf ] into several
subintervals, and the control variables Ei (i = 1, 2) are approximated by piecewise con-
stant functions with the instants of switching preassigned by the corresponding partition.
Then, an optimal control problem is approximated by a corresponding optimal parame-
ter selection problem which can be viewed as a mathematical programming problem, and
hence is solvable by the existing optimization software packages [42, 43]. The relevant
numerical experiment is shown in Sect. 7.3.

7 Numerical simulations
In this section, to make analytical studies more complete, we perform numerical simula-
tions by MATLAB. The numerical simulations of systems (2.1), (3.1), and (3.3) have been
carried out from the following four aspects.

7.1 The role of the carrying capacity of prey xi (i = 1, 2)
The term carrying capacity was put forward by Leopold in his work [44] and is one of the
most common concepts in wildlife management [45]. Many types of research [46, 47] have
verified that carrying capacity makes a great difference in the predator–prey system. Next,
we use numerical simulations to investigate the impact of carrying capacity ki (i = 1, 2)
on the system result. We select k1 and k2 from three levels and the order of magnitude
between them is 10. The other parameter values are as follows. The time graph and path
of model (2.1) as ki (i = 1, 2) is changing with different orders of magnitude are given in
Figure 2.

r1 = 2.09, β1 = 0.01, q1 = 0.04, η1 = 0.3, σ = 0.001,

r2 = 2.07, β2 = 0.02, q2 = 0.01, η2 = 0.3, m = 0.05.
(7.1)

By simple calculation and observation, we can obtain that if we just change the magnitude
of ki (i = 1, 2), the time for the system to reach equilibrium also increases exponentially (see
Figure 2), and the range of E1 used to make three species coexistence (S∗) is also reduced
when keeping the other parameters unchanged and E2 < 1/q2. When the carrying capacity
ki (i = 1, 2) is very large, the growth of prey species tends to increase exponentially, which
is not realistic. Therefore, we choose suitable medium size values of ki (i = 1, 2) in the
following numerical simulation.
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Figure 2 Phase portrait and time graph of model (2.1) around the interior equilibrium point. (a), (b) k1 = 20,
k2 = 30. (c), (d) k1 = 200, k2 = 300. (e), (f) k1 = 2000, k2 = 3000. (E1, E2) = (26.2, 45). The other parameter values
are given in (7.1)

Figure 3 The changes of the biomass of system species with k1/k2. (a) Variations in prey x1 with increasing
time. (b) Variations in prey x2 with increasing time. (c) Variations in predator (y) with increasing time. The
parameter values are given in (7.1) and (E1, E2) = (26.2, 45)

Further, we change the ratio between k1 and k2 to investigate the dynamics of three
species using numerical simulation (see Figure 3). Simulation results show that the time
for the system to reach equilibrium state decreases with the increase of ratio k1/k2 when
k1/k2 > 1. On the contrary, the time for the system to reach equilibrium state increases
with the increase of ratio k1/k2 when k1/k2 < 1.



Liu and Huang Journal of Inequalities and Applications        (2019) 2019:307 Page 15 of 27

7.2 The simulation about the model equations around three equilibrium points
We simulate the model equations around various biologically significant steady states. In
the previous analysis, we have identified two important boundary steady states S3(0, x̄2, ȳ)
(without prey x1) and S4(x̃1, 0, ỹ) (without prey x2) together with the steady state of coex-
istence S∗(x∗

1, x∗
2, y∗).

First, we calculate the two threshold harvesting efforts using the stability and existence
conditions of three equilibrium points, then we select a stable state for each equilibrium
point. The time evolution of the populations around S3 is shown in Figure 4(a), which
shows that the predator coexists stably with the second prey instead of the first one and
the first prey goes to extinction. We have also shown the phase portrait around this equi-
librium point in Figure 4(b). The time evolution of the populations around S4, which is
stable, is shown in Figure 5(a) and the relevant phase portrait is shown in Figure 5(b),
which shows stable coexistence of the first prey and the predator.

Finally, we mainly consider the local dynamics of the unique interior equilibrium using
numerical simulation. For better comparison, we take the following values:

r1 = r2 = 2, k1 = k2 = 200, β1 = β2 = 0.01,

q1 = q2 = 0.2, η1 = η2 = 0.4, σ = 0.008, m = 0.05.
(7.2)

The relevant functions are as follows:

⎧
⎪⎪⎨

⎪⎪⎩

f1(x1, x2, y, E1, E2) = 2(1 – x1
200 ) – 0.01y – 0.2E1 – 0.008(1 – 0.2E2)x2,

f2(x1, x2, y, E2) = 2[1 – (1–0.2E2)x2
200 ] – 0.01y – 0.008x1,

g(x1, x2, E2) = 0.004x1 + 0.004(1 – 0.2E2)x2 – 0.05.

(7.3)

Figure 4 Numerical simulation of model (2.1) around the boundary state S3. S3(0, 11.1111, 100.625) with
E1 = 30, E2 = 25. Different color curves represent different initial conditions. The other parameter values are
given in (7.1) and (k1, k2) = (200, 300)



Liu and Huang Journal of Inequalities and Applications        (2019) 2019:307 Page 16 of 27

Figure 5 Numerical simulation of model (2.1) around the boundary state S4. S4(16.6667, 0, 103.5833) with
E1 = 22, E2 = 35. Different color curves represent different initial conditions. The other parameter values are
given in (7.1) and (k1, k2) = (200, 300)

The interior equilibrium is

S∗(x∗
1, x∗

2, y∗) =
(

6.25 – 50E1,
50E1 + 6.25

1 – 0.2E2
, 188.75 – 10E1

)

. (7.4)

The feasible condition for S∗ is 0 < E1 < 0.125 and 0 < E2 < 5. Moreover, the characteristic
equation associated with the matrix J(S∗) is given by λ3 + ξ1λ

2 + ξ2λ + ξ3 = 0, where

ξ1 = 0.2890 × 10–16E1 – 0.0125E2 – 0.1E1E2 + 0.1250,

ξ2 = 0.0220E2
1E2 – 0.0097E2 – 0.0750E1E2 – 0.0050E1 – 0.0900E2

1 + 0.0958,

ξ3 = 0.0000125E1E2 – 0.000236E2 – 0.0000625E1 + 0.0151E2
1E2

– 0.0008E3
1E2 – 0.0755E2

1 + 0.0040E3
1 + 0.0012.

Further, we have

ξ1ξ2 – ξ3 =
(
–0.0022E3

1 + 0.00722E2
1 + 0.0019E1 + 0.0001

)
E2

2

+
(
0.0098E3

1 – 0.0107E2
1 – 0.0189E1 – 0.0022

)
E2

– 0.004E3
1 + 0.0643E2

1 – 0.0006E1 + 0.01079.

To investigate its stability, we examine the signs of functions ξ1, ξ2 and ξ1ξ2 – ξ3.
1. If ξ1 > 0, we have E2 < 0.2890×10–16E1+0.125

0.0125+0.1E1
< 10, which is obviously true.

2. If ξ3 > 0, we have φ(E2 – 5) > 0, where φ = –0.8E3
1 + 15.1E2

1 + 0.0125E1 – 0.236.
Further, φ′ = –2.4E2

1 + 30.2E1 + 0.0125, the two roots of this equation φ′ = 0 are
–0.0004139 and 12.5837. In (0, 12.5837), φ′ > 0, therefore φ is monotonically
increasing. Due to φ(0.125) = –0.0000625 < 0, we have φ < 0 in the existent domain
of S∗. Then we have E2 < 5, which is consistent with the existence condition.
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Figure 6 Numerical simulation of model (2.1) around the interior equilibrium point S∗ .
S∗(2.25, 13.4868, 187.955) with E1 = 0.08, E2 = 1.2. Different color curves represent different initial conditions.
The other parameter values are given in (7.2)

3. Consider ξ1ξ2 – ξ3, let

φ1 = –0.0022E3
1 + 0.00722E2

1 + 0.0019E1 + 0.0001,

φ2 = 0.0098E3
1 – 0.0107E2

1 – 0.0189E1 – 0.0022,

φ3 = –0.004E3
1 + 0.0643E2

1 – 0.0006E1 + 0.01079.

Then ξ1ξ2 – ξ3 = φ1E2
2 + φ2E2 + φ3. After computation, we have φ1 > 0 and


 = φ2
2 – 4φ1φ3 < 0 when E1 belongs to (0, 0.125), therefore, ξ1ξ2 – ξ3 > 0.

From the above analysis, the unique interior equilibrium is locally asymptotically sta-
ble. Next we simulate the model equations around the interior equilibrium point S∗. The
resulting time and phase plot are shown in Figure 6.

7.3 Simulation for the yield problem of system (2.1)
Let us give a concrete example to analyze the yield problem of system (2.1). The relevant
parameters, except m = 0.4, σ = 0.0035, are given in (7.1) and (k1, k2) = (200, 300). The
interior equilibrium is

(

121.2296 – 4.6110E1, –
0.0138E1 + 0.0363
0.00006E2 – 0.006

, 0.0115E1 + 80.1969
)

.

The feasible condition is 0 ≤ E1 < 26.29139, 0 ≤ E2 < 100. Consider that the yield func-
tion has a maximum value of the parameter E1 when E2 is fixed. Then we have EM

1 =
0.020833(331E2–63,100)

E2–100 and Y (E) = 7.204611E2 –36.359270E+31.873279. The feasible region of
E is 0 < E < 2.103333, when E = 2.103333, namely E2 = 67.776584, we have EM

1 = 26.29139,
then x∗

1 = 0. Further, Y (E2 = 0) = 31.8732789 and Y (E2 = 67.776584) = 140.222222. Since
this is the case of independent harvesting strategy, it suggests that towards MSTY har-
vesting level, prey x1 will be going extinct (see Figure 7).
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Figure 7 The changes of the biomass of system species and the yield. (a) Prey x1 biomass varies with E1
and E2. (b) Prey x2 biomass varies with E1 and E2. (c) The predator biomass varies with E1 and E2. (d) The yield
from both prey and predator as function of E1 and E2. The relevant parameters except d = 0.4, σ = 0.0035 are
given in (7.1) and (k1, k2) = (200, 300)

Table 1 The optimal control and states variables of (P)

Time Control 1 Control 2 State 1 State 2 State 3

0.0000 0.83430 0.00000 15.00000 15.00000 12.00000
1.8182 5.16684 1.37425 109.00304 128.58783 16.10776
3.6364 3.96670 0.88688 93.32653 125.22972 66.42204
5.4545 1.09206 1.92634 71.50602 37.75527 113.98322
7.2727 3.41622 0.00000 80.79575 13.47770 105.64105
9.0909 6.96972 0.00000 89.77432 8.50216 90.45973
10.9091 21.48043 0.00000 91.47356 8.84428 77.90937
12.7273 23.47555 1.99791 59.29581 16.42672 62.38116
14.5455 12.68776 54.89466 50.81738 43.53919 54.60362
16.3636 5.90543 90.59718 81.84325 72.67257 50.86236
18.1818 26.29119 87.90424 122.91470 81.59493 47.76096
20.0000 26.29119 87.90424 67.05375 97.18600 41.09602

Here we use the MISER 3 Optimal Control Toolbox of MATLAB to solve problem
(6.5). The relevant parameters except m = 0.4, σ = 0.0035 are given in (7.1) and (k1, k2) =
(200, 300). According to the existence condition of interior equilibrium point, the range
of control parameters Ei (i = 1, 2) is given as 0 ≤ E1 ≤ 26.29139, 0 ≤ E1 ≤ 99.9999. In fact,
the value range of parameter E2 is [0, 100). To guarantee that model (2.1) is significant, the
condition 1 – q2E2 
= 0 should be satisfied. So we set b2 to 99.9999. The initial condition
is (x1(0), x2(0), y(0)) = (15, 15, 12) and tf = 20. One possible optimal solution is shown in
Table 1 and Figure 8. We can see that the continuous inequality constraints are stratified
and the corresponding optimal function value is 943.4639.
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Figure 8 The optimal states and control of problem (P)

Figure 9 Different solution plots as E1 increases. Keeping the other parameters unchanged (see Table 2)

7.4 Influence of two forms of harvesting functions for systems (2.1), (3.1), and
(3.3)

To compare the two forms of harvesting functions better, we perform the numerical sim-
ulations of model (2.1) with E1 and E2 changing respectively (see Figures 9, 10, 11). The
parameter values used in Figures 9, 10, 11 are given in Table 2.

For subsystems (3.1) and (3.3), we keep the corresponding parameters except E1 and
E2 the same, then draw the time graphs and different solution plots of models (3.1) and
(3.3), respectively, as Ei (i = 1, 2) increase (see Table 3) (see Figure 12). In addition, we
study the effect of the harvesting function term on the two subsystems by periodically
changing the harvesting effort respectively. Take T = 1000 as the period of change, make
other parameter values fixed, let the initial species level of the next period be the species
level at the end of the previous period, and do not change the harvesting effort in every



Liu and Huang Journal of Inequalities and Applications        (2019) 2019:307 Page 20 of 27

Figure 10 Different solution plots as E2 increases. Keeping the other parameters unchanged (see Table 2)

Figure 11 Different solution plots as both E1 and E2 increase. See Table 2

week period, then observe the population dynamic (see Figure 13). We take the relevant
parameters except E1 and E2 as follows:

r1 = r2 = 0.3, k1 = k2 = 100, β1 = β2 = 0.02,

q1 = q2 = 0.2, η1 = η2 = 0.5, m = 0.05.
(7.5)

From Figures 9, 10, 11, by controlling the two harvesting efforts E1 and E2, we can dis-
cover that if we just change the parameter E1, the number of three species in the final state
of system (2.1) varies greatly; on the contrary, the numerical difference of the final state of
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Table 2 The parameter values of E1 and E2 used in Figures 9, 10, 11

No. Fixed parameters (E1, E2) S∗(x∗1 , x∗2 , y∗) Figure

1 k1 = 200, k2 = 300,
ri , βi , qi , ηi , σ andm
are the same as (7.1)

(8, 45) Not exist Figure 9(blue)

2 . . . . . . . . . . . . (18, 45) Not exist Figure 9(red)
3 . . . . . . . . . . . . (23, 45) (13.9075, 2.5083, 102.3287) Figure 9(green)
4 . . . . . . . . . . . . (26, 45) (3.1693, 12.2704, 101.0132) Figure 9(yellow)
5 . . . . . . . . . . . . (30, 45) Not exist Figure 9(magenta)

6 . . . . . . . . . . . . (24, 1) (10.3281, 3.2013, 101.8902) Figure 10(blue)
7 . . . . . . . . . . . . (24, 10) (10.3281, 3.5214, 101.8902) Figure 10(red)
8 . . . . . . . . . . . . (24, 20) (10.3281, 3.9616, 101.8902) Figure 10(green)
9 . . . . . . . . . . . . (24, 30) (10.3281, 4.5275, 101.8902) Figure 10(yellow)
10 . . . . . . . . . . . . (24, 40) (10.3281, 5.2821, 101.8902) Figure 10(magenta)

11 . . . . . . . . . . . . (8, 1) Not exist Figure 11(blue)
12 . . . . . . . . . . . . (18, 10) Not exist Figure 11(red)
13 . . . . . . . . . . . . (23, 20) (13.9075, 1.7245, 102.3287) Figure 11(green)
14 . . . . . . . . . . . . (26, 30) (3.1693, 9.6410, 101.0132) Figure 11(yellow)
15 . . . . . . . . . . . . (30, 40) Not exist Figure 11(magenta)

Table 3 The parameter values of E1 and E2 used in Figure 12

Ei (i = 1, 2) S∗
1 of (3.1) Figure S∗

2 of (3.3) Figure

0.4 (5, 10.25) Figure 12(a)(b)(blue) (5.4348, 14.25) Figure 12(c)(d)(blue)
0.8 (5, 6.25) Figure 12(a)(b)(red) (5.9524, 14.25) Figure 12(c)(d)(red)
1.2 (5, 2.25) Figure 12(a)(b)(yellow) (6.5789, 14.25) Figure 12(c)(d)(yellow)
1.6 Not exist Figure 12(a)(b)(green) (7.3529, 14.25) Figure 12(c)(d)(green)
2 Not exist Figure 12(a)(b)(magenta) (8.3333, 14.25) Figure 12(c)(d)(magenta)

system (2.1) is tiny except for prey x2 species if we only change E2. Further, from Figure 12,
comparing with the coexistence state S∗

1 and S∗
2 , as the intensity of capturing increases, the

amount of prey x1 remains unchanged finally, and the amount of the relevant predator de-
creases in system (3.1), while for system (3.3), the opposite is the case. The amount of prey
x2 increases and the amount of the relevant predator stays the same when the system turns
to be stable finally.

From Figure 13, we can find that, for system (3.1), when the amount of harvesting ef-
fort is changed regularly based on the previous level of the population, the ecosystem will
produce large fluctuations and even the risk of extinction exists. However, as for system
(3.3), when the system tends to balance the appropriate change in the amount of harvest-
ing effort, the system will produce a small range of fluctuations, and finally tend to bal-
ance, which is consistent with the global asymptotic stability of the internal equilibrium
point and more in line with the development law of the real ecosystem. When the system
achieves a stable equilibrium state of coexistence, increasing or decreasing harvesting will
not easily break the balance of the system in that the ecosystem has the ability to repair
itself.

Through the above analysis, we draw an interesting conclusion: the growth level of the
predator–prey system under the effect of the new form of harvesting function is better
than that under the impact of the traditional form, which may be a better reflection of
the role of human-made disturbance in the development of a biological system. Under the
same condition, the effect of E2 on predation system (2.1) is more significant than that
of E1. Combined with the analysis of maximum yield (Sect. 6), harvesting may allow the
population to grow faster. We can call it the incentive mechanism of human disturbance.
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Figure 12 Path of the system species as E1 (E2) increases. (a), (b) Path of prey species x1 and predator species
y of system (3.1) as E1 increases (see Table 3) keeping the other parameters unchanged. (c), (d) Path of prey
species x2 and predator species y of system (3.3) as E2 increases (see Table 3) keeping the other parameters
unchanged

Figure 13 Path of the system species as E1 (E2) increases periodically. (a), (b) Path of prey species x1 and
predator species y as E1 increases periodically. The other parameter values are given in (7.5). (c), (d) Path of
prey species x2 and predator species y as E2 increases periodically. The other parameter values are given in
(7.5)

It is likely that if we regard human intervention as an incentive factor that may promote
the growth level of the population, then the population at equilibrium will increase in the
long run.
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8 Discussion and concluding remarks
This paper has been conducting thorough research on the two-prey one-predator system,
in which the harvesting function for prey x1 adopts the traditional form and the other
harvesting function for prey x2 takes the new form. For drawing a precise comparison, we
make two prey species have the same kind of growth function and functional response of
the predator.

We focus on the stability of system (2.1). It has been proved that the positive interior
equilibrium solution S∗(x∗

1, x∗
2, y∗) is globally asymptotically stable under certain condi-

tions (Theorem 2). Further, from the comparison between two subsystems (3.1) and (3.3),
we find that the new form of harvesting function refines the effects of human intervention,
which shows that harvesting prey affects not only the growth of prey population but also
the growth of predator population.

To obtain the complete analytical studies, we apply numerical simulations to verify
the results from four aspects: investigating the role of the carrying capacity of prey (see
Sect. 7.1), simulating the model equations around four equilibrium points (see Sect. 7.2),
investigating the problem of maximum sustainable yield and dynamic optimal yield in
finite time (see Sect. 6 and 7.3), and studying the influence of two forms of harvesting
functions for systems (2.1), (3.1), and (3.3) (see Sect. 7.4). Through the method of con-
trolling variables, on the one hand, the dynamic behavior of system (2.1) is analyzed; on
the other hand, the effects of two forms of harvesting function on systems (2.1), (3.1),
and (3.3) are studied. Taking the specific parameters of the two prey species to the same
value, we investigate the existence and stability of interior equilibrium under the influence
of two kinds of harvesting functions. Comparing systems (3.1) and (3.3), though the new
model system shows similar dynamical behaviors as the traditional model in which the
harvesting function appears as a separate item, the emphases of the two kinds of systems
are different (see Figure 1, in which process (a) emphasizes the effect of harvesting, while
process (b) emphasizes the change of the system itself after harvesting). By analyzing the
stability of the equilibrium points and the growth level of the predator–prey system, we
find that the effect of E2 on predator system (2.1) is more significant than that of E1. Under
the influence of E1, the overall level of population number at which the system is stable
decreases as effort increases, but for E2, the opposite is the case.

If we regard human intervention as an incentive factor which may promote the growth
level of the population, then the population at equilibrium will increase as shown in Ta-
ble 3 and Figure 12. Combined with the analysis of the yield problem, harvesting may allow
the population to grow faster. Let us consider the fish as a single population which follows
a simple logistic, and the population subject to the proportional harvesting. The maxi-
mum sustainable yield is approached when the optimum harvesting effort of eopt = r/2
is applied, and the population arrives at k/2, which is the fastest growing point of pop-
ulation growth [30]. If we harvest the species at the inflexion point, the population level
will remain optimal. By capturing and training species continuously, we may keep it as
maximum biomass, then the harvesting may promote population growth and reproduc-
tion.

In this paper, instead of denying the traditional form, we propose a new way to study
this kind of harvested predator–prey model. As shown by (3.5), the terms δ1(x2, y, E2) and
δ2(x2, y, E2) seem to be a new harvesting function for the traditional form, which illus-
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trates the predator–prey system more appropriately. If we change the growth pattern, the
response function, or the harvesting function of model system (2.1), then more thorough
conclusions would be obtained.

Appendix 1
The Jacobian evaluated at the boundary equilibrium S3 is given by

J(S3) =

⎡

⎢
⎢
⎣

r1 – q1E1 + β1r2(m–β2η2k2)
β2

2 η2k2
– mσ

β2η2
0 0

– mσ
β2η2

mr2(q2E2–1)
β2η2k2

– m
η2

– β1η1r2(m–β2η2k2)
β2

2 η2k2

r2(m–β2η2k2)(q2E2–1)
β2k2

0

⎤

⎥
⎥
⎦ .

One of the eigenvalues of J(S3) is given by λ̄1 and the other two eigenvalues λ̄± are given
by the eigenvalues of the following 2 × 2 matrix:

J̄(S3) =

[ mr2(q2E2–1)
β2η2k2

– m
η2

r2(m–β2η2k2)(q2E2–1)
β2k2

0

]

.

The characteristic equation associated with the matrix J̄(S3) is given by

λ2 –
mr2(q2E2 – 1)

β2η2k2
λ +

mr2(m – β2η2k2)(q2E2 – 1)
η2β2k2

= 0.

Appendix 2
The Jacobian evaluated at the boundary equilibrium S4 is given by

J(S4) =

⎡

⎢
⎢
⎣

– mr1
β1η1k1

B1 – m
η1

0 B1 – β2(q2E2–1)B2
β1

– r2(q2E2 – 1) 0

–β1η1
β2η2(q2E2–1)B2

β1
0

⎤

⎥
⎥
⎦ ,

where

B1 =
mσ (q2E2 – 1)

β1η1
, B2 = q1E1 + r1

(
m

β1η1k1
– 1

)

.

The characteristic equation associated with the matrix J(S4) is given by λ3 + ϕ1λ
2 + ϕ2λ +

ϕ3 = 0, where

ϕ1 =
mr1

β1η1k1
– B1 +

β2(q2E2 – 1)B2

β1
+ r2(q2E2 – 1),

ϕ2 = –
mr1

β1η1k1

[

B1 –
β2(q2E2 – 1)B2

β1
– r2(q2E2 – 1)

]

– mB2,

ϕ3 = mB2

[

B1 –
(

β2B2

β1
+ r2

)

(q2E2 – 1)
]

.
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Appendix 3
The Jacobian evaluated at the interior equilibrium point S∗ is given by

J
(
S∗) =

⎡

⎢
⎣

ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 0

⎤

⎥
⎦ ,

where

ρ11 =
σ (mC2 – β1η1C1)
C2β2η2(q2E2 – 1)

– β1y∗ – r1

(
C1

k1C2
– 1

)

–
r1C1

k1C2
– q1E1, ρ12 = –

σC1

C2
,

ρ13 = –
β1C1

C2
, ρ21 =

σC3

(q2E2 – 1)C2
, ρ23 = –

β2C3

C2
,

ρ22 = (q2E2 – 1)
[

2r2(1 – q2E2)x∗
2

k2
+ β2y∗ + σx∗

1 – r2

]

,

ρ31 = β1η1y∗, ρ32 = –β2η2y∗(q2E2 – 1),

C1 = mv2 – β2η2
[
β1r2 – β2(r1 – q1E1)

]
, C2 = β1η1v2 + β2η2v1,

C3 = mv1 + β2
1η1r2 – β1β2η1(r1 – q1E1).

The characteristic equation associated with the matrix J(S∗) is given by λ3 + ξ1λ
2 + ξ2λ +

ξ3 = 0, where

ξ1 = –(ρ11 + ρ22), ξ2 = –ρ23ρ32 – ρ12ρ21 – ρ31ρ13 + ρ11ρ22,

ξ3 = ρ11ρ32ρ23 – ρ12ρ23ρ31 – ρ13ρ21ρ32 + ρ13ρ31ρ22.
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30. Legović, T.: Impact of demersal fishery and evidence of the Volterra principle to the extreme in the Adriatic sea. Ecol.
Model. 212, 68–73 (2008). https://doi.org/10.1016/j.ecolmodel.2007.10.014

31. Guin, L.N., Acharya, S.: Dynamic behaviour of a reaction–diffusion predator–prey model with both refuge and
harvesting. Nonlinear Dyn. 88, 1501–1533 (2017). https://doi.org/10.1007/s11071-016-3326-8

32. Clark, C.W.: Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley-Interscience,
New York (1976)

33. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2001)
34. Hale, J.K.: Ordinary Differential Equations, 2nd edn. Wiley, New York (1969)
35. Tripathi, J.P., Abbas, S., Thakur, M.: Local and global stability analysis of a two prey one predator model with help.

Commun. Nonlinear Sci. Numer. Simul. 19, 3284–3297 (2014). https://doi.org/10.1016/j.cnsns.2014.02.003
36. Chen, F., Ma, Z.Z., Zhang, H.Y.: Global asymptotical stability of the positive equilibrium of the Lotka–Volterra

prey–predator model incorporating a constant number of prey refuges. Nonlinear Anal., Real World Appl. 13,
2790–2793 (2012). https://doi.org/10.1016/j.nonrwa.2012.04.006

37. Paul, P., Kar, T.K., Ghorai, A.: Impact of marine reserve on maximum sustainable yield in a traditional prey–predator
system. Commun. Nonlinear Sci. Numer. Simul. 54, 34–49 (2018). https://doi.org/10.1016/j.cnsns.2017.05.013

38. Gupta, R.P., Banerjee, M., Chandra, P.: Period doubling cascades of prey–predator model with nonlinear harvesting
and control of over exploitation through taxation. Commun. Nonlinear Sci. Numer. Simul. 19, 2382–2405 (2014).
https://doi.org/10.1016/j.cnsns.2013.10.033

https://doi.org/10.1016/j.jmaa.2011.12.049
https://doi.org/10.1016/j.ecolmodel.2007.04.007
https://doi.org/10.1016/j.jtbi.2012.11.004
https://doi.org/10.1016/j.marpol.2014.04.002
https://doi.org/10.1142/S1793524510000982
https://doi.org/10.1016/j.apm.2014.09.011
https://doi.org/10.14232/ejqtde.2016.1.91
https://doi.org/10.1007/s00285-009-0279-2
https://doi.org/10.1016/j.mbs.2014.08.009
https://doi.org/10.1007/s11071-015-2040-2
https://doi.org/10.1007/s00285-012-0602-1
https://doi.org/10.1142/S1793524517500498
https://doi.org/10.1007/BF02462320
https://doi.org/10.1016/j.jmaa.2005.11.048
https://doi.org/10.1016/j.biosystems.2012.02.003
https://doi.org/10.1016/j.apm.2008.06.008
https://doi.org/10.1016/j.biosystems.2018.05.005
https://doi.org/10.1016/j.apm.2016.09.029
https://doi.org/10.1137/S0036139903428719
https://doi.org/10.1142/S0218339014500089
https://doi.org/10.1016/j.cnsns.2010.05.026
https://doi.org/10.1016/j.cnsns.2003.08.006
https://doi.org/10.1016/j.mbs.2013.02.011
https://doi.org/10.1017/S144618110001347X
https://doi.org/10.1007/s10144-012-0323-8
https://doi.org/10.1016/j.jtbi.2013.03.014
https://doi.org/10.1016/j.ecolmodel.2007.10.014
https://doi.org/10.1007/s11071-016-3326-8
https://doi.org/10.1016/j.cnsns.2014.02.003
https://doi.org/10.1016/j.nonrwa.2012.04.006
https://doi.org/10.1016/j.cnsns.2017.05.013
https://doi.org/10.1016/j.cnsns.2013.10.033


Liu and Huang Journal of Inequalities and Applications        (2019) 2019:307 Page 27 of 27

39. Nie, L.F., Teng, Z.D., Hu, L., Peng, J.G.: The dynamics of a Lotka–Volterra predator–prey model with state dependent
impulsive harvest for predator. Biosystems 98, 67–72 (2009). https://doi.org/10.1016/j.biosystems.2009.06.001

40. Larkin, P.A.: An epitaph for the concept of the maximum sustained yield. Trans. Am. Fish. Soc. 106, 1–11 (1977).
https://doi.org/10.1577/1548-8659(1977)106<1:AEFTCO>2.0.CO;2
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