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1 Introduction
Let I C R be an interval. Then a real-valued function ¥ : I — R is said to be convex on I
if the inequality

U[ra+(1-1)b] <A¥(a) + (1 -1)¥(b) (L1)

holds for all a,b € I and X € (0,1). ¥ is said to be concave if inequality (1.1) is reversed.

It is well known that the convexity theory has wide applications in special functions
[1-30], differential equations [31-61] and bivariate means [62—67]. Recently, the exten-
sions, generalizations, refinements and variants for the convexity have attracted the at-
tention of many researchers. For example, Schur convexity [68—70], GA-convexity [71],
GG-convexity [72], s-convexity [73, 74], preinvexity [75], strong convexity [76—79] and
others [80-85].

Dragomir [86] defined the coordinate convex as follows.

Definition 1.1 (See [86]) Let I1,I; € R be two interval, ¥ : I; x I — R be a real-valued
function, and the partial mappings ¥, : I; — R and ¥, : I, > R be defined by

qjy(u) =¥ (u,y), U (v) = ¥ (x,v),

respectively. Then ¥ is said to be coordinate convex on I x I if ¥, is convex on I; for all
y €I and ¥, is convex on I, for all x € I;.

Remark 1.2 Dragomir [86] proved that every convex function is coordinate convex, but

not vice versa.

Next, we recall the concept of n-convexity which can be found in the literature [87].
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Definition 1.3 (See [87]) Let I C R be an interval,and ¥ : I+ Rand n:R x R+ R be
two real-valued functions. Then ¥ is said to be n-convex if the inequality

Ulpux+(1-wy] <¥O) +un[¥ ), ¥ )]
holds for all x,y € I and p € [0, 1].

Note that the 7-convexity reduces to the usual convexity if n(x, y) = x—y in Definition 1.3.

The main purpose of the article is to give a non-trivial example for a n-convex func-
tion defined on rectangle is not convex, prove that every n-convex function defined on
rectangle is coordinate n-convex but not vice versa, define the coordinate (11, 772)-convex
function and establish its Hermite—Hadamard type inequality.

2 Main results
To begin this section, it is interesting to give the definition of n-convex function defined
on rectangle, and give a non-trivial example for a n-convex function defined on rectangle

is not convex.

Definition 2.1 Let I, C R be two intervals,and ¥ : [; x L, > Rand n:R x R+ R be
two real-valued functions. Then ¥ is said to be n-convex if the inequality

Wlpa+ (1-wzuy+ (1 - ww] < ¥(zw) + un¥ (x,9), ¥ (z,w)]
holds for all (x,y), (z,w) € 1 x I, and u € [0, 1].
Example 2.2 Let ¥ :[1,5] x [1,5] — Rand n: R x R+ R be defined by
W (x,y) = x*y%, n(x,) = 104x + 103y.
Then ¥ is n-convex on [1,5] x [1, 5], but it is not convex.

Proof Let i € [0,1]. Then for any (x,%), (z,w) € [1,5] we have

Wlux+ (1 -z, pmy + (1 - pw]
=[x+ (1= wz] [y + 1 = w]?
= [2% + w(pa® + uz® = 22%) + 2u(1 - paz]
x [w* + u(uy® + uw? = 20%) + 2u(1 = w)yw]
<[+ pa® +2u(1 = pwaz][w? + uy? + 2u(1 - wyw]
<[22+ ua? + n(L= W (& +2)|[W* + 1 + (1= W) (7 + )]
<[P+ + 2+ )W+ w47 4 )]
= 2w+ u[ 222 + W+ 20w+ W]+ 2[4 4 22w + 2972 + 2P
<W(zw) + u[222 + 2w + 20w 4 wP2P] + u[Aay + 20w + 2922 + 2w

=U(z,w) + ;L[4x2y2 +322w% + 4(z2y2 + xzwz)]. (2.1)
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Note that
z2 < 252, x? < 25722 (2.2)

It follows from (2.1) and (2.2) that

Wlpux+ (1- )z, pmy + (1 - w)w]
<U(z,w)+ ,u[104x2y2 + 10322w2]
=W (zw)+ un[¥(x,y), ¥ (zw)],

which shows that ¥ is n-convex on [1,5] x [1,5]. It is easily to verify that ¥ is not convex
on [1,5] x [1,5], for details see [79]. O

Next, we introduce the definition of coordinate (3, 72)-convexity.

Definition 2.3 Let[;,I; C Rbetwointervals, ¥ : I} x I, —> R, 1,72 : R x R+~ R be three
real-valued functions, and the partial mappings ¥, : I; = R and ¥, : I, — R be defined by

Wy (u) =¥ (u,), T (v) = ¥ (x,v).

Then ¥ is said to be coordinate (1, 72)-convex on I; x I if ¥, is n;-convex on I; and ¥,

is ny-convex on I,. In particular, if n; = 7y = n, then ¥ is said to be coordinate n-convex.

Example 2.4 Let W :[0,00) x [0,00) — R be defined by ¥ (x, y) = —|x| — %%, n1(x,y) = —x—y
and ny(x,y) = —x — 2y. Then ¥ is coordinate (71, 172)-convex on [0, 00) X [0, 00).

Proof Let x1,y1 € [0,00) and u € [0, 1]. Then for any (x,y) € [0,00) we clearly see that

lI/y(,uxl +(1- ,u)xg) = —|Mx1 +(1- ,u)x2| -9 (2.3)
W (x2) + w1 (W (1), ¥ (x2))

= —lxal =y” + i (=121 | = 3% =%l = 57)

=~ = 5% + (o] + x| +297), (2.4)
W, (s + (1= wya) = =l = (s + (1= )’ (2.5)
W (y2) + w2 (Pe(1), ¥a(32))

= —|xl = 93 + pna(=Ixl = 33, —Ixl - 33)

= —lxl =55 + (7 + 25 +3l). (2.6)
It follows from (2.3)—(2.6) that

W (x2) + ot (W (1), ¥y (x2)) — ¥y (pexy + (1 — pa)axn)
= p(lr] + 2l +207) + | + (1= o | — |xa

> 20y + pulxr| + gl + (1= ) |xa| — el | = |a
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=2uy* >0, (2.7)
e (y2) + w2 (1), Wa(y2)) — e (pyn + (1= w)y2)
= 3l + 20(1 = wWy1ys + (L + p)y; + 1*y3 > 0. (2.8)

Therefore, ¥ is coordinate (11, 72)-convex on [0,00) x [0,00) follows from (2.7) and
(2.8). O

Theorem 2.5 Let 1,1, C R be two interval and n : R x R+ R be a real-valued function.

Then ¥ is coordinate n-convex on Iy x I if W is n-convex on I; X .

Proof Let (x,y) € 1} X I, u,v € I and z,w € I,. Then it follows from the n-convexity of the
function ¥ on I; x I, that
(v + (1 - wu) = (%, 1y + (1 - p)u)
= W (ux+ (1— pw)x, uv+ (1 - wu)
< W, u) + un(¥(x,v), ¥ (x, u))

= W () + un (e (v), ¥i(u)) (2.9)

and

Wy (uz+(1-pw) = ¥(uz+(1-ww,y)
=W (uz+(1-ww uy + (1 - 1))
<) +un(¥(zy), ¥ w,y)
= Uy (w) + un (¥ (2), ¥y(w)). (2.10)

Inequalities (2.9) and (2.10) imply that ¥, is n-convex on I, and ¥, is n-convex on ;.
Therefore, ¥ is coordinate n-convex on I; x I,. O

Example 2.6 Let; =1, =[0,00), ¥,n: 11 x I — [0,00) be defined by
W (x,y) =xy, n(x,y) =x+y. (2.11)
Then ¥ is coordinate n-convex on I; X I, but it is not n-convex on I; x I,.

Proof Letx,y,u,v,z,w € [0,00) and u € [0, 1]. Then it follows from (2.11) that

W (e + (1 — p)v) =W (%, pu + (1 - pv)
=x(pu+ (1 — p)v) = —puav + x(uu + v), (2.12)
W (x,v) + (W (e, 1), ¥ (1)) = xv + (s, xv)
=uv+ ulxu + xv) = pav + x(uu + v), (2.13)

lI/y(,uz +(1- /L)W) = lI/(,uz +(1- /L)w,y)
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=y(uz+ (1 - ww) = —puyw + y(uz + w),
U (w,y) + un(¥(z,), ¥ (w,y)) = wy + un(zy, wy)

=wy + pulzy + wy) = wyw + y(uz + w).

Inequalities (2.12)~(2.15) imply that

Wy (e + (1= p)v) <, v) + un(¥ (%, u), ¥ (x,v))
and

¥y (uz + (1—w)w) < w,y) + un(¥(z,), ¥ w,)).
Note that

Wy (pu+ (1 - p)v) =¥ (ux + (1 — wx, pu + (1 - p)v)
and

Wy (nz + (1- w) = ¥ (puz + (L= ww, uy + (1 - wy).

Therefore, ¥ is coordinate n-convex on I; x I follows from (2.16)—(2.19).
Next, we prove that ¥ is not n-convex on I; X .
Let u €(0,1),x=w=1and y =z=0. Then (2.11) leads to

¥ (ux + (- )z, py + (1 - p)w)
=W (u,1—p)=p(l-pn) >0,
W (z,w) + un(¥ (x,9), ¥ (z,w))

=¥(0,1) + un(¥(1,0),¥(0,1)) = 0.

From (2.20) and (2.21) we clearly see that ¥ is not n-convex on I X I.

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

O

Next, we establish a Hermite—Hadamard type inequality for the coordinate (11, 72)-

convex function.

Theorem 2.7 Leta,b,c,d e Rwitha<bandc<d, ¥ :[a,b]l x[c,d] > R,n1,n2 : RxR

R be three real-valued functions such that ¥ is coordinate (1, 13)-convex on [a, b] x [c,d]

and

Ul(x,y) SMr]lv 772(96,3/) San
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or all x,y € R, where M,, and M, are two positive constants. Then
y mn P p

l]/(a+b c+d>_M,,1+M,]2
’ 2

2 2
1 b c+d 1 d a+b M, + M
q/ ; lI/ , _ n1 n2
e [ (5 e g [ (50 Hee

1 d pb
= (b—a)(d—c)/c / Yy drdy

1 1 b 1 d
SZ[b—a/; (llf(x,c)+§l/(x,d))dx+d_ [(W(ﬂ,y)+¢(b,y))dy]
My + My,
4
< %[W(a, ) +¥(b,c)+V¥(a,d)+ lI/(b,d)] + Z[M,,l + My, ]. (2.22)

Proof For any fixed x € [a, b], ¥,(y) = ¥ (x,y) is ny-convex on [c,d] due to ¥ is coordinate
(11, m2)-convex on [a, b] x [c,d]. It follows from [77, Theorem 5] that

c+d\ M 1 [ U(x,c) +¥(x,d M
v« __"2<_/ W(xy)dy < ———— T 4 2, 2.23
<x 2) 2 Sa—c) YeNds 2 7 (2.23)

Integrating each side of inequality (2.23) with respect to the variable x on [, b] leads to

b-al, 2 2

1 d pb
<Gmawa ). | verws
b

1 M,,
< 2(b—u)/ [lI/(x,c)+l1/(x,d)]dx+ T” (2.24)

a

By similar arguments we have

1 d la+b M
w(—=—,y)dy- =2
d—c/; ( 2 y)dy 2
1 d prb
- - w(x,
<Gmaua ), | versd

1 d M,,
< 2(d—c)/c [llf(a,y)+l1/(b,y)]dy+ n (2.25)

2

Adding (2.24) and (2.25) we get the second and third inequalities of (2.22).

Making use of the (11, 172)-convexity of the function ¥ on [a, b] x [c, d] and [88, Theorem
5] again we get

b c+rd\ M 1 [ d
g2t m - / w(x %) ax, (2.26)
2 "2 2 “b-al, 2

v a+b c+d M,71< 1 /dlp a+b J (2.27)
2 ' 2 2 “d-cl. 2 V) '
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b
! /W(x,c)dx§w+%, (2.28)
b-al, 2 2
1 [P U(a,d) +¥(b,d) M
—/ W(x,d)dxsu+i, (2.29)
b-al, 2 2
d Y(a,c)+W¥(a,d) M
W(a, Tworrad  Ym .
d_cfc (a,y)dy < 5 = (2.30)
1 w(b,c)+ ¥ (b, M
fW(b,y)dy§M+i. (2.31)
d—c/, 2 2

Therefore, the first inequality of (2.22) follows from (2.26) and (2.27) with adding — %an
and —%M,“ respectively, and the last inequality in (2.22) can be derived from (2.28)—(2.31)
immediately, with adding }[M,, + M,,]. O

3 Results and discussion

In the article, we establish a non-trivial example for a n-convex function defined on rectan-
gle is not convex, prove that every n-convex function defined on rectangle is coordinate
n-convex and its converse is not true in general. Furthermore, we define a new class of
function which is coordinate (73, 72)-convex function and prove its well-known Hermite—
Hadamard type inequality.

4 Conclusion

We find an example for 7-convex function defined on rectangle is not convex. The authors
define a coordinate (171, 7)-convex function and prove its results. Our approach may have
further applications in the theory of n-convexity.
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