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1 Introduction and preliminaries
The applications of q-calculus play an important role in mathematics and the field of natu-
ral sciences, such as physics and chemistry. It has many applications in orthogonal polyno-
mials, number theory, and quantum theory etc. The q-integer for integer n is denoted by
[n]q and defined by [n]q = 1–qn

1–q . In recent years we have also a generalization of q-calculus
with one or more parameters such as (p, q)-calculus known as two parameter quantum
calculus or post quantum calculus. The (p, q)-integers [n]p,q are defined by

[n]p,q = pn–1 + qpn–2 + · · · + qn–1 =

⎧
⎪⎪⎨

⎪⎪⎩

pn–qn

p–q (p �= q �= 1),
1–qn

1–q (p = 1),

n (p = q = 1).

(1.1)

In 1960, Opial [10] established some important integral inequalities. In this article our
purpose is to obtain Opial-type classical and some recent integral inequalities in the quan-
tum calculus of two parameters, i.e., in (p, q)-analog, which generalize the results of [2, 4].
In particular, we will find a new generalization of Steffensen’s and some other new inequal-
ities.

We recall here some basic definitions and elementary results concerning the (p, q)-
derivative, the (p, q)-Jacson integral and Opial-type integral inequalities. For 0 < q < p ≤ 1,
the (p, q)-derivative of the function f (x) is defined by

Dp,qf (x) =
f (px) – f (qx)

(p – q)x
, x �= 0. (1.2)
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The (p; q)-integral of f is defined as

∫

f (x) dp,qx = (p – q)x
∞∑

i=0

qi

pi+1 f
(

qi

pi+1 x
)

. (1.3)

The (p, q)-integrals from 0 to α are defined by

∫ α

0
f (x) dp,qx = (p – q)α

∞∑

i=0

qi

pi+1 f
(

qi

pi+1 α

)

if
∣
∣
∣
∣
p
q

∣
∣
∣
∣ > 1 (1.4)

and

∫ α

0
f (x) dp,qx = (q – p)α

∞∑

i=0

qi

pi+1 f
(

qi

pi+1 α

)

if
∣
∣
∣
∣
p
q

∣
∣
∣
∣ < 1. (1.5)

Also for two nonnegative numbers such that α < β , we have

∫ β

α

f (x) dp,qx =
∫ β

0
f (x) dp,qx –

∫ α

0
f (x) dp,qx. (1.6)

If f (t) ∈ C1 on 0 ≤ t ≤ h such that f (0) = f (h) = 0, f (t) > 0 on (0, h). Then the Opial integral
inequality is given by

∫ h

0

∣
∣f (x)f ′(x)

∣
∣dt ≤ h

4

∫ h

0

(
f ′(x)

)2 dx. (1.7)

For f (t) an absolutely continuous function with f (t) = 0, we have

∫ β

α

∣
∣f (t)f ′(t)

∣
∣dt ≤ (β – α)2

4

∫ β

α

(
f ′(t)

)2 dx. (1.8)

The purpose of this article is to obtain some Opial-type integral inequalities in (p, q)-
analog. We will find a (p, q)-generalization of Steffensen’s inequality as well as some other
inequalities which give a modification of [2, 4]. In particular, we use the nodes φ defined
as

φi =
qi

pi+1 for i ∈N∪ {0}, 0 < q < p ≤ 1. (1.9)

Take α = βφn = ψn(suppose), then α
β

= qn

pn+1 . In the case of p = 1, the (p, q)-integral is
reduced to the q-Jackson integral and further for q = 1 it is reduced to the usual Riemann
integral on the interval [α,β].

As a natural phenomenon we order the nodes ψn, such as ψn ≤ ψn+1 for n ∈ N∪ {0} and
define the (p, q)-decreasing function as well as the (p, q)-increasing function, respectively,
by

f (ψn) ≥ f (ψn+1)
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and

f (ψn) ≤ f (ψn+1).

Recently, Mursaleen et al. [5] applied (p, q)-calculus in approximation theory and in-
troduced first (p, q)-analogue of Bernstein operators. Recent results on (p, q)-calculus are
obtained in [3, 6, 8, 9, 11, 12].

Lemma 1.1 Let 0 < q < p ≤ 1, β > 0 and n ∈ N ∪ {0}. Then for an arbitrary function f (x)
the restricted (p, q)-integral is defined by

∫ β

α

f (x) dp,qx =
∫ β

βφn=ψn

f (x) dp,qx = (p – q)β
n–1∑

i=0

qi

pi+1 f
(

β
qi

pi+1

)

= (p – q)
n–1∑

i=0

ψif (ψi). (1.10)

2 Main results
The purpose of this paper is to find (p, q)-analogues of some classical integral inequalities.
In particular, we find (p, q)-generalizations of the inequalities of [2], as well as some new
inequalities involving Taylor’s remainder [1].

Theorem 2.1 Suppose 0 < q < p ≤ 1, β > 0, n ∈ N and F , G to be two functions defined by
F , G : [α,β] → R with α = βφn. Let on [α,β] F be (p, q)-decreasing and 0 ≤ G ≤ 1. More-
over, assume that we have any numbers k,� ∈ {0, 1, 2, . . .} and the functions F and G are
such that

pψk – α ≤
∫ β

α

G(x) dp,qx ≤ β – pψ� if F ≥ 0 on [α,β],

β – pψ� ≤
∫ β

α

G(x) dp,qx ≤ pψk – α if F ≤ 0 on [α,β].

Then

∫ β

ψ�

F(x) dp,qx ≤
∫ β

α

F(x)G(x) dp,qx ≤
∫ ψk

α

F(x) dp,qx. (2.1)

Proof We prove the case for F a (p, q)-decreasing function when F ≥ 0 as well as F ≤ 0. For
F ≥ 0, we prove only the left inequality (2.1). We have � ∈ N ∪ {0}. Take j = 0, 1, . . . ,� – 1.
In the case of F ≥ 0, we have F(ψ�) ≤ F(ψj) for ψj ≤ ψ� (j = 0, 1, . . . , n – �) and F(ψ�) ≥
F(ψ�+j) for ψ� ≤ ψ�+j. Similarly, in the case F ≤ 0, we have F(ψ�) ≥ F(ψj) for ψj ≥ ψ� and
F(ψ�) ≤ F(ψ�+j) for ψ� ≥ ψ�+j. The proof is straightforward, so we omit it. Now

∫ β

α

F(x)G(x) dp,qx –
∫ β

ψ�

F(x) dp,qx

=
∫ ψ�

α

F(x)G(x) dp,qx +
∫ β

ψ�

F(x)G(x) dp,qx –
∫ β

ψ�

F(x) dp,qx
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=
∫ ψ�

α

F(x)G(x) dp,qx –
∫ β

ψ�

F(x)
(
1 – G(x)

)
dp,qx

=
∫ ψ�

α

F(x)G(x) dp,qx – (p – q)β
�–1∑

j=0

qj

pj+1 F(ψj)
(
1 – G(ψj)

)

≥
∫ ψ�

α

F(x)G(x) dp,qx – (p – q)β
�–1∑

j=0

qj

pj+1 F(ψ�)
(
1 – G(ψj)

)

=
∫ ψ�

α

F(x)G(x) dp,qx – (p – q)βF(ψ�)
�–1∑

j=0

qj

pj+1 + (p – q)βF(ψ�)
�–1∑

j=0

qj

pj+1 G(ψj)

=
∫ ψ�

α

F(x)G(x) dp,qx – F(ψ�)(β – pψ�) + F(ψ�)
∫ β

ψ�

G(x) dp,qx

≥
∫ ψ�

α

F(x)G(x) dp,qx – F(ψ�)
∫ β

α

G(x) dp,qx + F(ψ�)
∫ β

ψ�

G(x) dp,qx

=
∫ ψ�

α

F(x)G(x) dp,qx – F(ψ�)
[∫ β

α

G(x) dp,qx –
∫ β

ψ�

G(x) dp,qx
]

=
∫ ψ�

α

F(x)G(x) dp,qx – F(ψ�)
∫ ψ�

α

G(x) dp,qx

=
∫ ψ�

α

(
F(x) – F(ψ�)

)
G(x) dp,qx

= (p – q)ψ�

n–�–1∑

j=0

qj

pj+1

[

F
(

ψ�

qj

pj+1

)

– F(ψ�)
]

G
(

ψ�

qj

pj+1

)

= (p – q)ψ�

n–�–1∑

j=0

qj

pj+1

[
F(ψj) – F(ψ�)

]
G(ψj) ≥ 0. �

Theorem 2.2 For 0 < q < p ≤ 1, n ∈N, we have the following integral identities:

∫ β

α

(
Dμ+1

p,q f
)
(x)

(γk – qx)μ+1
p,q

[μ + 1]p,q!
dp,qx

=
∫ γk

α

R(p,q),μ,f (α, x) dp,qx +
∫ β

γk

R(p,q),μ,f (β , x) dp,qx, (2.2)

where μ is any integer such that μ ≥ –1, and R(p,q),–1,f (α, x) = f (x).
Moreover,

∫ β

α

(
Dμ+1

p,q f
)
(x)

(v – qx)μ+1
p,q

[μ + 1]p,q!
=

∫ β

α

R(p,q),μ,f (α, x), (2.3)

∫ β

α

(
Dμ+1

p,q f
)
(x)

(u – qx)μ+1
p,q

[μ + 1]p,q!
=

∫ β

α

R(p,q),μ,f (β , x). (2.4)

Proof We prove it by induction. We prove it for μ = –1, that is,
∫ β

α
f (x) dp,qx =

∫ γk
α

f (x) dp,qx +
∫ β

γk
f (x) dp,qx. Suppose it is true for μ. Then we prove it for μ + 1.
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By integration of by parts, we have

∫ β

α

(
Dμ

p,qf
)
(x)

(γk – qx)μp,q

[μ]p,q!
dp,qx

= –
1

[μ + 1]p,q!

∫ β

α

(
Dμ

p,qf
)
(px)Dp,q(γk – qx)r+1

p,q dp,qx

= –
1

[μ + 1]p,q!

[∫ β

α

(
Dμ

p,qf
)
(v)(γk – v)μ+1

p,q –
(
Dμ

p,qf
)
(u)(γk – u)μ+1

p,q

–
∫ β

α

(
Dμ+1

p,q f
)
(x)(γk – qx)μ+1

p,q dp,qx
]

.

Hence we have

∫ β

α

(Dμ+1
p,q f )(x)

(γk – qx)μ+1
p,q

[μ + 1]p,q!
dp,qx

=
(
Dμ

p,qf
)
(β)

(γk – v)μ+1
p,q

[μ + 1]p,q!
–

(
Dμ

p,qf
)
(α)

(γk – u)μ+1
p,q

[μ + 1]p,q!

+
∫ β

α

(
Dμ

p,qf
)
(x)

(γk – qx)μp,q

[μ]p,q!
dp,qx. (2.5)

From (2.2), we have

∫ β

α

(Dμ
p,qf )(x)

(γk – qx)μp,q

[μ]p,q!
dp,qx

=
∫ γk

α

R(p,q),μ–1,f (α, x) dp,qx +
∫ β

γk

R(p,q),μ–1,f (β , x) dp,qx. (2.6)

From (2.5) and (2.6), we have

∫ β

α

(Dμ+1
p,q f )(x)

(γk – qx)μ+1
p,q

[μ + 1]p,q!
dp,qx

= (Dμ
p,qf )(v)

(γk – β)μ+1
p,q

[μ + 1]p,q!
– (Dμ

p,qf )(α)
(γk – α)μ+1

p,q

[μ + 1]p,q!

+
∫ γk

α

R(p,q),μ–1,f (α, x) dp,qx +
∫ beta

γk

R(p,q),μ–1,f (β , x) dp,qx. (2.7)

And we know that for the (p, q)-integral

∫ γk

α

(x – α)μp,q

[μ]p,q!
=

(γk – α)μ+1
p,q

[μ + 1]p,q!
,

∫ β

γk

(x – β)μp,q

[μ]p,q!
= –

(γk – β)μ+1
p,q

[μ + 1]p,q!
. (2.8)

Hence (2.7) implies that

∫ β

α

(
Dμ+1

p,q f
)
(x)

(γk – qx)μ+1
p,q

[μ + 1]p,q!
dp,qx

=
∫ γk

α

[

R(p,q),μ–1,f (α, x) –
(
Dμ

p,qf
)
(α)

(x – α)μp,q

[μ]p,q!

]

dp,qx
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+
∫ β

γk

[

R(p,q),μ–1,f (β , x) –
(
Dμ

p,qf
)
(β)

(x – β)μp,q

[μ]p,q!

]

dp,qx

=
∫ γk

α

R(p,q),μ,f (α, x) dp,qx +
∫ β

γk

R(p,q),μ,f (β , x) dp,qx,

where

∫ β

α

(
Dμ+1

p,q f
)
(x)

(β – qx)μ+1
p,q

[μ + 1]p,q!
=

∫ β

α

R(p,q),μ,f (α, x), (2.9)

∫ β

α

(
Dμ+1

p,q f
)
(x)

(α – qx)μ+1
p,q

[μ + 1]p,q!
=

∫ β

α

R(p,q),μ,f (β , x). (2.10)

This completes the proof. �

Theorem 2.3 Suppose 0 < q < p ≤ 1, β > 0, n ∈ N and f be the function defined by f :
[α,β] →R with α = βφn. Let, on [α,β], Dμ

p,qf be either (p, q)-decreasing or (p, q)-increasing
on [α,β]. Moreover, assume that the numbers k,� ∈ {0, 1, 2, . . .} are such that

pψk – α ≤ β – α

[μ + 2]p,q
≤ β – pψ� if Dμ

p,qf is (p, q)-decreasing,

β – pψ� ≤ β – α

[μ + 2]p,q
≤ pψk – α if Dμ

p,qf is (p, q)-increasing.

Then

(
Dμ

p,qf
)
(pψk) –

(
Dμ

p,qf
)
(α) ≤ [μ + 1]p,q!

(pβ – qα)μ+1
p,q

∫ β

α

R(p,q),μ,f (α, x)

≤ (
Dμ

p,qf
)
(β) –

(
Dμ

p,qf
)
(pψ�). (2.11)

Proof We prove the result for Dμ
p,qf a (p, q)-decreasing function and in a similar way we

can prove it for the case if Dμ
p,qf is (p, q)-increasing function. Let F(x) = –(Dμ+1

p,q f )(x). Then
F(x) is a (p, q)-decreasing function. Since Dμ

p,qf is (p, q)-decreasing, Dμ+1
p,q f ≤ 0. Therefore

F(x) ≥ 0 and will be a (p, q)-decreasing. Suppose that

G(x) =
(β – qx)μ+1

p,q

(pβ – qα)μ+1
p,q

.

Then

G(x) =
(β – qx)(pβ – q2x) · · · (pμβ – qμ+1x)

(pβ – qα)(p2β – q2α) · · · (pμ+1β – qμ+1α)
,

∫ β

α

G(x) dp,qx =
1

(β – qα)μ+1
p,q

∫ β

α

(β – qx)μ+1
p,q dp,qx

= –
1

[μ + 2]p,q

1
(pβ – qα)μ+1

p,q

∫ v

α

Dp,q(β – x)μ+2
p,q dp,qx
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=
1

[μ + 2]p,q

1
(pβ – qα)μ+1

p,q
(β – α)μ+2

p,q

=
1

[μ + 2]p,q

(β – α)(pβ – qα) · · · (pμ+1β – qμ+1α)
(pβ – qα)(p2β – q2α) · · · (pμ+1β – qμ+1α)

=
β – α

[μ + 2]p,q
.

If

pψk – α ≤ β – α

[μ + 2]p,q
≤ β – pψ�,

then

–
∫ β

pψ�

(
Dμ+1

p,q f
)
(x) dp,qx ≤ –

∫ β

α

(
Dμ+1

p,q f
)
(x)

(β – qx)μ+1
p,q

(pβ – qα)μ+1
p,q

dp,qx

≤ –
∫ pψk

α

(
Dμ+1

p,q f
)
(x) dp,qx.

From (2.9), we can write

(
Dμ

p,qf
)
(x)|x=pψk

x=α ≤ [μ + 1]p,q!
(pβ – qα)μ+1

p,q

∫ β

α

R(p,q),μ,f (α, x) ≤ (
Dμ

p,qf
)
(x)|x=β

x=pψ�
. �

Theorem 2.4 Suppose 0 < q < p ≤ 1, β > 0, n ∈ N and f be the function defined by f :
[α,β] →R with α = βφn. Let, on [α,β], D2

p,qf ≥ 0 (f is (p, q)-convex). Assume that we have
any numbers k,� ∈ {0, 1, 2, . . .} such that

pψ� ≤ (p – 1)β + qβ + α

p + q
and

pψk ≤ (p – 1)α + qα + β

p + q
, for f is (p, q)-decreasing,

pψ� ≥ (p – 1)β + qβ + α

p + q
and

pψk ≥ (p – 1)α + qα + β

p + q
, for f is (p, q)-increasing.

Then

f (pψk) +
f (α)

pβ – qα

(
(1 – p)β – (1 – q)α

) ≤ 1
pβ – qα

∫ β

α

f (x) dp,qx

≤ (β – α)f (α)
pβ – qα

+ f (β) – f (pψ�).

Proof We prove it for f being a (p, q)-decreasing function, and for f a (p, q)-increasing
function the proof is similar. For D2

p,qf ≥ 0 on [α,β], f (x) is a (p, q)-convex function and
clearly for all x, p2x, q2x and p, q, x ∈ [α,β], we have qf (p2x) – (p + q)f (pqx) + pf (q2x) ≥ 0.
If f (x) is convex on [α,β], then it is also q-convex on [α,β] and hence it is also a (p, q)-
convex on [α,β]. Take μ = 0, then [μ + 2]p,q = p + q. Assume that f is (p, q)-decreasing,
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then we have pψk – α ≤ β–α

[μ+2]p,q
≤ β – pψ� which implies that, for μ = 0, pψk ≤ α + β–α

p+q ≤
β – pψ� and hence pψ� ≤ (p–1)β+qβ+α

p+q , as well as pψk ≤ (p–1)α+α+β

p+q . Since (D0
p,qf )(x) = f (x),

R(p,q),–1,f (α, x) = f (x) from Theorem 2.2 and

∫ γk

α

R(p,q),μ,f (α, x) dp,qx =
∫ γk

α

[

R(p,q),μ–1,f (α, x) –
(
Dμ

p,qf
)
(α)

(x – α)μp,q

[μ]p,q!

]

dp,qx.

Therefore,
∫ γk

α

R(p,q),0,f (α, x) dp,qx =
∫ γk

α

[
R(p,q),–1,f (α, x) – f (α)

]
dp,qx.

This implies that R(p,q),0,f (α, x) = f (x) – f (α). Hence from (2.11) of Theorem 2.3, we have

f (pψk) – f (α) ≤ 1
pβ – qα

∫ β

α

[
f (x) – f (α)

]
dp,qx ≤ f (β) – f (pψ�).

This completes the proof. �

Theorem 2.5 Suppose 0 < q < p ≤ 1, β > 0, n ∈ N and f be the function defined by f :
[α,β] →Rwith α = βφn. Suppose, on [α,β], D2

p,qf ≥ 0 (f is (p, q)-convex). Moreover, assume
that we have any numbers k,� ∈ {0, 1, 2, . . .} such that

pψ� ≥ (α + β)p
p + q

and pψk ≥ (α + β)q
p + q

, for f is (p, q)-increasing,

pψ� ≤ (α + β)p
p + q

, and pψk ≤ (α + β)q
p + q

, for f is (p, q)-decreasing.

Then

f (ψk) ≤ 1
β – α

∫ β

α

f (qx) dp,qx ≤ f (α) + f (β) – f (ψ�).

Proof We prove it for f being (p, q) decreasing, and for f (p, q)-increasing, the proof is sim-
ilar. Suppose f is (p, q)-convex on [α,β], D2

p,qf ≥ 0 on [α,β] and Dp,qf is (p, q)-increasing
on [α,β]. Suppose F(x) = –Dp,qf , G(x) = β–x

β–α
, then F(x) is (p, q)-decreasing on [α,β]. Sim-

ilarly, f is (p, q)-decreasing on [α,β], Dp,qf ≤ 0. Hence F(x) ≥ 0 and (p, q)-decreasing on
[α,β]. Therefore, F and G satisfy the hypothesis of Theorem 2.1. From Theorem 2.3, we
have

pψk – α ≤ β – α

[μ + 2]p,q
≤ β – pψ�,

which implies that

pψk – α ≤
∫ β

α

G(x) dp,qx ≤ β – pψ�,

pψk – α ≤ qβ – pα

p + q
≤ β – pψ�,

which takes the form pc� ≤ (α+β)p
p+q , pψk ≤ (α+β)q

p+q .
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We find
∫ β

α
F(x)G(x) dp,qx, by using integration by parts and (1 + qx)n–1

p,q = 1
[n]p,q

Dp,q(1 +
x)n

p,q from [7], we have

∫ β

α

G(x) dp,qx =
1

β – α

∫ β

α

(β – x) dp,qx =
(α – β)2

p,q

(β – α)(p + q)
=

qβ – pα

p + q
,

∫ β

α

F(x)G(x) dp,qx =
1

β – α

∫ β

α

(x – β)(Dp,qf ) dp,qx =
–1

β – α

∫ β

α

f (qx) dp,qx + f (α).

From (2.1) we have

∫ β

ψ�

F(x) dp,qx ≤
∫ β

α

F(x)G(x) dp,qx ≤
∫ ψk

α

F(x) dp,qx.

Therefore,

–
∫ v

ψ�

(Dp,qf ) dp,qx ≤ –1
β – α

∫ β

α

f (qx) dp,qx + f (α) ≤ –
∫ ψk

α

(Dp,qf ) dp,qx.

This implies that

–f (x)|βψ�
≤ –1

β – α

∫ β

α

f (qx) dp,qx + f (α) ≤ –f (x)|ψk
u .

Hence

f (x)|ψk
α ≤ 1

β – α

∫ β

α

f (qx) dp,qx – f (α) ≤ f (x)|βψ�
.

This completes the proof. �

Theorem 2.6 Let f : [α,β] → R and m ≤ Dμ+1
p,q ≤ M, where m < M. Assume that we have

any numbers k,� ∈ {0, 1, 2, . . .} such that

pψk – α ≤ 1
M – m

[(
Dμ

p,qf
)

–
(
Dμ

p,qf
)
(α) – m(β – α)

] ≤ β – pψ�.

Then

m + (M – m)
(β – ψ�)μ+2

p,q

(β – α)μ+2
p,q

≤ [μ + 2]p,q!
(β – α)μ+2

p,q

∫ β

α

R(p,q),μ,f (α, x) dp,qx

≤ M – (M – m)
(β – ψk)μ+2

p,q

(β – α)μ+2
p,q

.

Proof Suppose F(x) is (p, q)-decreasing function and F(x) ≥ 0. We take F(x) = (β–qx)μ+1
p,q

[μ+1]p,q !

and G(x) = Dμ+1
p,q g , where g(x) = 1

M–m [f (x) – m (x–α)μ+1
p,q

[μ+1]p,q ! ] and hence G(x) = 1
M–m (Dμ+1

p,q f – m).
Therefore,

∫ β

α

G(x) dp,qx =
1

M – m

∫ β

α

Dμ+1
p,q f dp,qx –

m(β – α)
M – m

=
1

M – m
[(

Dμ
p,qf

)
(β) –

(
Dμ

p,qf
)
(α) – m(β – α)

]
.
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This implies that

pψk – α ≤ 1
M – m

[(
Dμ

p,qf
)
(β) –

(
Dμ

p,qf
)
(α) – m(β – α)

] ≤ β – pψ�.

And

∫ β

ψ�

F(x) dp,qx =
∫ β

ψ�

(β – qx)μ+1
p,q

[μ + 1]p,q!
dp,qx = –

1
[μ + 2]p,q!

∫ β

ψ�

Dp,q(β – x)μ+2
p,q dp,qx

=
(β – ψ�)μ+2

p,q

[μ + 2]p,q!
.

Similarly

∫ ψk

α

F(x) dp,qx =
∫ ψk

α

(β – qx)μ+1
p,q

[μ + 1]p,q!
dp,qx =

1
[μ + 2]p,q!

[
(β – α)μ+2

p,q – (β – ψk)μ+2
p,q

]
,

∫ β

α

F(x)G(x) dp,qx =
∫ β

α

(β – qx)μ+1
p,q

[μ + 1]p,q!
Dμ+2

p,q g dp,qx

=
∫ β

α

R(p,q),μ,g(α, x) dp,qx

=
∫ β

α

[
1

M – m
R(p,q),μ,f (α, x) –

m
M – m

(x – α)μ+1
p,q

[μ + 1]p,q!

]

dp,qx

=
1

M – m

∫ β

α

R(p,q),μ,f (α, x) dp,qx –
m

M – m
(β – α)μ+2

p,q

[μ + 2]p,q!
.

By substituting the integrals
∫ β

ψ�
F(x) dp,qx,

∫ ψk
α

F(x) dp,qx and
∫ β

α
F(x)G(x) dp,qx in (2.1)

of Theorem 2.1, we get the desired result. �

3 Conclusion
These types of integral inequalities have a great impetus and large interest in their own
right as well as have an important applications in the theory of different mathematical
areas, such as ordinary differential equations, hyper-geometric functions, combinatorics,
number theory, mechanics, theory of relativity etc. We have studied here the Opial-type
inequalities defined by (p, q)-integers which are more general than the classical Opial and
q-Opial integral inequalities.
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