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Abstract
In the paper, we consider the following hemivariational inequality problem involving
the fractional Laplacian:

{
(–�)su + λu ∈ α(x)∂F(x,u) x ∈ Ω ,

u = 0 x ∈R
N\Ω ,

where Ω is a bounded smooth domain in R
N with N ≥ 3, (–�)s is the fractional

Laplacian with s ∈ (0, 1), λ > 0 is a parameter, α(x) :Ω → R is a measurable function,
F(x,u) :Ω ×R →R is a nonsmooth potential, and ∂F(x,u) is the generalized gradient
of F(x, ·) at u ∈ R. Under some appropriate assumptions, we obtain the existence of a
nontrivial solution of this hemivariational inequality problem. Moreover, when F is
autonomous, we obtain the existence of infinitely many solutions of this problem
when the nonsmooth potentials F have suitable oscillating behavior in any
neighborhood of the origin (respectively the infinity) and discuss the properties of
the solutions.
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1 Introduction
In the present paper, we are concerned with the following hemivariational inequality:

(Pλ)

⎧⎨
⎩(–�)su + λu ∈ α(x)∂F(x, u) x ∈ Ω ,

u = 0 x ∈R
N\Ω ,

where Ω is a bounded smooth domain in R
N with N ≥ 3, λ > 0 is a parameter, α(x) : Ω →

R is a measurable function, F(x, u) : Ω ×R → R is a nonsmooth potential, while ∂F(x, u)
is the generalized gradient of F(x, ·) at u ∈ R, and (–�)s with s ∈ (0, 1) is the fractional
Laplacian which may be defined as

–(–�)su(x) =
1
2

∫
Rn

u(x + y) + u(x – y) – 2u(x)
|y|N+2s dy

for x ∈R
N .
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In recent years, boundary value problems involving fractional operators and more gen-
eral nonlocal operators have attracted more interest since these operators appear in con-
crete applications in many fields, such as anomalous diffusion [1], quantum mechanics [2],
obstacle problems [3], phase transition [4], minimal surface [5], and so on. In the literature,
various papers deal with the existence and multiplicity of nontrivial solutions for the frac-
tional Laplacian equations with superlinear or subcritical, critical, asymptotically linear
nonlinearities, and some elliptic boundary problems involving the nonlocal integrodiffer-
ential operator are also exploited, see for example [6–10] and the references therein.

We note that the existence of infinitely many solutions for elliptic boundary value prob-
lems without the symmetric functionals is an important topic in nonlinear analysis, hence
there are a lot of papers focused on the existence of infinitely many solutions of elliptic
boundary value problems involving the local Laplacian and the p-Laplacian, see for exam-
ple [11, 12]. Also, this study for boundary value problems involving fractional Laplacian
has received attention of some authors via variational methods recently. For instance, in
[13], under some subcritical growth assumptions on the nonlinearity, Servadei established
results on the existence of infinitely many solutions for the nonlocal fractional Laplace
equations; in [14], with the help of the Ambrosetti–Rabinowitz type condition, Zhang
et al. established some results on the existence of infinitely many solutions for fractional
Laplace equations with subcritical growth nonlinearities and superlinear growth nonlin-
earities; in [15], under some local growth conditions on the nonlinearity, Li and Wei ob-
tained the existence of infinitely many solutions for fractional Laplace equations; in [16],
by using variational and topological methods, Ambrosio et al. obtained the existence of
infinitely many solutions for fractional nonlocal p-Laplacian problem under some oscil-
lating conditions near the origin or at infinity.

We point out that the above works on nonlocal boundary value problems can be formu-
lated as “smooth” since the involving nonlinearities are continuous. So we wonder what
happens if the nonlocal boundary value problems have nonsmooth nonlinearities (this
kind of problems is called hemivariational inequality). In fact, the research on the exis-
tence and multiplicity of solutions for the hemivariational inequality problems involving a
local Laplace or p-Laplace type operator has attracted the interest of many authors in the
past thirty years, see for instance [17–22] and the references therein.

Therefore, motivated by the papers mentioned above, especially by[13–18, 22], we are
interested in the existence of a nontrivial solution and infinitely solutions for the fractional
hemivariational inequality problem (Pλ) in the present paper. By using the theory of non-
smooth critical point and the idea of constructing a special set in the working function
space such that the minimum point of the energy functional on this set is actually a weak
solution of problem (Pλ), we obtain an existence result (see Theorem 3.2 for more details).
Moreover, under suitable oscillatory assumptions on the autonomous nonsmooth poten-
tial F : R →R at zero or at infinity, we establish the existence of infinitely many solutions
for problem (Pλ) (see Theorems 4.1 and 4.2 for more details). It is worth noting that, if F is
a primitive of a continuous function f , problem (Pλ) will become a boundary value prob-
lem involving a fractional operator. The method to obtain the existence of infinitely many
solutions for this boundary value problem is different from the ones used in [13–16].

This paper is organized as follows. In Sect. 2 we give some notations and preliminaries.
In Sect. 3, under appropriate assumptions, we present a result about the existence of a
solution for problem (Pλ). In Sect. 4, we show the existence of infinitely many solutions
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whenever the autonomous nonlinearity F oscillates in any neighborhood of the origin
(respectively infinity) and obtain some properties of the solutions.

2 Preliminaries
In the section, we gather some notions and results which will be useful in the proofs of
our results.

Our method of proof uses the nonsmooth critical point theory, which in turn is based
on the subdifferential theory for locally Lipschitz functional. In the following, firstly we
briefly recall some basic definitions and results from these two theories. For details, we
refer to Clarke [23] and Gasinński and Papageorgiou [24].

Let X be a Banach space and X∗ be its topological dual. By 〈·, ·〉 we denote the duality
pairing between X∗ and X. Given a locally Lipschitz function f : X → R, the generalized
directional derivative of f at a point u ∈ X along the direction h ∈ X is defined by

f ◦(u; h) = lim sup
v→u
t↓0

f (v + th) – f (v)
t

,

and the generalized gradient of f at a point u ∈ X is defined by

∂f (u) =
{

u∗ ∈ X∗ : f ◦(u; h) ≥ 〈
u∗, h

〉
,∀h ∈ X

}
.

It is clear that, by using the Hahn–Banach theorem, ∂f (u) �= ∅. If f is also convex, then the
multifunction X 
 u → ∂f (u) ∈ 2X∗\{∅} coincides with the Clarke subdifferential in the
sense of convex analysis, defined by

∂f (u) =
{

u∗ ∈ X∗ : f (v) – f (u) ≥ 〈
u∗, v – u

〉
,∀v ∈ X

}
.

Also the generalized gradient satisfies the mean value rule (so-called Lebourg’s mean value
theorem). Namely, if f : X → R is Lipschitz on an open set containing the line segment
[u, v], we can find w = ut + (1 – t)v with t ∈ (0, 1) and w∗ ∈ ∂f (w) such that

f (v) – f (u) =
〈
w∗, v – u

〉
.

Let Φ : X → R be a locally Lipschitz function and Ψ : X → R∪ {+∞} be a proper, con-
vex, and low semicontinuous functional. Then Φ + Ψ is called a Motreanu–
Panagiotopoulos-type functional (see [25]).

Definition 2.1 Let Φ + Ψ be a Motreanu–Panagiotopoulos-type functional, u ∈ X. Then
u is a critical point of Φ + Ψ if, for every v ∈ X,

Φ◦(u)(v – u) + Ψ (v) – Ψ (u) ≥ 0.

In the sequel, for the reader’s convenience, we briefly recall the definition of the frac-
tional Sobolev space and give some notations and useful lemmas. For further details on
the fractional Sobolev space, we refer to [8, 9] and to the references therein.
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Given 0 < s < 1, we denote the sets X and X0 by

X =
{

u : RN → R is Lebesgue measurable : u|Ω ∈ L2(Ω),
u(x) – u(y)
|x – y| N+2s

2
∈ L2(Q)

}

and

X0 =
{

u ∈ X : u = 0 a.e. in R
N\Ω}

, (2.1)

where Q = R
2N\O and O = (RN\Ω) × (RN\Ω). Moreover, the spaces X and X0 are en-

dowed with the norms respectively defined as

‖u‖X = ‖u‖L2(Ω) +
(∫

Q

(u(x) – u(y))2

|x – y|N+2s dx dy
) 1

2
, ∀u ∈ X ,

and

‖u‖X0 =
(∫

Q

(u(x) – u(y))2

|x – y|N+2s dx dy
) 1

2
, ∀u ∈ X0. (2.2)

By Lemma 6 of [8], the norms ‖·‖X and ‖·‖X0 are equivalent. We define an inner product
〈·, ·〉 on X0 as follows:

〈u, v〉 =
∫

Q

(u(x) – u(y))(v(x) – v(y))
|x – y|N+2s dx dy, ∀u, v ∈ X0, (2.3)

then X0 is a Hilbert space (see [8, Lemma 7]). Also note that in (2.2) and (2.3) the integral
can be extended to all RN ×R

N since u, v ∈ X0. X0 is called the fractional Sobolev space
(also denote X0 as Hs(Ω)).

Throughout this paper, we will always respectively denote ‖u‖p = ‖u‖Lp(Ω) (1 ≤ p ≤ ∞).
As usual, we denote by “→” and “⇀” the strong and weak convergence.

Now, we give a convergence property for bounded sequences in X0 and a property for
eigenvalues of (–�)s, which will be used in the following. These results are proved in
[8, 9].

Lemma 2.1 ([8, Lemma 8]) Let {vn} be a bounded sequence in X0. Then there exists v ∈
Lp(RN ) such that, up to a subsequence, vn → v in Lp(RN ) as n → ∞ for any p ∈ [1, 2∗).

Lemma 2.2 ([9, Lemma 9]) For the fractional eigenvalue problem

⎧⎨
⎩(–�)su = λu x ∈ Ω ,

u = 0 x ∈R
N\Ω ,

there exists an eigenvalues sequence {λn} with

0 < λ1 < λ2 ≤ · · · ≤ λn ≤ · · · ,



Xi and Zhou Journal of Inequalities and Applications        (2019) 2019:302 Page 5 of 23

and

λn → ∞ as n → ∞,

where

λ1 = min
u∈X0\{0}

∫
R2N |u(x) – u(y)|2 1

|x–y|N+2s dx dy∫
Ω

|u(x)|2 dx
. (2.4)

Let us introduce the Euler functional Jλ : X0 → R corresponding to problem (Pλ) as
follows:

Jλ(u) =
1
2

∫
Q

∣∣u(x) – u(y)
∣∣2 1

|x – y|N+2s dx dy +
λ

2

∫
Ω

∣∣u(x)
∣∣2 dx –

∫
Ω

α(x)F(x, u) dx

=
1
2
‖u‖2

X0 +
λ

2
‖u‖2

2 –
∫

Ω

α(x)F(x, u) dx. (2.5)

We denote

Ψ (u) � 1
2

∫
Q

∣∣u(x) – u(y)
∣∣2 1

|x – y|N+2s dx dy =
1
2
‖u‖2

X0 , (2.6)

Φ1(u) � 1
2

∫
Ω

∣∣u(x)
∣∣2 dx =

1
2
‖u‖2

2 and Φ2(u) �
∫

Ω

α(x)F(x, u) dx, (2.7)

then

Jλ(u) = Ψ (u)+λΦ1(u) – Φ2(u). (2.8)

3 Existence of a solution for problem (Pλ)
Let α : Ω → R, F : Ω × R → R. In this section, we obtain the existence of a solution on
problem (Pλ) under the following assumptions:

(α) α ∈ L2(Ω) is nonnegative, and there exists D ⊂ Ω with meas(D) > 0 such that α(x) > 0
for almost all x ∈ D;

(f1) F(·, u) is measurable for all u ∈ R, F(x, ·) is locally Lipschitz for almost all x ∈ Ω ,
F(x, 0) = 0.

(f2) There exist q ∈ (1, 2∗) and C0 > 0 such that

∣∣u∗∣∣ ≤ C0
(
1 + |u|q–1)

for almost all x ∈ Ω , every u ∈R, and u∗ ∈ ∂F(x, u);
(f3) There are constants a, b, c, d with d < c ≤ 0 < a < b, such that u∗ ≤ 0 for almost all

x ∈ Ω , every u ∈ [a, b], and u∗ ∈ ∂F(x, u); u∗ ≥ 0 for almost all x ∈ Ω , every u ∈ [d, c],
and u∗ ∈ ∂F(x, u).

In order to prove the main result, we define the set

U =
{

u ∈ X0 : d ≤ u(x) ≤ b for almost every x ∈R
N}

, (3.1)

where constants b and d are given in condition (f3).
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Lemma 3.1 Assume that F(x, u) satisfies (f1) and (f2), α(x) satisfies condition (A). Then
the functional Jλ(u) is sequentially weakly lower semicontinuous on U , where the set U is
defined by (3.1).

Proof Firstly, we claim that the set U is weakly closed. The set U is clearly convex. More-
over, it is closed in X0. In fact, let {un} ⊂ U with

un → u ∈ X0 as n → ∞,

then {un} is bounded in X0. By Lemma 2.1, up to a subsequence of {un} (which is still
denoted as {un})

un → u in Lp(
R

N)
as n → ∞,

where 1 ≤ p < 2∗. Thus

un(x) → u(x) for almost every x ∈R
N .

Since d ≤ un(x) ≤ b, d ≤ u(x) ≤ b for almost every x ∈ R
N . So u ∈ U . Then U is weakly

closed.
In the sequel, we prove that Jλ(u) is weakly lower semicontinuous. Note that Ψ (u) and

Φ1(u) are weakly lower semicontinuous, where Ψ (u) and Φ1(u) are defined by (2.6) and
(2.7), respectively. From (2.8), we only need to prove that Φ2(u) is weakly continuous,
where Φ2(u) is defined by (2.7). Arguing by contradiction, we assume that {un} ⊂ U is a
sequence with un ⇀ u ∈ X0 but Φ2(un) �Φ2(u) as n → ∞. Then, up to a subsequence of
{un}, we can choose a constant ε0 such that

0 < ε0 ≤ ∣∣Φ2(un) – Φ2(u)
∣∣ (3.2)

for large enough n ∈N. According to Lemma 2.1 and U is weakly closed, we see that

un → u ∈ U in L2(
R

N)
as n → ∞. (3.3)

By Lebourg’s mean value theorem, for almost all x ∈ Ω , there exist θn ∈ (0, 1) and w∗
n ∈

∂F(x, wn) with wn = u + θn(un – u) ∈ U such that

∣∣F(x, un) – F(x, u)
∣∣ =

∣∣w∗
n
∣∣|un – u|

≤ C0
(
1 + |wn|q–1)|un – u|

≤ C1|un – u|, (3.4)

where the first inequality is due to condition (f2) and the last inequality comes from (3.1),
the definition of U , C1 is a positive constant. Therefore, it follows from (3.2), (3.3), (3.4),
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and Hölder’s inequality that

0 < ε0 ≤ ∣∣Φ2(un) – Φ2(u)
∣∣

≤
∫

Ω

α(x)
∣∣F(x, un) – F(x, u)

∣∣dx

≤ C1‖α‖2‖un – u‖2 → 0, as n → ∞,

which is impossible. The proof is completed. �

Lemma 3.2 Let λ > 0. Assume that F(x, u) satisfies (f1) and (f3), α(x) satisfies condition (A).
If there exists u0 ∈ U such that

Jλ(u0) = inf
u∈U

Jλ(u),

where Jλ is defined by (2.5) and the set U is defined by (3.1), then u0(x) ∈ [c, a] for almost
every x ∈R

N , where constants a and c are given in condition (f3).

Proof Since u0 ∈ U , u0 ∈ X0 and d ≤ u0(x) ≤ b for almost every x ∈R
N .

Denote

A =
{

x ∈R
N : u0(x) /∈ [c, a]

}
,

A1 =
{

x ∈ A : u0(x) < c
}

,

A2 =
{

x ∈ A : u0(x) > a
}

.

(3.5)

Clearly, A1 ∪ A2 = A. Let us define

v0(x) =

⎧⎪⎪⎨
⎪⎪⎩

c x ∈ A1,

u0(x) x ∈R
N\A,

a x ∈ A2.

(3.6)

Firstly, we will prove that

‖v0‖X0 ≤ ‖u0‖X0 . (3.7)

From u0 ∈ U ⊂ X0 and (2.1), the definition of X0, we have u0(x) = 0 for almost every
x ∈ R

N\Ω . Since d < c ≤ 0 < a < b, u0(x) ∈ [c, a] for almost every x ∈ R
N\Ω . From (3.5)

and (3.6), we have v0(x) = 0 for almost every x ∈R
N\Ω . Therefore,

∫
Q

∣∣v0(x) – v0(y)
∣∣2 1

|x – y|N+2s dx dy –
∫

Q

∣∣u0(x) – u0(y)
∣∣2 1

|x – y|N+2s dx dy

=
∫
R2N

(∣∣v0(x) – v0(y)
∣∣2 –

∣∣u0(x) – u0(y)
∣∣2) 1

|x – y|N+2s dx dy, (3.8)
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where Q = R
2n\O and O = (Rn\Ω) × (Rn\Ω). According to the definitions of v0, A1 and

A2, we get

∫
Q

∣∣v0(x) – v0(y)
∣∣2 1

|x – y|N+2s dx dy –
∫

Q

∣∣u0(x) – u0(y)
∣∣2 1

|x – y|N+2s dx dy

=
(∫

A1×A1

+
∫

A1×A2

+
∫

A1×(RN \A)
+

∫
A2×A1

+
∫

A2×A2

+
∫

A2×(RN \A)
+

∫
(RN \A)×A1

+
∫

(RN \A)×A2

+
∫

(RN \A)×(RN \A)

)(∣∣v0(x) – v0(y)
∣∣2 –

∣∣u0(x) – u0(y)
∣∣2)

× 1
|x – y|N+2s dx dy

≤ 0,

which implies that ‖v0‖2
X0

≤ ‖u0‖2
X0

. That is, (3.7) holds. Clearly, v0 ∈ U .
Secondly, we claim that meas(A) = 0. Indeed, by Lebourg’s mean value theorem, for al-

most all x ∈ Ω , there exist θ1, θ2 ∈ (0, 1), w∗
1 ∈ ∂F(x, w1) with w1 = c + θ1(u0 – c) ∈ U and

w∗
2 ∈ ∂F(x, w2) with w2 = a + θ2(u0 – a) ∈ U , such that

F(x, u0) – F(x, c)) = w∗
1(u0 – c), (3.9)

F(x, u0) – F(x, a)) = w∗
2(u0 – a). (3.10)

Therefore, we have
∫

Ω

α(x)
(
F(x, u0) – F(x, v0)

)
dx

=
∫

A1

α(x)
(
F(x, u0) – F(x, c)

)
dx +

∫
A2

α(x)
(
F(x, u0) – F(x, a)

)
dx

=
∫

A1

α(x)w∗
1(u0 – c) dx +

∫
A2

α(x)w∗
2(u0 – a) dx ≤ 0, (3.11)

where the first equality follows from the definitions of A1, A2, A and v0(x) = u0(x) = 0 for
almost every x ∈ R

N\Ω , the second equality is due to (3.9) and (3.10), the last inequality
comes from condition (f3) and the definitions of A1, A2. On the other hand, we know that

‖v0‖2
2 – ‖u0‖2

2 =
∫

A1

(
c2 – u2

0
)

dx +
∫

A2

(
a2 – u2

0
)

dx ≤ 0. (3.12)

By (3.7), (3.11), and (3.12), we deduce that

Jλ(v0) – Jλ(u0)

=
1
2
(‖v0‖2

X0 – ‖u0‖2
X0

)
+

λ

2
(‖v0‖2

2 – ‖u0‖2
2
)

+
∫

Ω

α(x)(F(x, u0) – F(x, v0) dx ≤ 0,

this, together with Jλ(u0) = infu∈U J(u), yields that Jλ(v0) – Jλ(u0) = 0. Then in particular

∫
A1

(
c2 – u2

0
)

dx = 0 and
∫

A2

(
a2 – u2

0
)

dx = 0,
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which implies

meas(A) = meas(A1) + meas(A2) = 0.

Hence, c ≤ u0(x) ≤ a for almost every x ∈R
N . The proof is complete. �

Let θ ∈ R and ε ∈ R+. In the following, we define the function h(θ ) = min{b, max{d, θ}},
where b and d are given in condition (f3), and let w(x) = h(u0(x) + εv(x)) for any v ∈ X0,
where u0 is given in Lemma 3.2. Then, by the definition of X0 and U , we have

w(x) = h
(
u0(x) + εv(x)

)
=

⎧⎪⎪⎨
⎪⎪⎩

d u0 + εv < d,

u0(x) + εv(x) d ≤ u0 + εv < b,

b u0 + εv ≥ b,

(3.13)

and w ∈ U . We introduce the sets

B1(ε) =
{

x ∈R
N : u0(x) + εv(x) < d

}
,

B2(ε) =
{

x ∈R
N : d ≤ u0(x) + εv(x) < b

}
,

B3(ε) =
{

x ∈R
N : u0(x) + εv(x) ≥ b

}
.

(3.14)

Clearly, B1(ε) ∪ B2(ε) ∪ B3(ε) = R
N and B1(ε) ⊂ Ω , B3(ε) ⊂ Ω . Moreover, the following

lemma holds.

Lemma 3.3 meas(B1(ε)) → 0 and meas(B3(ε)) → 0 as ε → 0+, respectively.

Proof Suppose the contrary, i.e., meas(B1(ε)) � 0 as ε → 0+. Thus there exists a number
η0 > 0, ∀n ∈N, ∃n0 ∈ N, n0 > n, such that

meas

(
B1

(
1
n0

))
≥ η0. (3.15)

Let v ∈ X0. Since, for any M > 0, we have

M meas
{

x ∈R
N : |v| > M

} ≤
∫

{x∈RN :|v|>M}
v(x) dx ≤

∫
Ω

∣∣v(x)
∣∣dx ≤ c1‖v‖2,

then

meas
{

x ∈R
N : |v| > M

} ≤ c1

M
‖v‖2 → 0, as M → ∞.

So there exists a positive constant M0 such that

meas
{

x ∈R
N : |v| > M0

} ≤ η0

2
. (3.16)

On the other hand, taking into account u0(x) ∈ [c, a] ⊂ (d, b). For each |v(x)| ≤ M0, there
exists large enough n0 ∈N which satisfies (3.15) such that

u0(x) +
1
n0

v(x) ≥ c + d
2

> d. (3.17)
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It follows from (3.14) and (3.17) that

B1

(
1
n0

)
∩ {

x ∈ R
N : |v| ≤ M0

}
= ∅. (3.18)

Hence, combining with the above (3.15), (3.16), and (3.18), we obtain

η0 ≤ meas

(
B1

(
1
n0

))

=
∫

B1( 1
n0

)∩{x∈RN :|v|>M0}
dx +

∫
B1( 1

n0
)∩{x∈RN :|v|≤M0}

dx

=
∫

B1( 1
n0

)∩{x∈RN :|v|>M0}
dx ≤ η0

2
,

which is a contradiction. Similarly, we can prove that meas(B3(ε)) → 0 as ε → 0+. The
proof is completed. �

Theorem 3.1 Let λ > 0. Assume that F(x, u) satisfies (f1), (f2), and (f3), α(x) satisfies con-
dition (A). Then there exists u0 ∈ U such that the functional

Jλ(u0) = inf
u∈U

Jλ(u),

where Jλ is defined by (2.5) and the set U is defined by (3.1). Moreover, u0(x) ∈ [c, a] for
almost every x ∈R

N .

Proof Let u ∈ U . By Lebourg’s mean value theorem, for almost all x ∈ Ω , there exist θ ∈
(0, 1) and w∗ ∈ ∂F(x, w) with w = θu ∈ U such that

∣∣F(x, u)
∣∣ =

∣∣F(x, u) – F(x, 0)
∣∣ =

∣∣w∗∣∣|u|
≤ C0

(
1 + |u|q–1)|u| ≤ C2, (3.19)

where the first equality is due to condition (f1), the first inequality is due to condition (f2),
and the last inequality comes from the definition of U and C2 is a positive constant. By
the definition of Jλ(u) and (3.19), we know that

Jλ(u) ≥ –
∫

Ω

α(x)F(x, u) dx ≥ –C2‖α‖1, ∀u ∈ U . (3.20)

Then Jλ(u) is bounded from below on U .
Let η = infu∈U Jλ(u). There are {un} ⊂ U such that

η ≤ Jλ(un) ≤ η +
1
n

, ∀n ∈ N. (3.21)

So by (2.5), combining the definition of Jλ(u) with (3.20) and (3.21), we obtain

1
2
‖un‖2

X0
≤ Jλ(un) +

∫
Ω

α(x)F(x, u) dx ≤ η + 1 + C2‖α‖1, n ∈N.
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Hence {un} ⊂ U is bounded in X0. Note that X0 is a Hilbert space and U is weakly closed,
there exists a subsequence of {un} (which is still denoted as {un}) such that un ⇀ u0 for
some u0 ∈ U . Due to the weak lower semicontinuity of Jλ(u) (Lemma 3.1), we have

η = lim inf
n→∞ Jλ(un) ≥ Jλ(u0) ≥ η.

Hence

Jλ(u0) = η = inf
u∈U

Jλ(u).

By Lemma 3.2, u0(x) ∈ [c, a] for almost every x ∈ R
N . �

Remark 3.1 Functions satisfying all the conditions in Theorem 3.1 exist. For instance, let
Ω ⊂R

3, the function F(x, u) : Ω ×R →R be defined by

F(x, u) =

⎧⎪⎪⎨
⎪⎪⎩

(
∑3

i=1 sin xi + 5) cos πu
2 , if x = (x1, x2, x3) ∈ Ω , 1 < u < +∞,

0, if x = (x1, x2, x5) ∈ Ω , 0 ≤ u ≤ 1,

(
∑3

i=1 sin xi + 5)u3, if x = (x1, x2, x3) ∈ Ω , –∞ < u < 0.

Obviously, F(x, u) satisfies (f1) and |u∗| ≤ 20(1 + |u|2) for every x ∈ Ω , u ∈ R and u∗ ∈
∂F(x, u), where 2∗ = 6, q = 3 < 2∗. That is, F(x, u) satisfies (f2). Take a = 3

2 , b = 2, c = – 3
2 , d =

–2, then F(x, u) satisfies (f3). Let α(x) = 1, ∀x = (x1, x2, x3) ∈ Ω . Then α : Ω →R, condition
(A).

Theorem 3.2 Let λ > 0. Assume that F(x, u) satisfies (f1), (f2), and (f3), α(x) satisfies con-
dition (A). Then problem (Pλ) has a solution.

Proof By Theorem 3.1, there exists u0 ∈ X0 with u0 ∈ [c, a] such that Jλ(u0) = infu∈U Jλ(u).
In the following, we only need to prove that u0 is a solution of problem (Pλ).

Let ΓU be the indicator function of the set U , i.e.,

ΓU (u) =

⎧⎨
⎩0 u ∈ U ,

+∞ u /∈ U .

Obviously, ΓU is convex, lower semicontinuous, and proper. Define the functional Iλ :
X0 → R ∪ {+∞} by Iλ = Jλ + ΓU . Since Jλ is of class C1 on X0, Iλ is the Szulkin-type
functional. Note that u0 is a local minimum point of Jλ on U , thus a local minimum point
of the functional Iλ. Moreover, u0 is a critical point of Iλ, that is,

J◦
λ (u0)(w – u0) + ΓU (w) – ΓU (u0) ≥ 0, ∀w ∈ X0.

In particular,

J◦
λ (u0)(w – u0) ≥ 0, ∀w ∈ U .
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Note that

(–Φ2)◦(u0, w – u0) = Φ◦
2 (u0, u0 – w),

Φ◦
2 (u0; u0 – w) ≤

∫
Ω

α(x)F◦(x, u0; u0 – w) dx,

that is,

0 ≤
∫
R2N

(
u0(x) – u0(y)

)
[
(
w(x) – u0(x)

)
–

(
w(y) – u0(y)

) 1
|x – y|N+2s dx dy

+ λ

∫
Ω

u0(x)
(
w(x) – u0(x)

)
dx +

∫
Ω

α(x)F◦(x, u0; u0 – w) dx, ∀w ∈ U . (3.22)

For each v ∈ X0, we choose w defined as (3.13) and estimate every term of the right-hand
side of (3.22). We shall complete the proof by the following steps.

Step 1: We estimate the second term of the right-hand side of (3.22).
Due to u0 = 0 in R

N\Ω , we have

λ

∫
Ω

u0(x)
(
w(x) – u0(x)

)
dx

= λε

∫
Ω

u0(x)v(x) dx + λ

∫
RN

[
u0(x)

(
w(x) – u0(x)

)
– εu0(x)v(x)

]
dx

= λε

∫
Ω

u0(x)v(x) dx + λ

∫
B1(ε)

u0(x)
(
d – u0(x) – εv(x)

)
dx

+ λ

∫
B3(ε)

u0(x)
(
b – u0(x) – εv(x)

)
dx, (3.23)

and ∫
B1(ε)

u0(x)
(
d – u0(x) – εv(x)

)
dx

=
∫

B1(ε)
d
(
d – u0(x) – εv(x)

)
dx –

∫
B1(ε)

(
u0(x) – d

)2

– ε

∫
B1(ε)

(
u0(x) – d

)
v(x) dx

≤ ε

∫
B1(ε)

(
d – u0(x)

)
v(x) dx. (3.24)

Similarly, arguing as above, we get∫
B3(ε)

u0(x)
(
b – u0(x) – εv(x)

)
dx ≤ ε

∫
B3(ε)

(
b – u0(x)

)
v(x) dx. (3.25)

By (3.23), (3.24), and (3.25), we obtain

λ

∫
Ω

u0(x)
(
w(x) – u0(x)

)
dx

≤ λε

(∫
Ω

u0(x)v(x) dx +
∫

B1(ε)

(
d – u0(x)

)
v(x) dx

+
∫

B3(ε)

(
b – u0(x)

)
v(x) dx

)
. (3.26)
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Step 2: We estimate the first term of the right-hand side of (3.22). Due to (3.14), we have∫
R2N

(
u0(x) – u0(y)

)[(
w(x) – u0(x)

)
–

(
w(y) – u0(y)

)] 1
|x – y|N+2s dx dy

≤ ε

∫
R2N

(
u0(x) – u0(y)

)(
v(x) – v(y)

) 1
|x – y|N+2s dx dy

– ε

∫
B1(ε)×B1(ε)

(
u0(x) – u0(y)

)(
v(x) – v(y)

) 1
|x – y|N+2s dx dy

– ε

∫
B3(ε)×B3(ε)

(
u0(x) – u0(y)

)(
v(x) – v(y)

) 1
|x – y|N+2s dx dy

+ 2
∫

B1(ε)×B2(ε)

(
u0(x) – u0(y)

)(
d – u0(x) – εv(x)

) 1
|x – y|N+2s dx dy

+ 2
∫

B1(ε)×B3(ε)

(
u0(x) – u0(y)

)(
d – u0(x) – εv(x) + u0(y) + εv(y) – b

)

× 1
|x – y|N+2s dx dy

+ 2
∫

B2(ε)×B3(ε)

(
u0(x) – u0(y)

)(
u0(y) + εv(y) – b

) 1
|x – y|N+2s dx dy. (3.27)

In the following, we estimate the fourth term of (3.27). Now take R > 0 with Ω ⊂ BR =
{x ∈ R

N : |x| ≤ R}. Owing to u0(x) = v(x) = 0 for x ∈ Bc
R, then B2(ε) ∩ Bc

R = Bc
R. Therefore,

we obtain∫
B1(ε)×B2(ε)

(
u0(x) – u0(y)

)(
d – u0(x) – εv(x)

) 1
|x – y|N+2s dx dy

≤ ε

∫
B1(ε)×(B2(ε)∩BR)

(
v(y) – v(x)

)(
d – u0(x) – εv(x)

) 1
|x – y|N+2s dx dy

+ ε

∫
B1(ε)×Bc

R

(
v(y) – v(x)

)(
d – u0(x) – εv(x)

) 1
|x – y|N+2s dx dy. (3.28)

Since u0(x) + εv(x) < d for x ∈ B1(ε) and c ≤ u0(x) ≤ a, we know v(x) < 0 for x ∈ B1(ε).
Consequently,∫

B1(ε)×Bc
R

(
v(y) – v(x)

)(
d – u0(x) – εv(x)

) 1
|x – y|N+2s dx dy

≤ C3

∫
B1(ε)

(
–v(x)

)(
d – u0(x) – εv(x)

)
dx

∫ +∞

R

ρN–1

ρN+2s dρ

= C4

∫
B1(ε)

(
–v(x)

)(
d – u0(x) – εv(x)

)
dx, (3.29)

where C3, C4 are constants. By (3.28) and (3.29), we get∫
B1(ε)×B2(ε)

(
u0(x) – u0(y)

)(
d – u0(x) – εv(x)

) 1
|x – y|N+2s dx dy

≤ ε

∫
B1(ε)×(B2(ε)∩BR)

(
v(y) – v(x)

)(
d – u0(x) – εv(x)

) 1
|x – y|N+2s dx dy

+ εC4

∫
B1(ε)

(
–v(x)

)(
d – u0(x) – εv(x)

)
dx. (3.30)
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Similarly, we can estimate the sixth term of (3.27) and obtain

∫
B2(ε)×B3(ε)

(
u0(x) – u0(y)

)(
u0(y) + εv(y) – b

) 1
|x – y|N+2s dx dy

≤ ε

∫
(B2(ε)∩BR)×B3(ε)

(
v(y) – v(x)

)(
u0(y) + εv(y) – b

) 1
|x – y|N+2s dx dy

+ εC5

∫
B3(ε)

v(y)
(
u0(y) + εv(y) – b

)
dy, (3.31)

where C5 is a constant. Then we estimate the fifth term of (3.27). According to u0(x) +
εv(x) < d for x ∈ B1(ε) and u0(y) + εv(y) ≥ b for y ∈ B3(ε), a simple calculation shows that
u0(x) – u0(y) ≤ ε(v(y) – v(x)). Hence,

∫
B1(ε)×B3(ε)

(
u0(x) – u0(y)

)(
d – u0(x) – εv(x) + u0(y) + εv(y) – b

)

× 1
|x – y|N+2s dx dy

≤ ε

∫
B1(ε)×B3(ε)

(
v(y) – v(x)

)(
d – u0(x) – εv(x) + u0(y) + εv(y) – b

)

× 1
|x – y|N+2s dx dy. (3.32)

Combining with the above (3.27), (3.30), (3.31), and (3.32), we obtain the estimation of the
first term of the right-hand side of (3.22), i.e.,

∫
R2N

(
u0(x) – u0(y)

)
[
(
w(x) – u0(x)

)
–

(
w(y) – u0(y)

) 1
|x – y|N+2s dx dy

≤ ε

∫
R2N

(
u0(x) – u0(y)

)(
v(x) – v(y)

) 1
|x – y|N+2s dx dy

– ε

∫
B1(ε)×B1(ε)

(
u0(x) – u0(y)

)(
v(x) – v(y)

) 1
|x – y|N+2s dx dy

– ε

∫
B3(ε)×B3(ε)

(
u0(x) – u0(y)

)(
v(x) – v(y)

) 1
|x – y|N+2s dx dy

+ 2ε

∫
B1(ε)×(B2(ε)∩BR)

(
v(y) – v(x)

)(
d – u0(x) – εv(x)

) 1
|x – y|N+2s dx dy

+ 2εC4

∫
B1(ε)

(
–v(x)

)(
d – u0(x) – εv(x)

)
dx

+ 2εC5

∫
B3(ε)

v(y)
(
u0(y) + εv(y) – b

)
dy

+ 2ε

∫
(B2(ε)∩BR)×B3(ε)

(
v(y) – v(x)

)(
u0(y) + εv(y) – b

) 1
|x – y|N+2s dx dy

+ 2ε

∫
B1(ε)×B3(ε)

(
v(y) – v(x)

)(
d – u0(x) – εv(x) + u0(y) + εv(y) – b

)

× 1
|x – y|N+2s dx dy. (3.33)
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Step 3: We estimate the third term of the right-hand side of (3.22).
For each w∗

0 ∈ ∂F(x, u0), we have 〈w∗
0, h〉 ≤ F◦(x, u0; h), ∀h ∈ X0. By (3.13) and (3.14), we

obtain
∫

Ω

α(x)w∗
0
(
u0(x) – w(x)

)
dx

= –ε

∫
Ω

α(x)w∗
0v(x) dx +

∫
B1(ε)

α(x)w∗
0
(
u0(x) + εv(x) – d

)
dx

+
∫

B3(ε)
α(x)w∗

0
(
u0(x) + εv(x) – b

)
dx. (3.34)

Furthermore, from condition (f2) and the fact that u0 ∈ [d, b], we obtain

∫
B1(ε)

α(x)w∗
0
(
u0(x) + εv(x) – d

)
dx ≤ –εC6

∫
B1(ε)

α(x)v(x) dx, (3.35)

∫
B3(ε)

α(x)w∗
0
(
u0(x) + εv(x) – b

)
dx ≤ εC7

∫
B3(ε)

α(x)v(x) dx, (3.36)

where C6, C7 are positive constants. Therefore, according to (3.34), (3.35), and (3.36), we
obtain

∫
Ω

α(x)w∗
0
(
u0(x) – w(x)

)
dx

≤ –ε

(∫
Ω

α(x)w∗
0v(x) dx + C6

∫
B1(ε)

α(x)v(x) dx – C7

∫
B3(ε)

α(x)v(x) dx
)

. (3.37)

Step 4: In the sequel, from the above inequalities (3.22), (3.26), (3.33), and (3.37), we deduce
that

0 ≤
∫
R2N

(
u0(x) – u0(y)

)(
v(x) – v(y)

) 1
|x – y|N+2s dx dy + λ

∫
Ω

u0(x)v(x) dx

–
∫

Ω

α(x)w∗
0v(x) dx –

∫
B1(ε)×B1(ε)

(
u0(x) – u0(y)

)(
v(x) – v(y)

) 1
|x – y|N+2s dx dy

–
∫

B3(ε)×B3(ε)

(
u0(x) – u0(y)

)(
v(x) – v(y)

) 1
|x – y|N+2s dx dy

+ 2
∫

B1(ε)×(B2(ε)∩BR)

(
v(y) – v(x)

)(
d – u0(x) – εv(x)

) 1
|x – y|N+2s dx dy

+ 2C4

∫
B1(ε)

(
–v(x)

)(
d – u0(x) – εv(x)

)
dx + 2C5

∫
B3(ε)

v(y)
(
u0(y) + εv(y) – b

)
dy

+ 2
∫

(B2(ε)∩BR)×B3(ε)

(
v(y) – v(x)

)(
u0(y) + εv(y) – b

) 1
|x – y|N+2s dx dy

+ 2
∫

B1(ε)×B3(ε)

(
v(y) – v(x)

)(
d – u0(x) – εv(x) + u0(y) + εv(y) – b

) 1
|x – y|N+2s dx dy

+ λ

∫
B1(ε)

(
d – u0(x)

)
v(x) dx + λ

∫
B3(ε)

(
b – u0(x)

)
v(x) dx

– C6

∫
B1(ε)

α(x)v(x) dx + C7

∫
B3(ε)

α(x)v(x) dx. (3.38)
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It follows from Lemma 3.3 that meas(B1(ε)) → 0 and meas(B3(ε)) → 0 as ε → 0+. There-
fore, take ε → 0+ in (3.38), we obtain

0 ≤
∫
R2N

(
u0(x) – u0(y)

)(
v(x) – v(y)

) 1
|x – y|N+2s dx dy

+ λ

∫
Ω

u0(x)v(x) dx –
∫

Ω

α(x)w∗
0v(x) dx.

By the arbitrariness of v ∈ X0, we have

∫
R2N

(
u0(x) – u0(y)

)(
v(x) – v(y)

) 1
|x – y|N+2s dx dy

+ λ

∫
Ω

u0(x)v(x) dx –
∫

Ω

α(x)w∗
0v(x) dx = 0.

Note that w∗
0 ∈ ∂F(x, u0), so u0 is a solution of problem (Pλ). Then the conclusion of The-

orem 3.2 is proved. �

4 Existence of infinitely many solutions for problem (Pλ)
In this section, we assume that F is autonomous, i.e., F(x, u) = F(u), F : R →R, and satisfies
the following conditions:

(f̄1) F : R →R is locally Lipschitz and F(0) = 0;
(f̄2) There exist q ∈ (1, 2∗) and C0 > 0 such that

∣∣u∗∣∣ ≤ C0
(
1 + |u|q–1)

for every u ∈ R and u∗ ∈ ∂F(u).
Let α : Ω →R. We will obtain two results on infinitely many solutions for the problem

(P̄λ)

⎧⎨
⎩(–�)su + λu ∈ α(x)∂F(u) x ∈ Ω ,

u = 0 x ∈R
N\Ω ,

when the nonlinearity F satisfies the above conditions and has a suitable oscillation near
the origin or at infinity (see hypotheses (F0

1 ) and (F0
2 ), or (F∞

1 ) and (F∞
2 ) in the following).

Lemma 4.1 Let F(u) satisfy (f̄1) and û ∈ R. If û∗ < 0 for û∗ ∈ ∂F(û), then there exists η > 0
such that z∗ ≤ 0 for z∗ ∈ ∂F(z), where z ∈ (û – η, û + η).

Proof We prove it by contradiction. Suppose on the contrary that, for each k ∈ N, there
exist zk ∈ (û – 1

k , û + 1
k ) and z∗

k ∈ ∂F(zk) such that z∗
k > 0. Let ẑ∗ be a cluster point of {z∗

k},
then ẑ∗ ≥ 0. Note that limk→∞ zk = û. By virtue of Proposition 2.1.5 of [23](P.29), we have
ẑ∗ ∈ ∂F(û), hence ẑ∗ < 0, which contradicts ẑ∗ ≥ 0. This completes the proof. �

Theorem 4.1 Let λ > 0 and α(x) satisfy condition (A). Assume that F(u) satisfies (f̄1), (f̄2),
and the following conditions:
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(F0
1 ) –∞ < lim infs→0

F(s)
s2 ≤ lim sups→0

F(s)
s2 = +∞;

(F0
2 ) There exist two sequences {ûk} ⊂ (0, +∞) and {ūk} ⊂ (–∞, 0) with

lim
k→∞

ûk = lim
k→∞

ūk = 0

such that, for all k ∈N,

û∗
k < 0 and ū∗

k > 0

for û∗
k ∈ ∂F(ûk) and ū∗

k ∈ ∂F(ūk), respectively.
Then there exists a sequence {uk} of distinct weak solutions of problem (P̄λ) such that

lim
k→∞

Jλ(uk) = 0 and lim
k→∞

‖uk‖X0 = 0.

Proof Let us define a function μ : RN →R such that

(i) μ(x) = 1 for x ∈ D;

(ii) 0 ≤ μ(x) ≤ 1 for x ∈ Ω\D;

(iii) μ(x) = 0 for x ∈ R
N\Ω ,

(4.1)

where D is the set given in condition (A). Then the function μ ∈ X0 exists thanks to the
fact that C2

0(Ω) ⊆ X0 (see [9] Lemma 11).
Due to condition (F0

2 ), without loss of generality, we can suppose that sequences {ûk} and
{ūk} are respectively decreasing and increasing. By virtue of Lemma 4.1, we may choose
the sequences {ak}, {bk} ⊂ (0, +∞) and {ck}, {dk} ⊂ (–∞, 0) such that, for all k ∈ N and
almost all x ∈ Ω ,

bk+1 < ak < ûk < bk and u∗ ≤ 0, ∀u ∈ [ak , bk], u∗ ∈ ∂F(u);

dk < ūk < ck < dk+1 and u∗ ≥ 0, ∀u ∈ [dk , ck], u∗ ∈ ∂F(u).

Take the set

Uk =
{

u ∈ X0 : dk ≤ u(x) ≤ bk for almost every x ∈ R
N}

. (4.2)

By Theorems 3.1 and 3.2, there exists uk ∈ Uk such that the functional

Jλ(uk) = inf
u∈Uk

Jλ(u). (4.3)

Moreover, uk(x) ∈ [ck , ak] for almost every x ∈ R
N and uk is a weak solution of problem

(P̄λ).
Firstly, we claim that when k is large enough, Jλ(uk) < 0.
Indeed, by using the first inequality in condition (F0

1 ), there exist two numbers l0 > 0 and
ρ0 ∈ (0, b1) such that

F(s) ≥ –l0s2, ∀s ∈ (–ρ0,ρ0). (4.4)
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Recall that λ1 is the first eigenvalue of (–�)s, from (2.4), the definition of λ1, we clearly
know

‖μ‖2
2 ≤ 1

λ1
‖μ‖2

X0 , (4.5)

where μ is defined by (4.1). Due to condition (A) and ‖μ‖X0 < +∞, we can choose L0 > 0
large enough so that

(
1
2

+
λ

2λ1

)
‖μ‖2

X0 + l0‖α‖1 < L0

∫
D

α(x) dx. (4.6)

Using the last equality in condition (F0
1 ), for the above L0, there exist sk ∈ (–ρ0,ρ0) with

ck ≤ sk ≤ ak , sk �= 0 and limk→∞ sk = 0 such that

F(sk) > L0s2
k (4.7)

for large enough k ∈N.
Define wk = skμ. Combining ck ≤ sk ≤ ak , (4.1), and (4.2), we deduce that wk ∈ Uk . Since

limk→∞ sk = 0, when k is large enough, we have

Jλ(wk) =
1
2

s2
k‖μ‖2

X0
+

λ

2
s2

k‖μ‖2
2 –

∫
Ω

α(x)F(skμ) dx

≤
(

1
2

+
λ

2λ1

)
s2

k‖μ‖2
X0

–
∫

Ω\D
α(x)F(skμ) dx

–
∫

D
α(x)F(skμ) dx

≤
(

1
2

+
λ

2λ1

)
s2

k‖μ‖2
X0 + l0s2

k‖α‖1 – L0s2
k

∫
D

α(x) dx

= s2
k

[(
1
2

+
λ

2λ1

)
‖μ‖2

X0 + l0‖α‖1 – L0

∫
D

α(x) dx
]

< 0, (4.8)

where the first inequality comes from (4.5), the second inequality follows from (4.4) and
(4.7), and the last inequality follows from (4.6). Hence, by (4.3) and (4.8), we obtain

Jλ(uk) ≤ Jλ(wk) < 0, (4.9)

when k is large enough.
Secondly, we prove that limk→∞ Jλ(uk) = 0.
By using Lebourg’s mean value theorem and conditions (f̄1), (f̄2) again, there exist θk ∈

(0, 1) and v∗
k ∈ ∂F(vk) with vk = θkuk ∈ Uk such that

F(uk) ≤ ∣∣F(uk) – F(0)
∣∣ =

∣∣〈v∗
k , uk

〉∣∣
≤ C0

(
1 + |vk|q–1)|ak – ck|

≤ C0
(
1 + (ak – ck)q–1)(ak – ck).
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The above inequality, together with limk→∞ ak = limk→∞ ck = 0 and (4.9), yields that

0 > Jλ(uk) ≥ –
∫

Ω

α(x)F(uk) dx ≥ –C0
(
1 + (ak – ck)q–1)(ak – ck)‖α‖1 → 0,

as k → ∞, i.e., limk→∞ Jλ(uk) = 0.
At last, from the definition of Jλ, we have

1
2
‖uk‖2

X0 ≤
∫

Ω

α(x)F(uk) dx ≤ C0
(
1 + (ak – ck)q–1)(ak – ck)‖α‖1 → 0,

as k → ∞. Thus limk→∞ ‖uk‖X0 = 0. The proof is complete. �

Remark 4.1 Functions satisfying all the conditions in Theorem 4.1 exist. For instance, let
Ω ⊂R

3, the function F(u) : R →R be defined by

F(u) =

⎧⎨
⎩u(sin 1

u + 1), if 0 < u < +∞,

u3, if – ∞ < u ≤ 0.

Obviously, F(u) satisfies (f̄1), (f̄2), lim infu→0
F(u)
u2 = 0, and lim supu→0

F(u)
u2 = +∞. Take ûk =

1
2kπ

, then limk→∞ ûk = 0 and F ′(ûk) = 1 – 2kπ < 0. Take ūk ∈ (–∞, 0) and limk→∞ ūk = 0,
then F ′(ūk) = 3ū2

k > 0. That is, F(u) satisfies (F0
1 ) and (F0

2 ).

Theorem 4.2 Let λ > 0 and α(x) satisfy condition (A). Assume that F(u) satisfies (f̄1), (f̄2),
and the following conditions:

(F∞
1 ) –∞ < lim infs→+∞ F(s)

s2 ≤ lim sups→+∞
F(s)
s2 = +∞;

(F∞
2 ) There exists a sequence {ũk} ⊂ (0, +∞) with limk→∞ ũk = +∞ and u0 ∈ (–∞, 0)

such that

ũ∗
k < 0 for all k ∈N and u∗

0 ≥ 0,

where ũ∗
k ∈ ∂F(ũk), u∗

0 ∈ ∂F(u0).
Then there exists a sequence {uk} of distinct weak solutions of problem (P̄λ) such that

lim
k→∞

Jλ(uk) = –∞.

Proof By virtue of the first inequality in condition (F∞
1 ), there exist l∞ > 0 and ρ∞ > 0 such

that

F(s) ≥ –l∞s2, ∀s > ρ∞. (4.10)

Due to condition (A), we can choose L∞ > 0 large enough so that
(

1
2

+
λ

2λ1

)
‖μ‖2

X0 + l∞‖α‖1 < L∞
∫

D
α(x) dx, (4.11)

where μ is defined by (4.1), λ1 is the first eigenvalue of (–�)s. The last equality of condition
(F∞

1 ) ensures the existence of a sequence {ŝk} ⊂ (0, +∞) with limk→∞ ŝk = +∞ such that

F(ŝk) > L∞ŝ2
k (4.12)
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for large enough k ∈ N. By condition (F∞
2 ), limk→∞ ũk = +∞. Let us take an increasing

subsequence {ũmk } of {ũk} such that

ŝk ≤ ũmk for all k ∈N. (4.13)

In addition, according to condition (F∞
2 ), we can choose two sequences {a′

k}, {b′
k} ⊂

(0, +∞) such that, for all k ∈ N,

a′
k < ũmk < b′

k < a′
k+1 and u∗ ≤ 0, ∀u ∈ [

a′
k , b′

k
]

and u∗ ∈ ∂F(u);

and two numbers c′ and d′ with d′ < c′ ≤ 0 such that

u∗ ≥ 0, ∀u ∈ [
d′, c′] and u∗ ∈ ∂F(u).

Let

U ′
k =

{
u ∈ X0 : d′ ≤ u(x) ≤ b′

k , a.e. x ∈R
N}

.

By Theorem 3.1 and Theorem 3.2, there exists a weak solution uk ∈ U ′
k of problem (P̄λ)

such that c′ ≤ uk(x) ≤ a′
k for almost every x ∈R

N and

Jλ(uk) = inf
u∈U ′

k

Jλ(u).

Let wk = ŝkμ. Then (4.1), (4.13), and ũmk < b′
k show that wk ∈ U ′

k . Besides, by Lebourg’s
mean value theorem and conditions (f̄1), (f̄2), for wk < ρ∞, there exist θk ∈ (0, 1) and v∗

k ∈
∂F(vk) with vk = θkwk ∈ U ′

k such that

∣∣F(wk)
∣∣ ≤ ∣∣v∗

k
∣∣|wk| ≤ C8

(
1 + |vk|q–1) ≤ C9,

where C8 and C9 are positive constants. Owing to (4.5), (4.10), (4.12), and the above in-
equality, we get

Jλ(wk) =
1
2

ŝ2
k‖μ‖2

X0 +
λ

2
ŝ2

k‖μ‖2
2 –

∫
Ω

α(x)F(ŝkμ) dx

≤
(

1
2

+
λ

2λ1

)
ŝ2

k‖μ‖2
X0 –

∫
D

α(x)F(ŝk) dx

–
∫

(Ω\D)∩{wk >ρ∞}
α(x)F(ŝkμ) dx –

∫
(Ω\D)∩{wk≤ρ∞}

α(x)F(wk) dx

≤
(

1
2

+
λ

2λ1

)
ŝ2

k‖μ‖2
X0 – L∞ŝ2

k

∫
D

α(x) dx + l∞ŝ2
k‖α‖1 + C9‖α‖1

= ŝ2
k

[(
1
2

+
λ

2λ1

)
‖μ‖2

X0 + l∞‖α‖1 – L∞
∫

D
α(x) dx

]
+ C9‖α‖1.

Thanks to limk→∞ ŝ2
k = +∞ and(4.11), we obtain that

lim
k→∞

Jλ(uk) ≤ lim
k→∞

Jλ(wk) = –∞.

Therefore, limk→∞ Jλ(uk) = –∞. The proof is complete. �
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Remark 4.2 Functions satisfying all the conditions in Theorem 4.2 exist. For instance, let
Ω ⊂R

3, the function F(x, u) : Ω ×R →R be defined by

F(u) =

⎧⎨
⎩u3(cos u + 1), if 0 ≤ u < +∞,

u, if –∞ < u < 0.

It is easy to check that F(u) satisfies (f̄1), (f̄2), lim infu→∞ F(u)
u2 = 0, and lim supu→∞

F(u)
u2 =

+∞. Take ûk = 2kπ + π
2 , then limk→∞ ûk = ∞ and F ′(ûk) = 3 – 2kπ – π

2 < 0. Take ū0 = –1 ∈
(–∞, 0), then F ′(ū0) = 1 > 0. That is, F(u) satisfies (F∞

1 ) and (F∞
2 ).

Remark 4.3 In Theorem 4.1, we obtain the property of solutions on problem (P̄λ) which
satisfy limk→∞ ‖uk‖X0 = 0. In Theorem 4.2, if we suppose that α(x) ∈ L∞(Ω) instead of
α(x) ∈ L2(Ω) in condition (A), we can also obtain

lim
k→∞

‖uk‖X0 = ∞.

Remark 4.4 (1) In [22], we obtained two multiplicity results of solutions for the following
hemivariational inequality:

(Pλ,μ)

⎧⎨
⎩–LK u ∈ λ∂F(x, u) + μ∂G(x, u) in Ω ,

u = 0 in R
n\Ω ,

according to the choice of the positive parameters λ, μ and appropriate assumptions on
the nonsmooth potentials F(x, u), G(x, u) : Ω × R → R, where LK is the integrodifferen-
tial operator including the fractional Laplace operator –(–�)s as its typical example. In
fact, the first multiplicity result of [22, Theorem 3.1] was obtained by the coerciveness of
the functional corresponding to problem (Pλ,μ) and the nonsmooth mountain pass the-
orem, the second multiplicity result of [22, Theorem 3.2] was got by using an extended
nonsmooth three-critical-points theorem due to Iannizzotto [26].

(2) In the present paper, we see that the functional Jλ corresponding to problem (Pλ)
or (P̄λ) may not be coercive. Instead of using the nonsmooth mountain pass theorem and
the nonsmooth three-critical-points theorem, we first construct a special set U (defined
by (3.1)) in X0 and prove that Jλ achieves its minimum on U at some u0 ∈ U (see Theo-
rem 3.1). In order to show that u0 is actually a weak solution of problem (Pλ), we construct
several sets, such as A, A1, A2 (defined by (3.5)) and B1(ε), B2(ε), B3(ε) (defined by (3.14)).
By using the definitions of the fractional Laplace operator, λ1 (the first eigenvalue of (–�)s),
and these sets, we derive a lot of estimate equations and inequalities which are essential
in the proof of our main results. We obtain the existence of a nontrivial solution of prob-
lem (Pλ) (see Theorem 3.2). Moreover, when F is autonomous, by employing the results
obtained in Theorems 3.1 and 3.2, we obtain the existence of infinitely many solutions of
this problem when the nonsmooth potentials F have suitable oscillating behavior in any
neighborhood of the origin (respectively the infinity) and discuss the properties of the so-
lutions (see Theorems 4.1 and 4.2). The methods of the proofs of results in the present
paper are different from the ones obtained in [13–16, 22].
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