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Abstract
The aim of this paper is to study bounds for lifespan of solutions to the following
equation:

utt –�u +
∫ t

0
g(t – τ )�u(τ )dτ + |ut|m(x,t)–2ut = |u|p(x,t)–2u

under homogeneous Dirichlet boundary conditions. It is worth pointing out that it is
not a trivial generalization for constant-exponent problems because we have to face
some essential difficulties in studying such problems. The first difficulty is that the
monotonicity of the energy functional fails. Another one is that there exists a gap
between the norm and the modular to the generalized function space, which leads
to the failure of the Poincaré inequality for modular form. To overcome such
difficulties, the authors construct control function and apply new energy estimates to
establish the quantitative relationship between the source

∫
Ω |u|p(x,t) dx and the initial

energy, and then obtain the finite-time blow-up of solutions for a positive initial
energy, especially, the authors only assume that pt(x, t) is integrable rather than
uniformly bounded. Such weak conditions are seldom seen for the variable exponent
case. At last, an estimate of lower bound for lifespan is established by applying
differential inequality argument and energy inequalities.
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1 Introduction and the main result
We consider the following semilinear hyperbolic equation with nonstandard growth con-
dition:

⎧⎪⎪⎨
⎪⎪⎩

utt – �u +
∫ t

0 g(t – τ )�u(·, τ ) dτ + |ut|m(x,t)–2ut = |u|p(x,t)–2u, x ∈ Ω , t > 0,

u(x, t) = 0, x ∈ ∂Ω , t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω ,

(1)

where Ω ⊂R
N (N ≥ 1) is a bounded domain with smooth boundary ∂Ω , T > 0. It will be

assumed throughout the paper that the exponents p(x, t), m(x, t) are continuous in QT =
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Ω × (0, T) and satisfy that

2 < p– = inf
(x,t)∈QT

p(x, t) ≤ p(x, t) ≤ p+ = sup
(x,t)∈QT

p(x, t) < ∞, (2)

2 < m– = inf
(x,t)∈QT

m(x, t) ≤ m(x, t) ≤ m+ = sup
(x,t)∈QT

m(x, t) < ∞, (3)

∣∣p(x, t) – p(y, s)
∣∣ +

∣∣q(x, t) – q(y, s)
∣∣ ≤ ω

(|x – y| +
√|t – s|), (4)

∀x, y ∈ Ω , t, s > 0, |x – y| +
√|t – s| < 1,

where ω(r) satisfies

lim sup
r→0+

ω(r) ln

(
1
r

)
= C < +∞.

Problem (1) may describe many phenomena of applied science such as electro-rheolo-
gical fluids, viscoelastic fluids, processes of filtration through a porous media, and fluids
with temperature-dependent viscosity; the interested readers may refer to [1, 2, 7, 9, 21]
and the references therein. As far as we know, when p and m are fixed constants, many
authors discussed the existence, uniqueness, blowing-up, and global existence of solutions
to Problem (1). For example, in the absence of the viscoelastic term (g = 0), Georgiev and
Todorova in [8] studied the initial boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

utt – �u + |ut|m–2ut = |u|p–2u, x ∈ Ω , t > 0,

u(x, t) = 0, x ∈ ∂Ω , t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω .

(5)

They applied the Galerkin approximation method and the contraction mapping theo-
rem to prove that Problem (5) had a unique global solution for small initial data and
1 < p ≤ m, whereas for p > m, they obtained that the solution of Problem (5) blew up
in finite time for a negative initial energy by applying energy estimate methods and
Gronwall’s inequality. Later, Messaoudi in [16] improved the above results. Roughly
speaking, he proved that the solution blew up in finite time for a positive initial en-
ergy. However, it is well known that the source term causes finite-time blow-up of so-
lutions and drives the equation to possible instability, while the damping term pre-
vents finite-time blow-up of the solution and drives the equation toward stability. So,
it is of interest to explore the mechanism of how the sources dominate the two types
of dissipation (the finite-time memory term

∫ t
0 g(t – τ )�u(·, τ ) dτ and the weak damp-

ing term |ut|m–2ut), which attracts considerable attention. The interaction between the
damping term and the source term makes the problem more interesting. In the pres-
ence of the viscoelastic term (g 	= 0), Cavalcanti and Soriano [5] obtained a rate of ex-
ponential decay to the solution of Problem (1) with the assumption that the kernel g
is of exponential decay and m = 2 (a localized damping mechanism a(x)ut). Later, Cav-
alcanti in [6] and Berrimi and Messaoudi in [3] improved this work by using differ-
ent methods. In addition, Messaoudi in [18] generalized the results in [3, 5]. For more
works, the interested readers may refer to [4, 14–19] and the references therein. How-
ever, there are few results about lower bound for lifespan. Sun, Guo, and Gao in [22]



Dai and Zhang Journal of Inequalities and Applications        (2019) 2019:293 Page 3 of 13

considered some estimates of the lower bound of blow-up time for the following prob-
lem:

⎧⎪⎪⎨
⎪⎪⎩

utt – 
u – ω
ut + μut = |u|p–2u, (x, t) ∈ Ω × [0, T],

u(x, t) = 0, (x, t) ∈ ∂Ω × [0, T],

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω .

(6)

They applied an energy estimate method and the Sobolev inequalities to give an estimate
of the lower bound for the blow-up time when 2 < p ≤ 2(N–1)

N–2 , and later Guo and Liu in [13]
obtained an estimate of the lower bound for the blow-up time in the supercritical case
2(N–1)

N–2 < p < 2(N2–2)
N2–2N . For more works, the interested readers may refer to [23, 24]. When

p is a function, the authors in [2, 20] applied Kaplan’s method to establish the nonglobal
existence and global existence results for Problem (1) in the absence of the viscoelastic
term and the damping term. As far as we know, in the presence of the viscoelastic term
(g 	≡ 0) and the damping mechanism |ut|m–2ut , the results of blow-up of solutions with
positive initial energy are seldom seen for the case with variable exponents. Different from
the case with constant exponents, the variable exponent brings us some essential difficul-
ties.

• How to overcome the lack of the monotonicity of the energy functional constructed in
[18] with respect to time variable?

• Owing to the existence of a gap between the norm and the modular (that is,∫
Ω

|u|p(·) dx 	≡ ‖u‖p(·)
p(·)), it is not easy to obtain the results similar to those of Lemmas

2.2–2.4 in [18]. In fact, the proof of Theorem 1.2 of [18] depends strongly on the
conclusions of Lemmas 2.2–2.4 and the monotonicity of the energy functional. It is
unfortunate that we cannot obtain such results in the case with variable exponents.

To bypass the difficulties mentioned above, we have to look for some new methods or
techniques to discuss some properties of solutions to the above problem. In this paper, we
construct a new control function and apply suitable embedding theorems to prove that the
solution blows up in finite time for a positive initial energy. At the same time, we apply the
energy estimate method to establish a differential inequality and then obtain an explicit
lower bound for blow-up time.

Before stating our main result, we first define some energy functionals. Denote by
Lp(·)(Ω) the space of measurable functions f (x) on QT such that

Ap(·)(f ) =
∫∫

QT

∣∣f (x)
∣∣p(·) dx dt < ∞.

The norm of f (x) in space Lp(·)(QT ) is defined as follows:

‖f ‖p(·),QT ≡ ‖f ‖Lp(·)(QT ) = inf

{
λ > 0 : Ap(·)

(
f
λ

)
≤ 1

}
.

It is obvious that Lp(·)(QT ) is a Banach space [7]. It follows directly from the definition that

min
{‖f ‖p–

p(·),Ω ,‖f ‖p+

p(·),Ω
} ≤ Ap(·)(f ) ≤ max

{‖f ‖p–

p(·),Ω ,‖f ‖p+

p(·),Ω
}

. (7)
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By Corollary 3.34 in [7], we have that

‖u‖p(·) ≤ B‖∇u‖2, (8)

where 1 < p– ≤ p(·) ≤ p+ ≤ 2N
N–2 (N ≥ 3) and B is the embedding constant.

Before proving the main results of this paper, we first state a local existence theorem.

Theorem 1.1 Suppose that the exponents p(x, t), m(x, t) satisfy (2)–(4), and the following
conditions hold:

(H1) max
{

m+ · p+} ≤ 2(N – 1)
N – 2

, pt ≥ 0,
pt(x, t)
p2(x, t)

∈ L1
loc

(
(0,∞); L1(Ω)

)
;

(H2) g(t) > 0, g ′(t) < 0, t ≥ 0, 1 –
∫ ∞

0
g(s) ds = k > 0;

(H3) (u0, u1) ∈ H1
0 (Ω) × L2(Ω).

Then Problem (1) has a unique local solution

u ∈ C
(
[0, T); H1

0 (Ω)
) ∩ Lp–(

0, T ; Lp(x,t)(Ω)
)
,

ut ∈ C
(
[0, T); L2(Ω)

) ∩ Lm(
Ω × (0, T)

)

for some T .

The proof of the existence of solutions relays on Galerkin approximation technique and
the contraction mapping theorem. For more details, we may refer to [7, 13, 23].

Set

E1 =
(

1
2

–
1

p–

)
β

p–
2

1 , β1 =
(

k
B2

1

) 2
p––2

, (9)

where B1 = max{B,
√

k}.
Define

E(t) =
1
2

∫
Ω

∣∣ut(x, t)
∣∣2 dx +

1
2

(
1 –

∫ t

0
g(τ ) dτ

)∫
Ω

∣∣∇u(x, t)
∣∣2 dx

+
1
2

∫ t

0
g(t – τ )

∥∥∇u(x, τ ) – ∇u(x, t)
∥∥2

L2(Ω) dτ –
∫

Ω

1
p(x, t)

|u|p(x,t)(x, t) dx, (10)

where (g � u)(t) =
∫ t

0 g(t – τ )‖u(x, τ ) – u(x, t)‖2
L2(Ω) dτ .

Our main result is as follows.

Theorem 1.2 Assume that (H1)–(H3) of Theorem 1.1 hold, and that the following condi-
tions are satisfied:

(H4) E(0) +
|Ω|
p– < E1, ‖∇u0‖2

2 >
k

B2
1
β1,

(H5) m+ < p–,
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(H6) there exists a sufficiently small 0 < ε0 < 1 such that 1 – ε0 ≤ k < 1.

Then the solution of Problem (1) blows up in finite time T∗ satisfying the following estimate:

∫ ∞

J(0)

1
C6yq + y + C7

dy ≤ T∗ ≤ C5(1 – λ)

F
λ

1–λ (0)C4λ
,

where the coefficients C4, F(0), C5 are defined in (31) and (34), respectively, the exponents
q = p+ – 1 > 1, 0 < λ ≤ p––m+

(m+–1)p– , J(0) =
∫
Ω

|u0|p+ dx and the coefficients C6, C7 are defined in
(42).

2 Proof of Theorem 1.2
In order to prove Theorem 1.2, we need the following lemmas.

Lemma 2.1 Assume that (H1)–(H3) of Theorem 1.1 hold, then E(t) defined in (10) satisfies
the following estimate:

E(t) +
∫ t

0

∫
Ω

|ut|m(x,s) dx ds ≤ E(0) +
|Ω|
p– . (11)

Proof Following the lines of the proof of Lemma 2.1 in [18], we get E(t) ∈ C[0, T)∩C1(0, T)
and

E′(t) = –
∫

Ω

|ut|m(x,t) dx –
g(t)

2

∫
Ω

|∇u|2 dx –
∫

Ω

pt

p2 |u|p(ln |u|p – 1
)

dx

+
1
2

∫ t

0
g ′(t – τ )

∫
Ω

∣∣∇(
u(·, τ ) – u(·, t)

)∣∣2 dx dτ .

The above identity and conditions g(t) > 0, g ′(t) < 0 show that

E′(t) +
∫

Ω

|ut|m(x,t) ≤ –
∫

Ω

pt

p2 |u|p(ln |u|p – 1
)

dx := J . (12)

Next, we estimate the value of J .

J ≤ –
∫

{|u|p≤e}
|u|p(x,t)

p2(x, t)
(
ln |u|p(x,t) – 1

)
pt(x, t) dx

≤
∫

{|u|p≤e}
pt(x, t)
p2(x, t)

dx ≤
∫

Ω

pt(x, t)
p2(x, t)

dx. (13)

In the second inequality of (13), we have used the following facts:

–
1
e

≤ s ln s ≤ 0, 0 ≤ s ≤ 1.

Inequality (11) follows from (12) and (13). �

Due to the lack of homogeneity and the existence of the gap between the norm and the
modular, the control function constructed by Messaoudi in [18] fails in our problem, so
we have to look for a new control function to establish the relations between the term∫
Ω

up(x,t)(x,t)
p(x,t) dx and the value of E1, the following lemma helps us solve the problem.
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Lemma 2.2 Assume that (H4) and p– > 2 hold, then there exists a positive constant β2 > β1

such that

k
∥∥∇u(t)

∥∥2
2 + (g � ∇u)(t) ≥ k

B2
1
β2, ∀t ≥ 0 (14)

and

∫
Ω

1
p(x, t)

up(x,t)(x, t) dx ≥ 1
p– max

{
β

p+
2

2 ,β
p–
2

2
}

. (15)

Proof We borrow some ideas from [10]–[9]. First, we can derive from (7), (8), and (10)
that

E(t) ≥ 1
2

[(
1 –

∫ t

0
g(s) ds

)∥∥∇u(t)
∥∥2

2 + (g � ∇u)(t)
]

–
1

p–

∫
Ω

up(x,t)(·, t) dx

≥ 1
2
[
k
∥∥∇u(t)

∥∥2
2 + (g � ∇u)(t)

]
–

1
p– max

{∥∥u(·, t)
∥∥p+

p(·),Ω ,
∥∥u(·, t)

∥∥p–

p(·),Ω
}

≥ 1
2
[
k
∥∥∇u(t)

∥∥2
2 + (g � ∇u)(t)

]
–

1
p– max

{
Bp+

1 ‖∇u‖p+

2 , Bp–

1 ‖∇u‖p–

2
}

=
k

2B2
1
β –

1
p– max

{
β

p+
2 ,β

p–
2

}
:= h

(
β(t)

)
, (16)

where β(t) = B2
1

k [k‖∇u(t)‖2
2 + (g � ∇u)(t)].

Next, we analyze the properties of the function h(β). By calculating directly, we know
that h(β) satisfies the following properties:

h(β) ∈ C[0, +∞);

h′(β) =

⎧⎨
⎩

k
2B2

1
– p+

2p– β
p+–2

2 < 0, β > 1;
k

2B2
1

– 1
2β

p––2
2 , 0 < β < 1;

h′
+(1) =

k
2B2

1
–

p+

2p– < 0, h′
–(1) =

k
2B2

1
–

1
2

< 0;

h′(β1) = 0, 0 < β1 =
(

k
B2

1

) 2
p––2

< 1.

(17)

Although the function h(β) is not differentiable at β = 1, a simple analysis shows that
h(β) is increasing for 0 < β < β1, while h(β) is decreasing for β ≥ β1, and limβ→∞ h(β) =
–∞. Due to E(0) + |Ω|

p– < E1, there exists a positive constant β2 > β1 such that h(β2) = E(0) +
|Ω|
p– . Let β0 = ‖∇u0‖2

2, then we have h( B2
1β0
k ) ≤ E(0) + |Ω|

p– = h(β2). By (11) with B2
1β0
k > β1, we

have β2 > β1.
To prove (14), we suppose that k‖∇u(t0)‖2

2 + (g � ∇u)(t0) < k
B2

1
β2 for some t0 > 0. By the

continuity of k‖∇u(t)‖2
2 + (g � ∇u)(t), we may choose t1 > 0 such that

k
B2

1
β1 < k

∥∥∇u(t1)
∥∥2

2 + (g � ∇u)(t1) <
k

B2
1
β2.
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And then, combining the monotonicity of h(β) with the above inequalities, we have

E(0) +
|Ω|
p– = h(β2) < h

(
B2

1
k

(
k
∥∥∇u(t1)

∥∥2
2 + (g � ∇u)(t1)

)) ≤ E(t1),

which contradicts (11).
From (10) we can see that

1
2
[
k
∥∥∇u(t)

∥∥2
2 + (g � ∇u)(t)

] ≤ E(0) +
|Ω|
p– +

∫
Ω

1
p(x, t)

up(x,t)(t) dx,

which implies that

∫
Ω

1
p(x, t)

up(x,t)(x, t) dx ≥ 1
2
[
k
∥∥∇u(t)

∥∥2
2 + (g � ∇u)(t)

]
– E(0) –

|Ω|
p–

≥ k
2B2

1
β2 – h(β2) =

1
p– max

{
β

p+
2

2 ,β
p–
2

2
}

. �

Let H(t) = E1 – E(t), t ≥ 0, we have the following.

Lemma 2.3 For all t > 0,

0 < H(0) –
|Ω|
p– < H(t) ≤

∫
Ω

up(x,t)(x, t)
p(x, t)

dx. (18)

Proof By Lemma 2.1, we have H ′(t) = –E′(t). Inequalities (12) and (13) show that

H ′(t) ≥ –
∫

Ω

pt(x, t)
p2(x, t)

dx. (19)

The left inequality in (18) follows from (19) and E(0) + |Ω|
p– < E1.

On the other hand, (10) and (15) yield

H(t) = E1 –
1
2

∫
Ω

∣∣ut(x, t)
∣∣2 dx –

1
2

(
1 –

∫ t

0
g(τ ) dτ

)∫
Ω

∣∣∇u(x, t)
∣∣2 dx

–
1
2

∫ t

0
g(t – τ )

∥∥∇u(x, τ ) – ∇u(x, t)
∥∥2

L2(Ω) dτ +
∫

Ω

1
p(x, t)

|u|p(x,t)(x, t) dx.

From (11) and (13), it is easy to verify that

E1 –
1
2

∫
Ω

∣∣ut(x, t)
∣∣2 dx –

1
2

(
1 –

∫ t

0
g(τ ) dτ

)∫
Ω

∣∣∇u(x, t)
∣∣2 dx

–
1
2

∫ t

0
g(t – τ )

∥∥∇u(x, τ ) – ∇u(x, t)
∥∥2

L2(Ω) dτ

≤ E1 –
α2

2
≤ E1 –

α1

2
≤ 0, t > 0.

This completes the proof of Lemma 2.3. �

Proof of Theorem 1.2 This proof will be divided into two steps.
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Step 1. The idea of this proof mainly comes from [18]. Choose 0 < λ ≤ min{ p––m
(m–1)p– ,

p––2
2p– } < 1

2 and define F(t) = H1–λ(t) + ε
∫
Ω

ut(x, t)u(x, t) dx. Then

F ′(t) = (1 – λ)H–λ(t)H ′(t) + ε

∫
Ω

utt(x, t)u(x, t) dx + ε

∫
Ω

u2
t (x, t) dx

= (1 – λ)H–λ(t)
[∫

Ω

|ut|m(x,t) dx +
g(t)

2
∥∥∇u(t)

∥∥2
2 –

1
2
(
g ′ � ∇u

)
(t)

]

+ ε

∫
Ω

uttu dx + ε

∫
Ω

u2
t dx := J1 + J2 + J3. (20)

According to the first identity in Problem (1) and Cauchy inequality with δ, we obtain the
following inequalities:

J2 = ε

∫
Ω

uttu dx = ε

∫
Ω

u
(

�u –
∫ t

0
g(t – τ )�u(τ ) dτ – |ut|m(x,t)–2ut + |u|p(x,t)–2u

)
dx

= ε

[
–
(

1 –
∫ t

0
g(s) ds

)∫
Ω

|∇u|2 dx +
∫ t

0
g(t – τ )

∫
Ω

(∇u(τ ) – ∇u(t)
)∇u(t) dx dτ

–
∫

Ω

|ut|m(x,t)–2utu dx +
∫

Ω

|u|p(x,t) dx
]

≥ –ε

[
1 –

∫ t

0
g(s) ds +

1
4δ

∫ t

0
g(s) ds

]∫
Ω

|∇u|2 dx – ε

∫
Ω

|ut|m(x,t)–2utu dx

+ ε

∫
Ω

|u|p(x,t) dx – εδ

∫ t

0
g(t – τ )

∫
Ω

∣∣∇(
u(τ ) – ∇u(t)

)∣∣2 dx dτ , (21)

where the coefficient δ will be determined later.
Moreover, using the condition g(t) > 0, g ′(t) < 0, we have

J1 ≥ (1 – λ)H–λ(t)
∫

Ω

|ut|m(x,t) dx. (22)

Applying Young’s inequality with η > 1 and the conditions m+ < p–, 0 < λ ≤ p––m+

(m+–1)p– and
Lemma 2.3, we have

∣∣∣∣
∫

Ω

|ut|m(x,t)–1|u|dx
∣∣∣∣

≤ η
m–

m––1 H–λ(t)
∫

Ω

|ut|m(x,t) dx +
1

ηm– Cλ(m––m+)
1 Hλ(m+–1)(t)

∫
Ω

|u|m(x,t) dx

≤ η
m–

m––1 H–λ(t)
∫

Ω

|ut|m(x,t) dx +
C2

ηm– Hλ(m+–1)(t) max
{‖u‖m+

p(·),‖u‖m–
p(·)

}
, (23)

where η will be determined later and the constants are defined as follows:

C1 := min

{(
H(0) –

|Ω|
p–

)
, 1

}
, C2 =

(
1 + |Ω|)m+

Cλ(m––m+)
1 .
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According to (18) and (7), we have

‖u‖m+
p(·) ≤ max

{(∫
Ω

|u|p(x,t) dx
) m+

p+

,
(∫

Ω

|u|p(x,t) dx
) m+

p– }

≤ max
{

1, H
m+
p+ – m+

p– (t)
}(∫

Ω

|u|p(x,t) dx
) m+

p–

;

‖u‖m–
p(·) ≤ max

{(∫
Ω

|u|p(x,t) dx
) m–

p+

,
(∫

Ω

|u|p(x,t) dx
) m–

p– }

≤ max
{

H
m––m+

p– (t), H
m–
p+ – m+

p– (t)
}(∫

Ω

|u|p(x,t) dx
) m+

p–

.

(24)

From (18) and (24), it follows easily

max
{‖u‖m+

p(·),‖u‖m–
p(·)

} ≤ C3

(∫
Ω

|u|p(x,t) dx
) m+

p–

, (25)

where C3 = 2C
m–
p+ – m+

p–

1 .
Furthermore, by (20)–(22) and (25), we have

F ′(t) ≥ (
1 – λ – εη

m–
m––1

)
H–λ(t)

∫
Ω

|ut|m(x,t) dx + ε

∫
Ω

u2
t dx

+ ε

∫
Ω

|u|p(x,t) dx – εδ(g � ∇u)(t))

– ε

[
1 –

∫ t

0
g(s) ds +

1
4δ

∫ t

0
g(s) ds

]∫
Ω

|∇u|2 dx

–
εC2C3C

λ(m+–1)+ m+
p– –1

1
ηm–

∫
Ω

|u|p(x,t) dx. (26)

Utilizing the definition of H(t) and E(t), we get

∫
Ω

1
p(x, t)

|u|p(x,t) dx

= H(t) – E1 +
1
2

[
‖ut‖2

2 +
(

1 –
∫ t

0
g(s) ds

)∫
Ω

∣∣∇u(t)
∣∣2 dx + (g � ∇u)(t)

]
. (27)

Inequality (15) and the definition of E1 show that the following inequality holds:

E1 ≤ (p– – 2)β
p–
2

1

2 max{β
p+
2

2 ,β
p–
2

2 }

∫
Ω

1
p(x, t)

|u|p(x,t) dx. (28)
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Again choosing 2 < θ < 2p– max{β
p+
2

2 ,β
p–
2

2 }

2 max{β
p+
2

2 ,β
p–
2

2 }+(p––2)β
p–
2

1

< p– and then applying (26)–(28), we have

F ′(t) ≥ [
1 – λ – εη

m–
m––1

]
H–λ(t)

∫
Ω

|ut|m(x,t) dx + ε

(
1 +

θ

2

)
‖ut‖2

2 + εθH(t)

+ ε

(
θ

2
– δ

)
(g � ∇u)(t) + ε

(
θ – 2

2
–

(
θ – 2

2
+

1
4δ

)∫ ∞

0
g(s) ds

)∥∥∇u(t)
∥∥2

2

+ ε

(
p– – θ –

p+C2C3C
λ(m+–1)+ m+

p– –1
1
ηm–

–
(p– – 2)β

p–
2

1 θ

2 max{β
p+
2

2 ,β
p–
2

2 }

)∫
Ω

1
p(x, t)

|u|p(x,t). (29)

Choosing δ, η, ε such that

0 < δ <
θ

2
,

p+C2C3C
λ(m+–1)+ m+

p– –1
1
ηm– < p– – θ –

(p– – 2)β
p–
2

1 θ

2 max{β
p+
2

2 ,β
p–
2

2 }
,

0 < ε < (1 – λ)η
m–

1–m–

and dropping nonnegative terms, in which we use condition (H6), we have

F ′(t) ≥ C4

[
‖ut‖2

2 + H(t) + (g � ∇u)(t) +
∫

Ω

|u|p(x,t) dx
]

, (30)

where

C4 = min

{
ε

(
1 +

θ

2

)
, εθ , ε

(
θ

2
– δ

)
, ε

(
p– – θ –

C2p+

ηm –
(p– – 2)β

p–
2

1 θ

2 max{β
p+
2

2 ,β
p–
2

2 }

)
1

p+

}
;

F(0) = H1–λ(0) + ε

∫
Ω

u0u1 dx > 0.

(31)

Applying Hölder’s inequality, the embedding Lp(·)(Ω) ↪→ Lp– (Ω) ↪→ L2(Ω) (p– > 2),
Young’s inequality, and inequality (7), we have that

(∣∣∣∣
∫

Ω

utu dx
∣∣∣∣
) 1

1–λ

≤ (‖u‖2‖ut‖2
) 1

1–λ ≤ (
1 + |Ω|) 1

(1–λ) ‖u‖ 1
1–λ

p(·) ‖ut‖
1

1–λ
2

≤ (
1 + |Ω|) 1

(1–λ)
[‖u‖ 2

1–2λ

p(x,t) + ‖ut‖2
2
]

≤ (
1 + |Ω|) 1

(1–λ) max

{(∫
Ω

|u|p(x,t) dx
) 2

(1–2λ)p–

,
(∫

Ω

|u|p(x,t) dx
) 2

(1–2λ)p+ }

+
(
1 + |Ω|) 1

(1–λ) ‖ut‖2
2

≤ (
1 + |Ω|) 1

(1–λ) C
2–(1–2λ)p+

(1–2λ)p+
1

∫
Ω

|u|p(x,t) dx +
(
1 + |Ω|) 1

(1–λ) ‖ut‖2
2. (32)
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By (32) and the definition of F(t), we get

F
1

1–λ (t) ≤ 2
1

1–λ

[
H(t) + ε

1
1–λ

∣∣∣∣
∫

Ω

utu dx
∣∣∣∣

1
1–λ

]

≤ 2
1

1–λ

[
H(t) +

(
1 + |Ω|) 1

(1–λ) C
2–(1–2λ)p+

(1–2λ)p+
1

∫
Ω

|u|p(x,t) dx

+
(
1 + |Ω|) 1

(1–λ) ‖ut‖2
2

]

≤ C5

[
H(t) +

∫
Ω

|u|p(x,t) dx + ‖ut‖2
2

]
(33)

with

C5 = 2
1

1–λ
(
1 +

(
1 + |Ω|) 1

(1–λ) C
2–(1–2λ)p+

(1–2λ)p+
1 +

(
1 + |Ω|) 1

(1–λ)
)
. (34)

By (30) and (33), we obtain the following inequality:

F ′(t) ≥ C4

C5
F

1
1–λ (t). (35)

By Gronwall’s inequality, we have

F
λ

1–λ (t) ≥ 1

F
–λ

1–λ (0) – C4λ

C5(1–λ) t
. (36)

Therefore, inequality (36) implies that F(t) blows up in finite time

T∗ ≤ C5(1 – λ)

F
λ

1–λ (0)C4λ
. (37)

Step 2. We give a lower bound for blow-up time T∗.
Define J(t) =

∫
Ω

|u|p+ dx, then

J ′(t) = p+
∫

Ω

|u|p+–2uut dx ≤ p+
[∫

Ω

|u|2p+–2 dx +
∫

Ω

|ut|2 dx
]

. (38)

By 2 < p+ ≤ 2N–2
N–2 and (8), one has

∫
Ω

|u|2p+–2 dx ≤ B2p+–2‖∇u‖2p+–2
2 . (39)

Recalling the definition of E(t) and E(t) ≤ E1, we get

k‖∇u‖2
2 + ‖ut‖2

2 ≤ E1 +
∫

Ω

|u|p(x,t) dx

≤ E1 +
∫

{|u|≥1}
|u|p(x,t) dx +

∫
{|u|≤1}

|u|p(x,t) dx

≤ E1 +
∫

Ω

|u|p+
dx + |Ω|. (40)
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Combining (38)–(40) with the inequality (|a| + |b|)q ≤ 2q–1(|a|q + |b|q) (q > 1), we have

J ′(t) ≤ C6k1–p+
Jq(t) + C6

(
E1 + |Ω|

k

)p+–1

+ E1 + |Ω| + J(t)

≤ C6k1–p+
Jq(t) + J(t) + C7, (41)

with

C6 = 2p+–2p+B2p+–2, C7 = C6

(
E1 + |Ω|

k

)p+–1

+ E1 + |Ω|. (42)

Applying limt→T∗ F(t) = +∞, Lemma 2.3, and inequality (18), we have

lim
t→T∗

∫
Ω

|u|p+
dx = +∞. (43)

(41) and (43) yield

∫ ∞

J(0)

1
C6yp+–1 + y + C7

dy ≤ T∗.

This completes the proof of the main results. �
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