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Abstract
The family of exponential pseudo-splines is the non-stationary counterpart of the
pseudo-splines and includes the exponential B-spline functions as special members.
Among the family of the exponential pseudo-splines, there also exists the subclass
consisting of interpolatory cardinal functions, which can be obtained as the limits of
the exponentials reproducing subdivision. In this paper, we mainly focus on this
subclass of exponential pseudo-splines and propose their dual refinable functions
with explicit form of symbols. Based on this result, we obtain the corresponding
biorthogonal wavelets using the non-stationary Multiresolution Analysis (MRA). We
verify the stability of the refinable and wavelet functions and show that both of them
have exponential vanishing moments, a generalization of the usual vanishing
moments. Thus, these refinable and wavelet functions can form a non-stationary
generalization of the Coifman biorthogonal wavelet systems constructed using the
masks of the D–D interpolatory subdivision.
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1 Introduction
During the last decades, biorthogonal wavelets have been proved to be very successful
tools in engineering and applied mathematics. Their properties like symmetry, vanishing
moments, regularity and short support are required in different applications such as im-
age compression and signal processing. Due to such properties, there has been continuous
work on the construction and application of the biorthogonal wavelets; see for example [1–
5]. In [1], Cohen et al. gave biorthogonal bases derived from compactly supported duals of
B-splines. Wei et al. [2] constructed Coifman biorthogonal wavelet systems with vanishing
moments equally distributed for refinable and wavelet functions. Kim et al. [3] presented
a new family of biorthogonal wavelet systems based on a class of quasi-interpolatory sub-
division [6]. More generally, based on the pseudo-splines [7–9], Dong and Shen [4] con-
structed biorthogonal wavelets with prescribed regularity. Zhou and Zheng [5] obtained
biorthgonal wavelets from the smoothed pseudo-splines [10].

Although the above biorthogonal wavelets own excellent properties, they are scale-
independent and lack some flexibility. Non-stationary biorthogonal wavelets, however,
are scale-dependent and thus can be more flexible than the stationary ones. This kind of
biorthogonal wavelets can be tuned to wider classes of signals and can also ensure good
approximation and sparsity properties [11]. For such biorthogonal wavelets, Vonesch et
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al. [11] constructed generalized biorthogonal wavelets generating exponential polynomi-
als. The corresponding wavelet functions have exponential vanishing moments, a gener-
alization of the usual vanishing moments [11]. Lee and Yoon [12] analyzed the compactly
supported non-stationary biorthogonal wavelets in [11]. Note that these obtained non-
stationary biorthogonal wavelets are mainly based on the exponential B-splines. In fact,
Conti et al. [13] presented the family of exponential pseudo-splines, the non-stationary
generalization of the pseudo-splines [13], and the exponential B-splines form a special
subclass of the exponential pseudo-splines. These exponential pseudo-splines can actu-
ally meet various demands for balancing approximation order, regularity, support size,
interpolation and reproduction capabilities.

Apart from the exponential B-splines, the family of exponential pseudo-splines also con-
tains another subclass consisting of interpolatory cardinal functions, which can be seen
as the non-stationary counterparts of the pseudo-splines of type II with order (m, m – 1)
(see [13]). In fact, the generalized Daubchies wavelets obtained by Dyn et al. [14] can be
seen as based on such exponential pseudo-splines. In this paper, inspired by the above-
mentioned work, we mainly focus on this subclass of exponential pseudo-splines and
construct a family of non-stationary biorthogonal wavelets. In fact, to obtain the desired
biorthogonal wavelets, we first derive the explicit form of the symbols of the dual refin-
able functions for this subclass of exponential pseudo-splines. Then the corresponding
biorthogonal wavelets can be obtained by the non-stationary MRAs. For the new refin-
able and wavelet functions, we show their stability and that both of them have the ex-
ponential vanishing moments. As a result, they can be seen as the generalization of the
stationary Coifman biorthogonal wavelets constructed using the masks of the D–D inter-
polatory subdivision [3]. We point out that, in a similar way, the biorthogonal wavelets
based on other exponential pseudo-splines can also be obtained. But the explicit form of
the symbols of the dual refinable functions is difficult to derive in general.

The rest of this paper is organized as follows. In Sect. 2, we review the exponential
pseudo-splines and some related definitions and results. In Sect. 3, we derive the dual
refinable functions of the subclass of the exponential pseudo-splines consisting of inter-
polatory cardinal functions and investigate their stability. Based on this result, in Sect. 4,
we derive the corresponding biorthogonal wavelets and show their exponential vanishing
moments. An example of these non-stationary biorthogonal wavelets is also given in this
section. Section 5 concludes this paper.

2 Preliminaries
In this section, we review the exponential pseudo-splines and some related knowledge. As
the exponential pseudo-splines are closely connected with non-stationary subdivision, we
first give a brief introduction to such kind of subdivision schemes.

Let l0(Z) denote the linear space of real sequences with finite length. Given an initial
data sequence q0 = {q0

n ∈R : n ∈ Z} ∈ l0(Z), a binary non-stationary subdivision scheme is
defined through

qk+1
i =

(
Sak qk)

i :=
∑

j∈Z
ak

i–2jq
k
j , j ∈ Z, k ≥ 0,
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where the sequence ak ∈ l0(Z) is termed the k-level mask and we denote this subdivision
by {Sak }k≥0. The symbol associated with the mask ak is the Laurent polynomial

ak(z) =
∑

i∈Z
ak

i zi, z ∈ C\{0}.

If the mask ak is independent of k, the subdivision {Sak }k≥0 becomes a stationary one and
we denote it by Sa.

The scheme {Sak }k≥0 becomes an interpolatory subdivision if ak satisfies

ak
2i = δi,0, i ∈ Z, k ≥ 0, (1)

where δi,0 = 1 if i = 0 and zero otherwise. In terms of symbols, (1) is equivalent to

ak(z) + ak(–z) = 2, z ∈C\{0}, k ≥ 0. (2)

Let δ := {δi,0, i ∈ Z}. Following [15], we give the following definition on the Cν conver-
gence of the scheme {Sak }k≥0 with ν ≥ 0.

Definition 1 ([15]) The subdivision {Sak }k≥0 is Cν if, for the initial data q0 := δ, there exists
a function fq0 ∈ Cν , fq0 �≡ 0, such that

lim
k→∞

sup
i∈Z

∣∣fq0
(
2–ki

)
– qk

i
∣∣ = 0.

For the convergent non-stationary subdivision schemes, one of the important proper-
ties is the generation/reproduction of exponential polynomials. Here, generation means
producing a specific type of limit functions by a subdivision and reproduction refers to the
capability of a subdivision to reproduce in the limit exactly the same function from which
the data is sampled [13].

Now let ı denote the imaginary unit satisfying ı2 = –1. We first recall the space of expo-
nential polynomials.

Definition 2 ([13]) For n ∈ Z+, let Γ := {(θ1, τ1), . . . , (θn, τn)} with θi ∈R∪ ıR, θi �= θj if i �= j
and τi ∈ Z+ denoting the multiplicity of θi, i = 1, . . . , n. The space of exponential polyno-
mials EPΓ is defined to be

EPΓ := span
{

xri eθix, ri = 0, . . . , τi – 1, i = 1, . . . , n
}

.

In this paper, for the set Γ defined in Definition 2, we let
∑n

i=1 τi = 2m with m ∈ Z+ and
set Γ to be a symmetric set of the form

Γ =
{

(θr , τr), (–θr , τr)
}

r=0,...,s–1, s ∈ Z+. (3)

The following result gives conditions on ak(z) for {Sak }k≥0 to generate/ reproduce EPΓ .

Theorem 1 ([16]) The scheme {Sak }k≥0 generates EPΓ if ak(z) satisfies

drak(–e–θi2–k–1 )
dzr = 0, r = 0, . . . , τi – 1, (θi, τi) ∈ Γ . (4)
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If, in addition, ak(z) satisfies

drak(e–θi2–k–1 )
dzr = 2δr , r = 0, . . . , τi – 1, (θi, τi) ∈ Γ ,

besides (4), then the scheme {Sak }k≥0 reproduces EPΓ .

Given the initial data sequence δ, when the scheme {Sak }k≥0 is convergent, we can obtain
the basic limit function φk , which is generated by

φk := lim
l→∞

Sak+l · · ·Sak+1 Sak δ, k ≥ 0.

The basic limit functions φk are compactly supported and mutually refinable, i.e. they
satisfy the non-stationary refinement equations

φk =
∑

j∈Z
ak

j φ
k+1(2 · –j), k ≥ 0.

For φk , ak and ak(z) are also termed its mask and symbol, respectively.
The exponential pseudo-splines actually form a large family of such non-stationary re-

finable functions. Starting from the stationary pseudo-splines, they can be seen as derived
by replacing polynomial reproduction/generation by exponential polynomial reproduc-
tion/generation [13]. The exponential pseudo-splines can be obtained as the basic limit
functions of non-stationary subdivision with symbols derived as a ‘correction’ of the ex-
ponential B-spline symbols [13].

Specifically speaking, in this paper, with the set Γ in (3), let

bk(z) = 2
s–1∑

r=0

(
e

θr
2k+1 z + 1

2

)τr (e
–θr

2k+1 z + 1
2

)τr

z–m (5)

denote the k-level symbol of the exponential B-spline scheme generating EPΓ . Similar to
the set Γ , we let Γ̃ = {(θi, τ̃i)}i=1,...,ñ with τ̃i ≤ τi for i = 1, . . . , ñ and ñ ≤ n. We also set Γ̃ to be
a symmetric set as Γ . From [13], we can find the unique Laurent polynomial ck(z) with the
lowest possible degree such that the subdivision with the symbol ak(z) = bk(z)ck(z) gener-
ates EPΓ and reproduces EPΓ̃ . Here, EPΓ̃ is a subspace of EPΓ identified by Γ̃ . Then the
exponential pseudo-spline with the symbol ak(z) can be found, which is obtained as the
basic limit function of this subdivision (also called the exponential pseudo-spline subdivi-
sion) [13]. In particular, when EPΓ̃ = EPΓ , ak(z) satisfies (2) and this exponential pseudo-
spline becomes the non-stationary interpolatory cardinal function whose limit stationary
counterpart is the pseudo-splines of type II with order (m, m – 1) [13, 17]. In this way, as a
large family of non-stationary refinable functions, these exponential pseudo-splines pro-
vide flexibility in wavelet constructions and filter designs. We point out that the biorthog-
onal wavelets in this paper will be based on the exponential pseudo-splines in the case of
EPΓ̃ = EPΓ .

The existence of the non-stationary refinable functions is the key ingredient for the
non-stationary multiresolution analysis (MRA). Let (V k)k≥0 be a sequence of subspaces
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in L2(R), with

V k = span
{
φk

i := 2 k
2 φk

(
2 k

2 · –i
)}

.

This sequence of subspaces forms a non-stationary MRA in L2(R) if [18]
(i). V k ⊂ V k+1 for k ∈ Z;

(ii).
⋃

k∈Z V k is dense in L2(R);
(iii). for each k ∈ Z, the set {φk

j : j ∈ Z} forms a Riesz basis of V k .
A refinable function φ̃k ∈ L2(R) is the dual refinable function of φk if

〈
φk , φ̃k(· – n)

〉
= δn,0, k ≥ 0, n ∈ Z. (6)

With φk and φ̃k , a pair of non-stationary MRAs (Vk)k≥0 and (Ṽk)k≥0 can be obtained. Then
the general aim of the biorthogonal wavelets consists of finding the complement spaces
Wk and W̃k of Vk and Ṽk , respectively, such that

Vk+1 = Vk ⊕ Wk , Ṽk+1 = Ṽk ⊕ W̃k , Wk⊥Ṽk , W̃k⊥Vk . (7)

Thus, given the refinable function φk , the first step of the construction of the non-
stationary biorthogonal wavelets is to obtain the dual refinable function φ̃k .

Note that the exponential pseudo-splines in the subclass consisting of interpolatory car-
dinal refinable functions can be seen as the basic limit functions of the interpolatory expo-
nentials reproducing subdivision and are linearly independent. Here, the concept of linear
independence is related to the weaker concept of stability. It is known that, for any fixed
k ≥ 0, the set {φk(· – i) : i ∈ Z} is stable if and only if there exist constants Ak , Bk > 0 such
that

Ak ≤ [
φ̂k , φ̂k] ≤ Bk , (8)

where the bracket product [·, ·] is defined as

[f , g](ξ ) =
∑

n∈Z
f (ξ + 2nπ )g(ξ + 2nπ ), f , g ∈ L2(R),

and φ̂k denotes the Fourier transform of φk . The set {φk(· – i) : i ∈ Z} forms a Riesz basis
if (8) holds. Besides, if the set {φk(· – i) : i ∈ Z} is linearly independent, φk(x) is then stable
[19].

3 The dual refinable functions
In this section, we derive the dual refinable functions of the exponential pseudo-splines in
the case of EPΓ̃ = EPΓ , which are interpolatory cardinal refinable functions.

3.1 Construction of the dual refinable functions
Given the set Γ in (3), let φk belongs to the subclass of exponential pseudo-splines con-
sisting of the interpolatory refinable functions. From Sect. 2, it is generated as the basic
limit function of the subdivision generating and reproducing the same space, i.e. EPΓ . For
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a refinable function φ̃k with the symbol ãk(z), a necessary condition for φk and φ̃k to satisfy
(6) is that their corresponding symbols ak(z) and ãk(z) satisfy

ak(z)ãk(z–1) + ak(–z)ãk(–z–1) = 4, k ≥ 0. (9)

Thus, the construction of φ̃k starts from finding the symbol ãk(z) satisfying (9).
From Sect. 2, ak(z) contains the factor bk(z), which is the symbol of the exponential B-

spline scheme generating EPΓ . Indeed, we want ãk(z) to have the same factor bk(z). Now
let z = e–ıξ , y = sin2( ξ

2 ) (i.e. y = – (1–z)2

4z ). Thus by setting

Pk(y) =
1
4

ak(e–ıξ
)
bk

(
e–ıξ

)
,

the problem of finding the desired ãk(z) satisfying (9) reduces to finding Qk(y) (with
ãk(e–ıξ ) = bk(e–ıξ )Qk(y)) satisfying the Bezout equation,

Pk(y)Qk(y) + Pk(1 – y)Qk(1 – y) = 1, y ∈ [0, 1], k ≥ 0. (10)

In this way, by finding the solution Qk(y) to (10), the symbol ãk(z) satisfying (9) can be
found. For this purpose, we need to show that Pk(y) and Pk(1 – y) have no common roots
on [0, 1]. In fact, from (5), bk(z) is symmetric about z0 and thus satisfies bk(z) = bk(z–1).
Besides, since ak(z) is the k level symbol of the pseudo-spline scheme generating and re-
producing the same space EPΓ , from [13], ak(z) has the same symmetry as bk(z) and sat-
isfies ak(z) = ak(z–1). In this way, Pk(y) and Pk(1 – y) have no common roots on [0, 1] if
ak(z)bk(z–1) = ak(z)bk(z) has no symmetric zeros on C\{0}. Since bk(z) is the symbol of
the exponential B-spline scheme generating EPΓ and ak(z) is the symbol of the interpo-
latory exponential pseudo-spline reproducing EPΓ , both of these two kinds of refinable
functions are linearly independent and the symbols ak(z), bk(z) have no symmetric zeros
on C\{0} [3, 12]. Thus, ak(z)bk(z) also has no symmetric zeros on C\{0}.

With the set Γ in (3), we see that 
EPΓ = 2m and thus Pk(y) is of degree 3m – 1. Then,
by solving (10), we can find the unique solution Qk(y) of degree 3m – 2 and thus the cor-
responding ãk(z) satisfying (9) can be found. As a result, it can be found that the limit
stationary counterpart of Qk(y) is just P2(y) (dependent on N ∈ Z+ and ω ∈ R) in Sect. 6
in [3] with N = m, ω = 0. Thus, the limit stationary counterparts of ak(z) and ãk(z) are the
two symbols found with N = m, ω = 0 in [3].

In fact, in the stationary case, the solutions to (9) can be found in several ways. One of
them is the method of construction by cosets (CBC) [20, 21], which gives the minimal
support of the dual refinable functions for a given order of sum rules [21]. Besides, Dong
and Shen [4] gave a similar way to derive the symbols of the dual refinable functions of
the pseudo-splines. Now based on the work by Dong and Shen [4], we give the following
result on the solution to (9).

Theorem 2 With the solution Qk(y) of degree 3m – 2 to (10), there exists the following
solution ãk(z) to (9):

ãk(z) = ak(z)
(
3 – ak(z)

)
, (11)

which satisfies ãk(e–ıξ ) = bk(e–ıξ )Qk(y) with bk(z) as in (5) and z = e–ıξ .
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Proof We first show that ãk(z) in (11) satisfies (9). In fact, the exponential pseudo-spline
with the symbol ak(z) is an interpolatory refinable function and ak(z) can actually be
rewritten as

ak(z) = ak
0(z) + ak

1(z) := 1 +
∑

j∈Z
ak

2j+1z2j+1.

Thus since ak(z) = ak(z–1), it can be computed that ãk(z) in (11) and ak(z) satisfy

ak(z)ãk(z–1) + ak(–z)ãk(–z–1)

= ak(z)
[
ak(z–1)(3 – ak(z–1))] + ak(–z)

[
ak(–z–1)(3 – ak(–z–1))]

=
(
1 + ak

1(z)
)[

3
(
1 + ak

1(z)
)

–
(
1 + ak

1(z)
)2] +

(
1 – ak

1(z)
)[

3
(
1 – ak

1(z)
)

–
(
1 – ak

1(z)
)2]

= 4.

Therefore, ãk(z) in (11) satisfies (9). Besides, with y = sin2( ξ

2 ) and z = e–ıξ , ãk(e–ıξ ) is
of degree 4m – 2 in terms of y, since ak(e–ıξ ) is of degree 2m – 1 in terms of y. Then
since bk(e–ıξ ) is of degree m in terms of y, ãk (e–ıξ )

bk (e–ıξ ) is of degree 3m – 2 in terms of y and we
denote it by Rk(y). Thus Rk(y) = Qk(y), since the solution of degree 3m – 2 to (10) is unique.
Therefore, ãk(z) in (11) satisfies ãk(e–ıξ ) = bk(e–ıξ )Qk(y). �

Now with the dual symbol ãk(z) found, the only candidates for the refinable and dual
refinable functions can be defined through the Fourier transforms as

φ̂k(ξ ) =
∞∏

n=0

1
2

ak+n(e–ıξ2–n–1)
, ˆ̃

φk(ξ ) =
∞∏

n=0

1
2

ãk+n(e–ıξ2–n–1)
. (12)

Denote the limit stationary counterparts of ak(z) and ãk(z) by a(z) and ã(z) and their as-
sociated refinable functions (defined as in (12)) by φ and φ̃. Then φ and φ̃ are the refinable
functions in the Coifman biorthogonal wavelet systems obtained by the masks of the D–D
interpolatory subdivision, i.e. the refinable functions in [3] with N = m, ω = 0 (see also the
refinable functions in Sect. 3 in [4]). According to [3, 4], the regularity and stability of φ

and φ̃ are known. In fact, φ and φ̃ are just the limit stationary counterparts of φk and φ̃k

and, by Theorem 3 in [22], φk and φ̃k have the same regularity as φ and φ̃, respectively.
Now we show that φ̃k is indeed a dual refinable function of φk . Let the symbols ak(z),

ãk(z) and their stationary counterparts a(z), ã(z) be written as

ak(z) =
n∏

j=0

(
1 + eθj2–k–1 z
1 + eθj2–k–1

)τj

ck(z), ãk(z) =
ñ∏

j=0

(
1 + eθ̃j2–k–1 z
1 + eθ̃j2–k–1

)τ̃j

c̃k(z), (13)

where

(θj, τj), (θ̃j, τ̃j) ∈ Γ , l =
n∑

j=0

τj, l̃ =
ñ∑

j=0

τ̃j,
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and

a(z) =
(

1 + z
2

)l

c(z), ã(z) =
(

1 + z
2

)l̃

c̃(z). (14)

It can be seen that l, l̃ ≤ 2m. Now we suppose that there exist j, j̃ ∈ Z+ such that
‖( 1

2 Sc)j‖∞,‖( 1
2 Sc̃)j̃‖∞ < 1, where Sc and Sc̃ are the schemes whose symbols are c(z) and

c̃(z), respectively, and the norm ‖( 1
2 Sc)j‖∞, ‖( 1

2 Sc̃)j̃‖∞ are defined through the definition

∥∥SL
q

∥∥∞ = max

{∑

j∈Z

∣∣q[L]
i–2k j

∣∣ : 0 ≤ i < 2L
}

, q ∈ l0(Z), L ∈ Z+. (15)

This implies that Sa ∈ Cl–1, Sã ∈ Cl̃–1 [23].
Now define

Ck,j = sup
n≥k

max
ξ

∣
∣∣
∣∣

j∏

l=1

1
2

cn+l–1(e–ıξ2–l)
∣
∣∣
∣∣

1/j

, C̃k,j̃ = sup
n≥k

max
ξ

∣
∣∣
∣∣

j̃∏

l=1

1
2

c̃n+l–1(e–ıξ2–l)
∣
∣∣
∣∣

1/j̃

,

Cj = max
ξ

∣∣∣
∣∣

j∏

l=1

1
2

c
(
e–ıξ2–l)

∣∣∣
∣∣

1/j

, C̃j̃ = max
ξ

∣∣∣
∣∣

j̃∏

l=1

1
2

c̃
(
e–ıξ2–l)

∣∣∣
∣∣

1/j̃

.

Then we have the following result showing that φ̃k is indeed a dual refinable function of
φk .

Theorem 3 For the refinable functions φ and φ̃ with the symbols a(z) and ã(z) in (14), if
‖( 1

2 Sc)j‖∞,‖( 1
2 Sc̃)j̃‖∞ < 1 for some j, j̃ ∈ Z+, then, for l, l̃ satisfying l + l̃ ≥ 3, the refinable

functions φk and φ̃k satisfy

〈
φk , φ̃k(· – n)

〉
= δn,0, k ≥ 0. (16)

Proof In fact, the masks a, ã corresponding to the symbols a(z), ã(z) in (14) are in l0(Z)
and the assumptions imply that Sa ∈ Cl–1 and Sã ∈ Cl̃–1. Therefore, the associated refinable
functions φ ∈ Cl–1 and φ̃ ∈ Cl̃–1 are compactly supported. Thus φ, φ̃ ∈ L2(R). Besides,
similar to the proof of Theorem 5.1 in [3] (the proof of Theorem 5.3 in [24]), it can be
deduced that

Cj ≤ 2
(∥∥

∥∥

(
1
2

Sc

)j∥∥
∥∥∞

)1/j

, C̃j̃ ≤ 2
(∥∥

∥∥

(
1
2

Sc̃

)j̃∥∥
∥∥∞

)1/j̃

.

Thus, CjC̃j̃ < 4 and for l, l̃ satisfying l + l̃ ≥ 3, CjC̃j̃ < 2l+l̃–1.
Since ak , a ∈ l0(Z), according to the convergence rate result (Theorem 2.7) in [17], we

have

∥∥ak – a
∥∥∞ = O

(
2–k),

∥∥ak – a
∥∥

1 = O
(
2–k),

then ak(z) converges to a(z) uniformly on |z| = 1 as k tends to ∞. This also holds for ãk(z)
and ã(z). Then it can be deduced that there exists K1 > 0 such that, for k > K1, Ck,jC̃k,j̃ <
2l+l̃–1.
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Now define

uk,p(ξ ) :=

[ p∏

l=1

1
2

ak+l–1(e–ıξ2–l)
]

χ[–π ,π ]
(
ξ2–p),

ũk,p(ξ ) :=

[ p∏

l=1

1
2

ãk+l–1(e–ıξ2–l)
]

χ[–π ,π ]
(
ξ2–p).

Then similar to the proof of Lemma 3.3 in [12], for sufficiently large k (say k > K2 for some
K2 > 0),

∣∣uk,p(ξ )ũk,p(ξ )
∣∣ ≤ c0

(
1 + |ξ |)–l–l̃+log2(Ck,jC̃k ,̃j),

where c0 is independent of p.
Since ak , ãk ∈ l0(Z) and the associated refinable functions φk , φ̃k have the same regularity

as φ and φ̃, the refinable functions φk , φ̃k are at least C0 and compactly supported and thus

φk , φ̃k ∈ L2(R). Then, for k > K := max{K1, K2}, uk,pũk,p → φ̂k ¯̃̂
φk in L1(R) as p → ∞ by the

Lebesgue-dominated convergence theorem. Together with Placherel’s theorem and the
fact that

∫

R

uk,p(ξ )ũk,p(ξ )eınξ dx =
∫

R

uk,1(ξ )ũk,1(ξ )eınξ dx = 2πδn,0,

it can be seen that (16) holds for k > K .
For the case k ≤ K , the desired result can be derived by an inductive argument based on

the non-stationary refinement equation (see Proposition 3.5 in [12]). �

Remark 1 When 
EPΓ = 2, the corresponding exponential pseudo-spline cannot be in-
cluded in Theorem 3. Yet, this exponential pseudo-spline is actually the exponential B-
spline of order 2 and the corresponding construction and analysis of the dual refinable
function can be found in [11, 12].

3.2 Stability
We first give a result on the convergence rate of φk and φ̃k (see also [11, 12] for another
proof ).

Lemma 4 For the refinable functions φk and φ̃k , we have ‖φk – φ‖L2(R) = O(2–k) and ‖φ̃k –
φ̃‖L2(R) = O(2–k).

Proof According to the proof of Lemma 15 in [25] and the result that ‖ak – a‖∞ = O(2–k),
we have

∥
∥φk – φ

∥
∥∞ ≤ c1

∞∑

j=0

‖Sak+j – Sa‖∞ ≤ c1

∞∑

j=0

2–k–j = c22–k ,

where c1 is a positive constant independent of k, c2 = 2c1 and the norm ‖Sak+j – Sa‖∞ is
defined through (15) with L = 1 and q = ak+j – a. As for φ̃k , from (9), ãk ∈ l0(Z). Then, in a
similar way, we can obtain the same result for φ̃k . �
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With the obtained dual refinable functions, we need to verify their stability. In fact, this
can be done following the lines of [12] (see Sect. 4). Here, for the purpose of illustration,
we show that φ̃k is stable for each fixed k ≥ 0.

Lemma 5 There exist constants Ã, B̃ > 0 such that

Ã ≤ [ ˆ̃
φk , ˆ̃

φk] ≤ B̃, k ≥ 0.

Proof Note that, for each k ≥ 0, φ̃k ∈ L2(R) and is compactly supported. Thus, there exists
B̃k such that

[ ˆ̃
φk , ˆ̃

φk] ≤ B̃k .

Since 〈φk , φ̃k(· – n)〉 = δn,0, we have [φ̂k , ˆ̃
φk] = 1. Then, by the Cauchy–Schwartz inequality,

we can obtain

1 ≤ [
φ̂k , φ̂k][ ˆ̃

φk , ˆ̃
φk].

Set Ãk = (B̃k)–1, then Ãk ≤ [ ˆ̃
φk , ˆ̃

φk] ≤ B̃k .
Now rewrite [ ˆ̃

φk , ˆ̃
φk] in the form

[ ˆ̃
φk , ˆ̃

φk] =
∑

n∈Z
c̃k

neınξ , c̃k
n =

〈
φ̃k , φ̃k(· – n)

〉
.

From Lemma 4, it can be shown that, for each n, c̃k
n converges to c̃n = 〈φ̃, φ̃(· – n)〉 as k

tends to ∞. Then we have

[ ˆ̃
φk , ˆ̃

φk](ξ ) → [ ˆ̃
φ, ˆ̃

φ](ξ ), k → ∞.

In this way, we see that Ãk and B̃k converge to Ãφ̃ and B̃φ̃ , i.e. the lower and upper Riesz
bounds of φ̃. Thus, there exist ε > 0 and K̃ such that, for k > K̃ , Ãk > Ãφ̃ – ε > 0 and B̃k <
B̃φ̃ + ε. Let

Ã = min
{

Ã1, Ã2, . . . , ÃK̃ , Ãφ̃ – ε
}

, B̃ = max
{

B̃1, B̃2, . . . , B̃K̃ , B̃φ̃ + ε
}

,

then we have Ã ≤ [ ˆ̃
φk , ˆ̃

φk] ≤ B̃. �

4 The generalized Coifman biorthogonal wavelets
With the refinable function φk and its dual refinable function φ̃k obtained in Sect. 3, in this
section, we obtain and analyze the corresponding non-stationary biorthogonal wavelets.
Then we present an example.

4.1 The non-stationary biorthogonal wavelets
Based on the refinable functions φk and φ̃k , according to (7), the corresponding biorthog-
onal wavelets can be defined by

ψ̂k(ξ ) = g(ξ /2)φ̂k+1(ξ /2), ˆ̃
ψk(ξ ) = g̃(ξ /2) ˆ̃

φk+1(ξ /2), (17)



Zhang et al. Journal of Inequalities and Applications        (2019) 2019:286 Page 11 of 15

where

g(ξ ) =
1
2

e–ıξ ãk
(
e–ı(ξ+π )

)
, g̃(ξ ) =

1
2

e–ıξ ak
(
e–ı(ξ+π )

)
.

From (17), it can be seen that the limit stationary counterparts of ψk and ψ̃k are the wavelet
functions obtained in [3] with N = m, ω = 0.

Remark 2 Since the refinable functions φk and φ̃k have the same regularity as their limit
stationary counterparts, the wavelet functions ψk(x) and ψ̃k(x) given in (17) also have the
same regularity with their stationary counterparts.

Similar to Lemma 5, we can show that ψk and ψ̃k are stable for each k ≥ 0. Furthermore,
following the lines of [12] (see Theorems 4.4 and 4.5), for k0 ∈ N, we can also show the
global stability of the sets {ψk

i : k ≥ 0, i ∈ Z} and {ψ̃k
i : k ≥ 0, i ∈ Z} and that the sets {φk0

i :
i ∈ Z}∪ {ψk

i : k ≥ k0, i ∈ Z} and {φ̃k0
i : i ∈ Z}∪ {ψ̃k

i : k ≥ k0, i ∈ Z} form Riesz bases of L2(R).

4.2 Exponential vanishing moments
From Sects. 3 and 4, the limit stationary counterparts of φk , φ̃k and ψk , ψ̃k form the
biorthogonal Coifman wavelet system constructed using the masks of the D–D interpola-
tory subdivision. Recall that φ, φ̃ and ψ , ψ̃ form a biorthogonal Coifman wavelet system
of order L if the refinable function φ and the wavelets ψ , ψ̃ have the vanishing moments
L [3], i.e.,

∫

R

xrφ(x) dx = δr,0,
∫

R

xrψ(x) dx =
∫

R

xrψ̃(x) dx = 0, r = 0, . . . , L – 1.

Now we consider ψk , ψ̃k . Given the set Γ in (3), from Sect. 2, {Sak }k≥0 reproduces EPΓ .
Besides, from (11), ãk(z) satisfies the conditions which ak(z) satisfies for the reproduction
of EPΓ by the scheme {Sak }k≥0. Thus {S

ãk }k≥0 also reproduces EPΓ . As a result, the non-
stationary MRAs (V k)k≥0 and (Ṽ k)k≥0 based on φk and φ̃k can reproduce EPΓ and thus,
by (7), the wavelet functions ψk and ψ̃k have exponential vanishing moments in the sense
that (see [11, 14])

∫

R

xreθxψk(x) dx =
∫

R

xreθxψ̃k(x) dx = 0, xreθx ∈ EPΓ , k ≥ 0.

For the refinable function φk with the symbol ak(z), k ≥ 0, recall that it is obtained as
the basic limit function of the exponential pseudo-spline subdivision {Sak }k≥0 reproducing
EPΓ . Then we have the following results.

Theorem 6 If EPΓ contains the subset E0 := {1, . . . , x2τ–1} with τ ∈ Z+, then φk satisfies

∫

R

xrφk(x) dx = δr,0, r = 0, . . . , 2τ – 1.

Proof Denote by Djf the jth derivative of f ∈ Ci with i, j ∈ Z, 0 ≤ j ≤ i for simplicity. Since
the subdivision {Sak }k≥0 reproduces EPΓ , {Sak }k≥0 also reproduces E0. Then, by Theo-



Zhang et al. Journal of Inequalities and Applications        (2019) 2019:286 Page 12 of 15

rem 1, it can be computed that

∫

R

xrφ0(x) dx = (ıD)rφ̂0(0) = (ıD)r
(

1
2

a0(e–ıξ
)
φ̂1(ξ )

)∣
∣∣
∣
ξ=0

= (ıD)rφ̂1(0)

=
∫

R

xrφ1(x) dx.

Similarly,
∫

xrφ0(x) dx =
∫

xrφk(x) dx, k ≥ 0. Note that, for the stationary counterpart φ(x)
with the symbol a(z), it satisfies

∫

R

xrφ(x) dx = δr,0, r = 0, . . . , 2τ – 1.

Thus, we only have to show that limk→∞
∫
R

xrφk(x) dx =
∫
R

xrφ(x) dx, for r = 0, . . . , 2τ – 1.
Recall that φk and φ are compactly supported. We denote by Ω their compact support.

Then, by the triangular inequality and the Hölder inequality, we have

∣∣∣
∣

∫

R

xr(φk(x) – φ(x)
)

dx
∣∣∣
∣ ≤

∣∣∣
∣

∫

Ω

xr(φk(x) – φ(x)
)

dx
∣∣∣
∣ +

∣∣∣
∣

∫

R\Ω
xr(φk(x) – φ(x)

)
dx

∣∣∣
∣

=
∣∣∣
∣

∫

Ω

xr(φk(x) – φ(x)
)

dx
∣∣∣
∣

≤ c3
∥∥φk – φ

∥∥
L2(R),

where r = 0, . . . , 2τ – 1 and c3 is a constant independent of n. From Lemma 4, limk→∞ ‖φk –
φ‖L2(R) = 0. Therefore, we can conclude that

∫

R

xrφ0(x) dx = lim
k→∞

∫

R

xrφk(x) dx =
∫

R

xrφ(x) dx = δr,0, r = 0, . . . , 2τ – 1. �

Theorem 7 If EPΓ contains E1 := {e±θx, . . . , x2τ–1e±θx}, θ ∈R∪ ıR, then φ0 satisfies

∫

R

xre±θxφ0(x) dx = δr,0, r = 0, . . . , 2τ – 1.

Proof We show
∫
R

xreθxφ0(x) dx = δr,0 and the other case can be done similarly. In fact,
similar to the proof of Theorem 6, with Theorem 1, it can be computed that

∫

R

xreθxφ0(x) dx = (ıD)rφ̂0(ıθ ) = (ıD)rφ̂1(ıθ/2) = · · · = (ıD)rφ̂k(ıθ/2k)

=
∫

R

xre
θ

2k φk(x) dx.

In this way, we only have to show limk→∞
∫
R

xre
θ

2k x
φk(x) dx = δr,0, with r = 0, . . . , 2τ – 1.

In fact, by the triangular inequality, we have

∣∣
∣∣

∫

R

xre
θ

2k x
φk(x) dx

∣∣
∣∣ ≤

∣∣
∣∣

∫

R

xrφk(x)
(
1 – e

θ

2k x)dx
∣∣
∣∣ +

∣∣
∣∣

∫

R

xrφk(x) dx
∣∣
∣∣.
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It can be seen that limk→∞ | ∫
R

xrφk(x)(1 – e
θ

2k x) dx| = 0. Then from Theorem 6,
limk→∞

∫
R

xrφk(x) dx = δr,0, for r = 0, . . . , 2τr – 1. Therefore, we see that

∫

R

xreθxφ0(x) dx = lim
k→∞

∫

R

xre
θ

2k x
φk(x) dx = δr,0, r = 0, . . . , 2τ – 1. �

Since {Sãk }k≥0 reproduces EPΓ , φ̃k can also be shown to have the same exponential
vanishing moments as φk does. In this way, both the refinable functions and the wavelet
functions have the exponential vanishing moments and their limit stationary counterparts
form the Coifman biorthogonal wavelet system of order 2m.

4.3 An example
We take the exponential pseudo-spline with the symbol ak(z) as an example, where

ak(z) = –
1

8vk+1(vk+1 + 1)
(
z–3 + z3) +

(2vk+1 + 1)2

8vk+1(vk+1 + 1)
(
z + z–1) + 1. (18)

It is known that the limit stationary counterpart is just the pseudo-spline of type II with
order (2, 1). The corresponding exponential pseudo-spline subdivision is the interpolatory
scheme reproducing E′ = {1, x, e±tx} (see also [26]).

By Theorem 2, the corresponding dual symbols can be derived and the refinable and
wavelet functions can then be obtained. The figures of the refinable and wavelet functions
with different values of v0 are shown in Fig. 1.

Figure 1 The refinable function with the symbol in (18), the dual refinable function and the corresponding
wavelet functions at scale 0 with v0 = 0 (dashed line) and v0 = 1 (solid line). From left to right and top to
bottom: φ0, φ̃0, ψ0 and ψ̃0
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5 Conclusion
This paper presented a family of non-stationary biorthogonal wavelets. This family of
biorthogonal wavelets is based on a subclass of the exponential pseudo-splines, which ac-
tually consists of interpolatory cardinal functions. For this family of biorthogonal wavelets,
we showed the stability of the refinable and wavelet functions. Besides, we showed that
both of the refinable and wavelet functions have the exponential vanishing moments and
can be seen as a non-stationary generalization of the Coifman biorthogonal wavelet sys-
tems constructed using the masks of the D–D interpolatory subdivision. Another advan-
tage of these non-stationary biorthogonal wavelets is that they offer a degree of freedom,
which makes it possible to tune these new biorthogonal wavelets to certain classes of sig-
nals.

Taking the above points into consideration, we can envisage the use of these new
biorthogonal wavelets in applications like the approximation and sparse representation
of the band limited signals, since such signals usually have exponential trends. Based on
this, future work may focus on such applications of these new biorthogonal wavelets.
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