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Abstract
The notion of nonlinear (Fs,L)-contractive multivalued operators is initiated and
some related fixed point results are considered. We also give an example to show the
validity of obtained theoretical results. Our results generalize many existing ones in
the literature.
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1 Introduction
A multivalued weakly Picard operator (in short, MWP) has been introduced as a connec-
tion with the successive approximation method and the data dependence problem in fixed
point theory for multivalued operators by Rus et al. [25].

Given a metric space (X, d). Let P(X) be the class of nonempty subsets of X. Denote by
C(X) (resp. CB(X)) the class of nonempty closed (resp. all nonempty bounded and closed)
subsets of X. For A, B ∈ CB(X), consider the Pompeiu–Hausdorff functional

H(A, B) := max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}

.

For η ∈ X, define D(η, B) = infμ∈B d(η,μ).

Lemma 1.1 ([22]) Given a metric space (X, d). Let B ⊆ X and α > 1. For η ∈ X, there is
ξ ∈ B such that d(η, ξ ) ≤ αD(η, B).

Berinde [14] introduced the following notion which was later named from ‘weak con-
traction’ to ‘almost contraction’ by Berinde [15].

Definition 1.1 Given a metric space (X, d). A mapping F : X → X is said to be an almost
contraction or an (δ, L)-contraction if there are δ ∈ (0, 1) and L ≥ 0 such that, for ζ , θ ∈ X,

d(Fζ , Fθ ) ≤ δd(ζ , θ ) + Ld(θ , Fζ ). (1)

Nadler [22] used the notion of the Pompeiu–Hausdorff metric to ensure the existence
of fixed points for multivalued contraction mappings.
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M. Berinde and V. Berinde [13] initiated the notion of multivalued almost contractions
as follows:

A mapping F : X → CB(X) is an almost contraction if there are δ ∈ (0, 1) and L ≥ 0 such
that, for ζ , θ ∈ X, the following inequality holds:

H(Fζ , Fθ ) ≤ δd(ζ , θ ) + LD(θ , Fζ ). (2)

Berinde [13] established the Nadler fixed point theorem in [22].

Theorem 1.1 Let F : X → CB(X) be an almost contraction mapping on a complete metric
space. Then F has a fixed point.

Definition 1.2 ([25]) A mapping T : X → CB(X) is called an MWP operator if, for all
ζ ∈ X and θ ∈ Tζ , there is {ζn} in X such that the following statements hold:

(i) ζ0 = ζ and ζ1 = θ ;
(ii) ζn+1 ∈ Tζn for all n ≥ 0;

(iii) {ζn} converges to a fixed point of T .

Popescu [27] introduced the concept of (s, r)-contractive multivalued operators and ob-
tained some (strict) fixed point results.

Definition 1.3 ([27]) Let T : X → CB(X) be a multivalued operator on a complete metric
space (X, d). Such T is an (s, r)-contraction if r ∈ [0, 1), s ≥ r, and ζ , θ ∈ X

D(θ , Tζ ) ≤ sd(θ , ζ ) implies H(Tζ , Tθ ) ≤ rP(ζ , θ ), (3)

where

P(ζ , θ ) = max

{
d(ζ , θ ), D(ζ , Tζ ), D(θ , Tθ ),

D(ζ , Tθ ) + D(θ , Tζ )
2

}
.

Theorem 1.2 ([27]) Let T : X → CB(X) be an (s, r)-contractive multivalued operator (with
s > r) on a complete metric space. Then T is an MWP operator.

Theorem 1.3 ([27]) Let T : X → CB(X) be an (s, r)-contractive multivalued operator on a
complete metric space. Then T has a fixed point. Moreover, if s ≥ 1, such a fixed point is
unique.

Kamran [17] improved the results of Popescu [27] to weakly (s, r)-contractive multival-
ued operators.

Definition 1.4 ([17]) Let T : X → CB(X) be a multivalued operator on a metric space
(X, d). Such T is a weakly (s, r)-contraction if there are r ∈ [0, 1), s ≥ r, and L ≥ 0 such that

D(θ , Tζ ) ≤ sd(θ , ζ ) implies H(Tζ , Tθ ) ≤ rN(ζ , θ ),
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where

N(ζ , θ ) = max

{
d(ζ , θ ), D(ζ , Tζ ), D(θ , Tθ ),

D(ζ , Tθ ) + D(θ , Tζ )
2

}

+ L min
{

d(ζ , θ ), D(θ , Tζ )
}

.

Theorem 1.4 ([17]) Let T : X → CB(X) be a weakly (s, r)-contraction (with s > r and L ≥ 0)
on a complete metric space. Then T is an MWP operator.

On the other hand, Wardowski [34] introduced a generalized version of contraction
mappings, called F -contractions, i.e., a mapping T : X → X satisfying

τ + F
(
d(Tζ , Tθ )

) ≤F
(
d(ζ , θ )

)

for all ζ , θ ∈ X with Tζ �= Tθ , where τ > 0 and F : (0,∞) → R is a function verifying the
following conditions:

(F1) F is strictly increasing;
(F2) for each {an} ⊆R

+, limn→∞ an = 0 iff limn→∞ F (an) = –∞;
(F3) there is 0 < k < 1 such that lima→0+ akF (a) = 0.

It was proved that every F -contraction on a complete metric space possesses a unique
fixed point.

In 2014, Piri and Kumam [26] combined the notion of F -contractions with a Suzuki
type contraction as follows:

1
2

d(ζ , Tζ ) < d(ζ , θ ) implies τ + F
(
d(Tζ , Tθ )

) ≤F
(
d(ζ , θ )

)
.

Recently, Turinici in [33] relaxed condition (F2) by
(F ′

2) for each {an} ⊆R
+, limn→∞ an = 0, then limn→∞ F (an) = –∞.

Then the following
(F ′′

2 ) F (an) → –∞ implies an → 0
can be derived from (F1).

Recently, Wardowski [35] considered the class of F -contractions in a generalized way by
replacing τ by a function ϕ : (0,∞) → (0,∞) and defined (ϕ,F )-contractions (nonlinear
contractions) on a metric space (X, d) so that

(H1) F verifies (F1) and (F ′
2);

(H2) lim infq→p+ ϕ(q) > 0 for p ≥ 0;
(H3) ϕ(d(ζ , θ )) + F (d(Tζ , Tθ )) ≤F (d(ζ , θ )) for all ζ , θ ∈ X so that Tζ �= Tθ .

Wardowski [35] proved a fixed point result for such nonlinear contractions by omitting
(F3).

Altun et al. [6] used an extra condition on F :
(F4) F (inf(P)) = infF (P) for P ⊂ (0,∞) such that inf(P) > 0.

Define:
(H′

1) F satisfies (F1), (F ′
2), and (F4).

(H′
3) There are s ≥ 0 and L≥ 0 such that, for ζ , θ ∈ X with H(Tζ , Tθ ) > 0, we have

D(θ , Tζ ) ≤ sd(θ , ζ ) implies ϕ
(
d(ζ , θ )

)
+F

(
H(Tζ , Tθ )

) ≤F
(
M(ζ , θ )

)
, (4)
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where

M(ζ , θ ) = max

{
d(ζ , θ ), D(ζ , Tζ ), D(θ , Tθ ),

D(ζ , Tθ ) + D(θ , Tζ )
2

}

+ Lmin
{

d(ζ , θ ), D(θ , Tζ ), D(ζ , Tζ )
}
.

(H′′
3) There are r, s ∈ [0, 1) with r < s such that, for ζ , θ ∈ X with H(Tζ , Tθ ) > 0,

1
1 + r

D(ζ , Tζ ) ≤ d(ζ , θ ) ≤ 1
1 – s

D(ζ , Tζ )

implies

ϕ
(
d(ζ , θ )

)
+ F

(
H(Tζ , Tθ )

) ≤F
(
M(ζ , θ )

)
.

For more works concerning F -contractions, we refer to [1–3, 5, 7–12, 18–21, 23, 24, 28,
32] and the references therein.

The graph of T : X → 2X is given as

Gr(T) =
{

(μ,ν) ∈ X2,ν ∈ Tμ
}

.

The mapping T is said to be upper semi-continuous if the inverse image of closed sets is
closed.

Here, we introduce the concept of (Fs,L)-contractive multivalued operators. We will
extend the results of Kamran [17] and Popescu [27]. For more details, see [4, 16, 29–31].
An example is given to show the validity of our results.

2 Main results
We begin with the following definition.

Definition 2.1 Let (X, d) be a metric space. The multivalued operator T : X → CB(X) is
an (Fs,L)-contraction if conditions (H′

1), (H2), and (H′
3) are satisfied.

Our first result is as follows.

Theorem 2.1 Let T : X → CB(X) be an (Fs,L)-contractive multivalued operator on a
complete metric space. Assume that Gr(T) is a closed subset of X2. Then T is an MWP
operator.

Proof Let ζ0 ∈ X and ζ1 ∈ Tζ0, then D(ζ1, Tζ0) = 0. In the case that ζ0 = ζ1, then ζ1 is a
fixed point of T , and so the proof is done.

Assume that ζ0 �= ζ1. If ζ1 ∈ Tζ1, the proof is completed. Otherwise, if ζ1 /∈ Tζ1, then
since Tζ1 is closed, we have D(ζ1, Tζ1) > 0. Therefore, H(Tζ0, Tζ1) ≥ D(ζ1, Tζ1) > 0, we
also have D(ζ1, Tζ0) ≤ sd(ζ1, ζ0). Since T is an (Fs,L)-contractive multivalued operator,
we have

ϕ
(
d(ζ0, ζ1)

)
+ F

(
H(Tζ0, Tζ1)

) ≤ F
(
M(ζ0, ζ1)

)
,
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where

M(ζ0, ζ1) = max

{
d(ζ0, ζ1), D(ζ0, Tζ0), D(ζ1, Tζ1),

D(ζ0, Tζ1) + D(ζ1, Tζ0)
2

}

+ L min
{

d(ζ0, ζ1), D(ζ1, Tζ0), D(ζ0, Tζ0)
}

≤ max

{
d(ζ0, ζ1), D(ζ1, Tζ1),

d(ζ0, ζ1) + D(ζ1, Tζ1)
2

}

= d(ζ0, ζ1).

So

ϕ
(
d(ζ0, ζ1)

)
+ F

(
H(Tζ0, Tζ1)

) ≤ F
(
d(ζ0, ζ1)

)
. (5)

Since D(ζ1, Tζ1) ≤ H(Tζ0, Tζ1), from (F1) and (5), we have

F
(
D(ζ1, Tζ1)

) ≤ F
(
H(Tζ0, Tζ1)

) ≤ F
(
d(ζ0, ζ1)

)
– ϕ

(
d(ζ0, ζ1)

)
. (6)

Recall that D(ζ1, Tζ1) > 0, so from (F4) we obtain

F
(
D(ζ1, Tζ1)

)
= inf

y∈Tζ1
F
(
d(ζ1, y)

)
.

By (6), we have

inf
y∈Tζ1

F
(
d(ζ1, y)

) ≤ F
(
d(ζ0, ζ1)

)
– ϕ

(
d(ζ0, ζ1)

)
. (7)

There is ζ2 ∈ Tζ1 such that

F
(
d(ζ1, ζ2)

) ≤ F
(
d(ζ0, ζ1)

)
– ϕ

(
d(ζ0, ζ1)

)
.

Continuing in this manner, we get {ζn} such that ζn+1 ∈ Tζn and

F
(
d(ζn, ζn+1)

) ≤ F
(
d(ζn–1, ζn)

)
– ϕ

(
d(ζn–1, ζn)

)
(8)

for all n ≥ 1. Let αn = d(ζn–1, ζn) for all n ≥ 0. We suppose that αn > 0 for each n ∈N. From
(8), there is c > 0 such that

F (αn+1) ≤F (αn) – ϕ(αn) for each n ∈N.

By (F1), (αn) is decreasing, and so αn ↘ t ≥ 0. By (H2) there are c > 0 and n0 ∈ N such that
ϕ(αn) > 0 for each n ≥ n0. Thus,

F (αn) ≤ F (αn–1) – ϕ(αn–1) ≤ · · · ≤F (α1) –
n–1∑
i=1

ϕ(αi)

= F (α1) –
n0–1∑
i=1

ϕ(αi) –
n–1∑
i=n0

ϕ(αi) < F (α1) – (n – n0)c, n > n0.

Taking n → ∞, F (αn) → –∞, so using (F ′′
2 ), αn → 0.
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Suppose that (ζn) is not a Cauchy sequence. Using (F1), the set ∇ of all discontinuity
elements of F is at most countable. There is γ > 0, γ /∈ ∇ in order that for each k ≥ 0
there are mk , nk ∈N such that

k ≤ mk < nk and d(ζmk , ζnk ) > γ , d(ζmk , ζnk –1) < γ , d(ζnk , ζmk +1) < γ . (9)

Denote by m̄k the least of mk satisfying (9) and by n̄k the least of nk so that m̄k < nk and
d(ζm̄k , ζnk ) > γ . Naturally, one writes that

d(ζm̄k , ζn̄k ) > γ , d(ζm̄k , ζn̄k –1) < γ , d(ζn̄k , ζm̄k +1) < γ . (10)

Taking k0 ∈N such that for αk < γ for each k ≥ k0, we have

γ < d(ζm̄k , ζn̄k ) ≤ d(ζm̄k , ζn̄k –1) + d(ζn̄k –1, ζn̄k ) ≤ γ + αn̄k for each k ≥ k0.

Therefore,

lim
k→∞

d(ζm̄k , ζn̄k ) = γ . (11)

Thus, we conclude that

D(ζn̄k , Tζm̄k ) ≤ d(ζn̄k , ζm̄k +1) < γ < d(ζn̄k , ζm̄k ) ≤ sd(ζn̄k , ζm̄k ). (12)

From (H′
3), we get

ϕ
(
d(ζm̄k , ζn̄k )

) ≤F
(
d(ζm̄k , ζn̄k )

)
– F

(
d(ζm̄k +1, ζn̄k +1)

)
, (13)

k ≥ 0. Now, using (10)–(13) and by the continuity of F at γ , we get

lim inf
s→γ +

ϕ(s) ≤ lim inf
k→∞

ϕ
(
d(ζm̄k , ζn̄k )

)

≤ lim
k→∞

(
F

(
d(ζm̄k , ζn̄k )

)
– F

(
d(ζm̄k +1, ζn̄k +1)

))
= 0,

which is a contradiction to (H2). Therefore (ζn) is a Cauchy sequence. Hence, ζn → z ∈ X
as n → ∞.

Since Gr(T) is closed, at the limit n → ∞, (ζn, ζn+1) → (z, z) with (z, z) ∈ Gr(T). Thus,
z ∈ Tz, i.e., z is a fixed point of T . �

The upper semi-continuity condition is stronger than the closedness of Gr(T). Conse-
quently, we have the following result.

Theorem 2.2 Let T : X → CB(X) be an (Fs,L)-contractive multivalued operator on a
complete metric space. Assume that T is upper semi-continuous. Then T is an MWP oper-
ator.

Remark 2.1 Taking T : X → K(X) in Theorem 2.1 and s ≥ 1, we may omit condition (F4).
In fact, let ζ0 ∈ X and ζ1 ∈ Tζ0. If ζ1 ∈ Tζ1, then the proof is complete. Let ζ1 /∈ Tζ1. Then,
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as Tζ1 is closed, D(ζ1, Tζ1) > 0. On the other hand, as D(ζ1, Tζ1) ≤ H(Tζ0, Tζ1), from (F1)
we have

F
(
D(ζ1, Tζ1)

) ≤F
(
H(Tζ0, Tζ1)

)
.

We also have D(ζ1, Tζ0) ≤ sd(ζ1, ζ0). Using (H′
3), we have

F
(
D(ζ1, Tζ1)

) ≤F
(
H(Tζ0, Tζ1)

)

≤F
(
M(ζ0, ζ1)

)
– ϕ

(
d(ζ0, ζ1)

)

≤F
(
d(ζ0, ζ1)

)
– ϕ

(
d(ζ0, ζ1)

)
. (14)

Since Tζ1 is compact, there exists ζ2 ∈ Tζ1 such that d(ζ1, ζ2) = D(ζ1, Tζ1). Then from (14)
we have

F
(
d(ζ1, ζ2)

) ≤F
(
d(ζ0, ζ1)

)
– ϕ

(
d(ζ0, ζ1)

)
.

The rest of the proof is similar to that of the proof of Theorem 2.1.

Our second result is as follows.

Theorem 2.3 Let T : X → X be an (Fs,L)-contractive single-valued operator on a com-
plete metric space. Assume that Gr(T) is a closed subset of X2. Then T has a fixed point.
Moreover, if s ≥ 1, then such a fixed point is unique.

Proof Similar to the proof of Theorem 2.1, T has a fixed point. Let s ≥ 1 and ζ , θ be two
distinct fixed points of T . Then

d(θ , Tζ ) = d(θ , ζ ) ≤ sd(θ , ζ )

implies

ϕ
(
d(ζ , θ )

)
+ F

(
d(Tζ , Tθ )

) ≤ F
(
d(ζ , θ )

)

or

ϕ
(
d(ζ , θ )

)
+ F

(
d(ζ , θ )

) ≤ F
(
d(ζ , θ )

)
,

hence ζ = θ . �

Definition 2.2 Let T : X → CB(X) be a multivalued operator on a metric space (X, d).
Such T is an (Fr,s,L)-contraction if conditions (H′

1), (H2), and (H′′
3) are satisfied.

Our third main result is as follows.

Theorem 2.4 Let T : X → CB(X) be an (Fr,s,L)-contraction on a complete metric space.
Assume that Gr(T) is a closed subset of X2. Then T is a multivalued weakly Picard operator.
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Proof Consider t < 1 so that 0 ≤ r < t < s. Since 1–t
1–s > 1, by Lemma 1.1, ζ1 ∈ X, and so there

is ζ2 ∈ Tζ1 such that

d(ζ1, ζ2) ≤ 1 – t
1 – s

D(ζ1, Tζ1),

then

1
1 + r

D(ζ1, Tζ1) ≤ D(ζ1, Tζ1) ≤ d(ζ1, ζ2) ≤ 1
1 – s

D(ζ1, Tζ1).

Since T is an (Fr,s,L)-contraction, we have

ϕ
(
d(ζ1, ζ2)

)
+ F

(
H(Tζ1, Tζ2)

) ≤ F
(
M(ζ1, ζ2)

)
, (15)

where

M(ζ1, ζ2) = max

{
d(ζ1, ζ2), D(ζ1, Tζ1), D(ζ2, Tζ2),

D(ζ1, Tζ2) + D(ζ2, Tζ1)
2

}

+ L min
{

d(ζ1, ζ2), D(ζ2, Tζ1), D(ζ1, Tζ1)
}

≤ d(ζ1, ζ2).

So (15) becomes

F
(
H(Tζ1, Tζ2)

) ≤ F
(
d(ζ1, ζ2)

)
– ϕ

(
d(ζ1, ζ2)

)
. (16)

Since D(ζ2, Tζ2) ≤ H(Tζ1, Tζ2), from (F1) and (16), we have

F
(
D(ζ2, Tζ2)

) ≤ F
(
H(Tζ1, Tζ2)

) ≤ F
(
d(ζ1, ζ2)

)
– ϕ

(
d(ζ1, ζ2)

)
. (17)

As Tζ2 is closed, D(ζ2, Tζ2) > 0, and from (F4)

F
(
D(ζ2, Tζ2)

)
= inf

y∈Tζ2
F
(
d(ζ2, y)

)
.

By (17), we have

inf
y∈Tζ2

F
(
d(ζ2, y)

) ≤ F
(
d(ζ1, ζ2)

)
– ϕ

(
d(ζ1, ζ2)

)
. (18)

There is ζ3 ∈ Tζ2 such that

F
(
d(ζ2, ζ3)

) ≤ F
(
d(ζ1, ζ2)

)
– ϕ

(
d(ζ1, ζ2)

)
.

Continuing in this manner, we construct a sequence {ζn} such that ζn+1 ∈ Tζn, and the
following inequality holds:

F
(
d(ζn, ζn+1)

) ≤ F
(
d(ζn–1, ζn)

)
– ϕ

(
d(ζn–1, ζn)

)
(19)

for each n ≥ 1.
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As in the proof of Theorem 2.1, (ζn) is a Cauchy sequence, and so ζn → z ∈ X as n → ∞.
By the arguments similar to those given in Theorem 2.1, we have that D(z, Tz) = 0. �

The following example is in support of Theorem 2.1.

Example 2.1 Let X = {0, 1, 2, 3} and take d(ζ , θ ) = |ζ – θ |. Consider T : X → CB(X) as

Tη =

⎧⎨
⎩

{1, 3} if η = 3,

{2} if not.

Then, for (ζ , θ ) ∈ {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 3)},

H(Tζ , TΘ) = 0,

and for (ζ , θ ) ∈ {(0, 3), (1, 3), (2, 3), (3, 0), (3, 1), (3, 2)},

H(Tζ , Tθ ) = 1.

Choosing s = 0.5 and (ζ , θ ) ∈ {(2, 3), (3, 2)}, we have

D(θ , Tζ ) = 1 = d(θ , ζ ),

which gives

D(θ , Tζ ) > sd(θ , ζ ).

Now, for (ζ , θ ) ∈ {(0, 3), (1, 3), (3, 0), (3, 1)}, we have

D(θ , Tζ ) ≤ sd(θ , ζ ).

Hence, for any L≥ 0, choosing ϕ(t) = 1
t and F (t) = t + ln(t), we have

ϕ
(
d(ζ , θ )

)
+ F

(
H(Tζ , Tθ )

)
< F

(
M(ζ , θ )

)
.

That is, T is an (Fs,L)-contraction. Also, Gr(T) is a closed subset of X2. By Theorem 2.1,
T has 2 and 3 as fixed points.
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