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Abstract
Considering technology limitation or device restriction in practical application, we
formulate new nonlinear systems with bounded gain error, which contain switched
control and impulsive control. We then investigate the exponential stability of the
considered systems. Finally, the effectiveness of the proposed criteria is confirmed via
an example based on Chua’s oscillator.
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1 Introduction
Nonlinear systems have been paid considerable attention from different areas since they
have been successfully used in many practical applications including robotics, informa-
tion science, artificial intelligence, automatic control systems, and so forth [1, 2]. Due to
various effects, the states of systems will become oscillations and instability. Thus, it is
significant to discuss stability of nonlinear systems. There are many methods to stabilize
the nonlinear systems, for example, adaptive control [3], fuzzy control [4], sliding mode
control [5], feedback control [6], impulsive control [7], switched control [8], etc. In view of
engineering applications, the control cost of continuous control is expensive. By intermit-
tent control, control cost and the amount of the transmitted information can be reduced
drastically. It should be noticed that both impulsive control and switched control are dis-
continuous control methods.

Impulsive control of nonlinear systems has been one of the focal points in many re-
search and application fields, such as complex networks, orbital transfer of satellite, dosage
supply in pharmacokinetics, ecosystems management, synchronization in chaotic secure
communication systems [9–15], etc. Impulsive control can stabilize nonlinear systems by
using it only at some isolated points.

Switched control system is a hybrid system that is composed of several subsystems and a
switching rule that orchestrates the switching among subsystems. In the real world, many
biological, physical, engineering, and economical systems can be presented by switched
systems. Compared with ordinary differential dynamic systems, not only should we focus
on each subsystem, but the switching rule as well. Switching among different subsystems
can cause chaos and instability. It is well known that a switched system might be stable
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even if each subsystem is unstable and also might be unstable even if all subsystems are
stable for specified switching rules.

In this paper, switched control and impulsive control are combined together. We con-
struct a control system, in which some of the inputs are continuous and some are impul-
sive.

The remainder of this paper is organized as follows. The considered model of general
nonlinear systems with bounded gain error is given in Sect. 2. Some necessary notations
and lemmas are also presented in this section. In Sect. 3, we establish an exponential sta-
bility criterion. Then, in Sect. 4, an example is presented to show the effectiveness of our
result. Finally, we conclude the paper.

2 Problem formulation and preliminaries
A class of nonlinear systems can be described as

⎧
⎨

⎩

ẋ(t) = Ax(t) + f (x(t)) + w(t),

x(t0) = x0,
(2.1)

where x(t) ∈ Rn is the state vector, A ∈ Rn×n is a constant matrix, f : Rn → Rn is a contin-
uous nonlinear function satisfying f (0) = 0, and ‖f (x)‖ ≤ l‖x‖, l ≥ 0 is a constant. w(t) is
control input. Without loss of generally, let t0 = 0, x0 ∈ Rn is a given vector.

In order to stabilize system (2.1) at the origin, we set three kinds of control, i.e., in the
first period of continuous time, we set w(t) = B1x(t), where B1 ∈ Rn×n is a known matrix;
in the second period of continuous time, we set w(t) = B2x(t), where B2 ∈ Rn×n is a known
matrix; at the same time, where the system is changed from the first control to the second
control, we impose an impulse.

So system (2.1) is rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = Ax(t) + f (x(t)) + B1x(t), kT ≤ t < kT + τ ,

x(t) = (Q + �Q)x(t–), t = kT + τ ,

ẋ(t) = Ax(t) + f (x(t)) + B2x(t), kT + τ < t < (k + 1)T ,

(2.2)

where T > 0 represents control period, τ ∈ (0, T) is a constant. Q ∈ Rn×n is the impul-
sive control gain matrix, �Q ∈ Rn×n denotes impulsive gain error caused by technology
limitation or device restriction. In general, let

�Q = mG(t)Q,

where m is a positive constant. The uncertain matrix G(t) ∈ Rn×n satisfies

GT (t)G(t) ≤ I.

Remark 1 Recently, periodic control has been extensively investigated, intermittent and
alternate cases have been separately studied. To unify them, the generalized control proto-
col (2.2) is presented in this paper, which contains the traditional periodically intermittent
control [16], periodically alternate control [17, 18], and impulsive control.
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Lemma 1 ([19]) Let x, y ∈ Rn, then

∣
∣xT y

∣
∣ ≤ ‖x‖‖y‖.

Lemma 2 ([20]) Let x, y ∈ Rn and ε > 0, then

2xT y ≤ εxT x +
1
ε

yT y.

Lemma 3 ([19]) Suppose that A ∈ Rn×n is a symmetric matrix. Then, for all x ∈ Rn,

λmin(A)xT x ≤ xT Ax ≤ λmax(A)xT x.

As customary, Rn is an n-dimensional real Euclidean space with norm ‖·‖. Rm×n denotes
the set of all m × n-dimensional real matrices. λmin(A), λmax(A), and AT are the minimum,
the maximum eigenvalue, and the transpose of matrix A, respectively. A > 0 implies that A
is a positive definite matrix. I is an identity matrix of proper dimension. f (x(t–

0 )) is defined
by f (x(t–

0 )) = limt→t–
0

f (x(t)).

3 Stability analysis
In this section, we aim at proposing the exponential stability criterion of system (2.2).

Theorem 1 Let 0 < P ∈ Rn×n such that the following two conditions are satisfied:
(1) h1 < 0,
(2) h1τ + h2(T – τ ) + lnη < 0,

where β1 = λmax(P–1(PA + AT P + PB1 + BT
1 P)), β2 = λmax(P), β3 = λmin(P), β4 =

λmax(P–1(QT Q)), β5 = λmax(P–1(PA + AT P + PB2 + BT
2 P)), h1 = β1 + 2l

√
β2
β3

, η = β2β4((1 +

ε) + m2(1 + 1
ε
)), h2 = β5 + 2l

√
β2
β3

. Then system (2.2) is exponentially stable at origin.

Proof Define

V
(
x(t)

)
= xT (t)Px(t).

Let t ∈ [kT , kT + τ ), from Lemmas 1 and 3, we obtain

D+(
V

(
x(t)

))
= 2xT (t)P

(
Ax(t) + f

(
x(t)

)
+ B1x(t)

)

= 2xT (t)PAx(t) + 2xT (t)Pf
(
x(t)

)
+ 2xT (t)PB1x(t)

= xT (t)
(
PA + AT P + PB1 + BT

1 P
)
x(t) + 2xT (t)P

1
2 P

1
2 f

(
x(t)

)

≤ β1xT (t)Px(t) + 2
√

xT (t)Px(t)f T
(
x(t)

)
Pf

(
x(t)

)

≤ β1xT (t)Px(t) + 2
√

xT (t)Px(t)β2f T
(
x(t)

)
f
(
x(t)

)

≤ β1xT (t)Px(t) + 2
√

xT (t)Px(t)β2l2xT (t)x(t)

≤ β1xT (t)Px(t) + 2l

√

xT (t)Px(t)
β2

β3
xT (t)Px(t)
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= h1V
(
x(t)

)
,

which means

V
(
x(t)

) ≤ V
(
x(kT)–)

eh1(t–kT). (3.1)

If t = kT + τ , then from Lemmas 2 and 3 we have

V
(
x(t)

)
=

(
(Q + �Q)x

(
t–))T P(Q + �Q)x

(
t–)

= xT(
t–)(

QT PQ + QT P�Q + �QT PQ + �QT P�Q
)
x
(
t–)

≤ xT(
t–)

(

(1 + ε)QT PQ +
(

1 +
1
ε

)

�QT P�Q
)

x
(
t–)

≤ β2xT(
t–)

(

(1 + ε)QT Q +
(

1 +
1
ε

)

�QT�Q
)

x
(
t–)

= β2xT(
t–)

(

(1 + ε)QT Q + m2
(

1 +
1
ε

)

QT GT (t)G(t)Q
)

x
(
t–)

≤ β2xT(
t–)

(

(1 + ε)QT Q + m2
(

1 +
1
ε

)

QT Q
)

x
(
t–)

≤ β2β4

(

(1 + ε) + m2
(

1 +
1
ε

))

V
(
x
(
t–))

= ηV
(
x
(
t–))

. (3.2)

In the same way, let t ∈ (kT + τ , (k + 1)T), we also obtain

D+(
V

(
x(t)

))
= 2xT (t)P

(
Ax(t) + f

(
x(t)

)
+ B2x(t)

)

= xT (t)
(
PA + AT P + PB2 + BT

2 P
)
x(t) + 2xT (t)Pf

(
x(t)

)

≤ β5xT (t)Px(t) + 2
√

xT (t)Px(t)f T
(
x(t)

)
Pf

(
x(t)

)

≤ h2V
(
x(t)

)
,

which together with (3.2) infers that

V
(
x(t)

) ≤ ηV
(
x(kT + τ )–)

eh2(t–kT–τ ), (3.3)

where t ∈ [kT + τ , (k + 1)T).
When k = 0, let t ∈ [0, τ ), from (3.1) we can obtain

V
(
x(t)

) ≤ V
(
x(0)

)
eh1t ,

hence

V
(
x
(
τ–)) ≤ V

(
x(0)

)
eh1τ . (3.4)
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Let t ∈ [τ , T), applying (3.3) and (3.4), we get

V
(
x(t)

) ≤ ηV
(
x
(
τ–))

eh2(t–τ )

≤ ηV
(
x(0)

)
eh1τ+h2(t–τ ),

hence

V
(
x
(
T–)) ≤ ηV

(
x(0)

)
eh1τ+h2(T–τ ). (3.5)

When k = 1, let t ∈ [T , T + τ ), applying (3.1) and (3.5), we get

V
(
x(t)

) ≤ V
(
x
(
T–))

eh1(t–T)

≤ ηV
(
x(0)

)
eh1τ+h2(T–τ )+h1(t–T),

hence

V
(
x
(
(T + τ )–)) ≤ ηV

(
x(0)

)
e2h1τ+h2(T–τ ). (3.6)

Let t ∈ [T + τ , 2T), applying (3.3) and (3.6), we get

V
(
x(t)

) ≤ ηV
(
x
(
(T + τ )–))

eh2(t–T–τ )

≤ η2V
(
x(0)

)
e2h1τ+h2(T–τ )+h2(t–T–τ ).

By induction, when k = m, m = 0, 1, . . . , let t ∈ [mT , mT + τ ), we get

V
(
x(t)

) ≤ ηmV
(
x(0)

)
emh1τ+mh2(T–τ )+h1(t–mT), (3.7)

hence

V
(
x
(
(mT + τ )–)) ≤ ηmV

(
x(0)

)
e(m+1)h1τ+mh2(T–τ ). (3.8)

Let t ∈ [mT + τ , (m + 1)T), applying (3.3) and (3.8), we obtain

V
(
x(t)

) ≤ ηV
(
x
(
(mT + τ )–))

eh2(t–mT–τ )

≤ ηm+1V
(
x(0)

)
e(m+1)h1τ+mh2(T–τ )+h2(t–mT–τ ). (3.9)

Applying (3.7), we get

V
(
x(t)

) ≤ ηmV
(
x(0)

)
emh1τ+mh2(T–τ )

= V
(
x(0)

)
em(h1τ+h2(T–τ )+lnη)

< V
(
x(0)

)
e

t–τ
T (h1τ+h2(T–τ )+lnη)

< V
(
x(0)

)
e

t–T
T (h1τ+h2(T–τ )+lnη), (3.10)

where t ∈ [mT , mT + τ ).
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Let t ∈ [mT + τ , (m + 1)T), applying (3.9), we get the following.
Case 1. When h2 > 0, we get

V
(
x(t)

)
< ηm+1V

(
x(0)

)
e(m+1)h1τ+(m+1)h2(T–τ )

< V
(
x(0)

)
e

t
T (h1τ+h2(T–τ )+lnη)

< V
(
x(0)

)
e

t–T
T (h1τ+h2(T–τ )+lnη). (3.11)

Case 2. When h2 ≤ 0, we get

V
(
x(t)

) ≤ ηm+1V
(
x(0)

)
e(m+1)h1τ+mh2(T–τ )

< ηm+1V
(
x(0)

)
emh1τ+mh2(T–τ )

< ηV
(
x(0)

)
e

t–T
T (h1τ+h2(T–τ )+lnη). (3.12)

For all t > 0, by (3.10), (3.11), and (3.12), we can conclude that system (2.2) is exponentially
stable at origin.

This completes the proof. �

4 A numerical example
For verifying the effectiveness of Theorem 1, a numerical example is presented in this
section.

Example 1 Chua’s oscillator [21] is given by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = α(x2 – x1 – g(x1)),

ẋ2 = x1 – x2 + x3,

ẋ3 = –γ x2,

(4.1)

where α and γ are parameters,

g(x1) = bx1 + 0.5(a – b)
(|x1 + 1| – |x1 – 1|),

where a < b < 0 are two given constants.
For using the above result, system (4.1) is rewritten as

ẋ(t) = Ax + f (x),

where

A =

⎛

⎜
⎝

–α(1 + b) α 0
1 –1 1
0 –γ 0

⎞

⎟
⎠ ,

f (x) =

⎛

⎜
⎝

–0.5α(a – b)(|x1 + 1| – |x1 – 1|)
0
0

⎞

⎟
⎠ .
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Figure 1 The chaotic phenomenon of (4.1) with the
initial condition x(0) = (5, 1, –3)T

Figure 2 Time response curves of (4.1) with the
initial condition x(0) = (5, 1, –3)T

In the initial condition x(0) = (5, 1, –3)T , system (4.1) has chaotic phenomenon when

α = 9.2156, γ = 15.9946, a = –1.24905, b = –0.75735,

as shown in Fig. 1. In this case, we can get l = 4.5313.
In order to simplify the calculation, let P = I , τ = 0.1, T = 0.2, ε = 0.5, m = 1, B1 =

diag(–10, –20, –10), B2 = diag(–50, –40, –30), and

Q =

⎡

⎢
⎣

3 3 0
0 1 –3
0 0 2

⎤

⎥
⎦ .

Through simple computation, we get β1 = –10.5898, β2 = β3 = 1, β4 = 8.21, β5 = –51.9794,
h1 = –1.5272 < 0, h2 = –42.9168, η = 36.945, and h1τ + h2(T – τ ) + lnη = –0.7630 < 0.
So, system (4.1) is exponentially stable by Theorem 1 with the initial condition x(0) =
(5, 1, –3)T , as shown in Fig. 2.

5 Conclusions
In this paper, we investigate the exponential stability of nonlinear systems with bounded
gain error. A generalized control model, which contains switched control and impulsive
control, is introduced. Compared with the traditional periodic control [16–18], system
(2.2) is more general and more practical. Finally, a numerical example is given to show the
effectiveness of the proposed method.
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