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1 Introduction
Consider the generalized saddle-point problem

A z :=

[
A BT

–B 0

][
x
y

]
=

[
f
g

]
:= b, (1)

where A ∈ Rn×n, B ∈ Rm×n, C ∈ Rm×m, f ∈ Rn, f ∈ Rm and m ≤ n.
This class of linear systems arises in many scientific and engineering applications such

as a mixed finite element approximation of elliptic partial differential equations, optimiza-
tion, optimal control, structural analysis and electrical networks; see [1–11].

Recently, Benzi et al. [12, 13] studied the linear systems of the form (1) whose coefficient
matrix

A =

[
A BT

–B 0

]
=

⎡
⎢⎣

A1 0 BT
1

0 A2 BT
2

–B1 –B2 0

⎤
⎥⎦ (2)

satisfy all of the assumptions:
• A =

[ A1 0
0 A2

]
, B = [B1, B2], Ai ∈ Rni×ni for i = 1, 2 and n1 + n2 = n, and Bi ∈ Rm×ni for

i = 1, 2;
• Ai is positive definite (i.e., it has positive definite symmetric part Hi = (Ai + AT

i )/2) for
i = 1, 2;

• rank(B) = m.
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They [12] split the coefficient matrix A as

A = A1 + A2, (3)

where

A1 =

⎡
⎢⎣

A1 0 BT
1

0 0 0
–B1 0 0

⎤
⎥⎦ , and A2 =

⎡
⎢⎣

0 0 0
0 A2 BT

2

0 –B2 0

⎤
⎥⎦ , (4)

which is called dimensional splitting of A , and proposed the following alternate direction
iterative method:

⎧⎨
⎩(αI + A1)x(k+ 1

2 ) = (αI – A2)x(k) + b,

(αI + A2)x(k+1) = (αI – A1)x(k+ 1
2 ) + b,

(5)

which was proved to converge unconditionally for any α > 0. Meanwhile, based on di-
mensional splitting of A , they [12, 13] proposed the dimensional splitting preconditioner
for linear system (1), and applied a Krylov subspace method like restarted GMRES to the
preconditioned linear system, and hence established some good results.

In this paper, we propose two types of alternate direction iterative methods: one is that
on base of the dimensional splitting (3) the quantitative matrix αI is replaced by two non-
negative diagonal matrices D1 and D2 to form a new alternate direction iterative scheme;
another is to propose a new splitting of A , i.e.,

A = B1 + B2, (6)

where

B1 =

⎡
⎢⎣

A1 0 0
0 0 BT

2

0 –B2 0

⎤
⎥⎦ and B2 =

⎡
⎢⎣

0 0 BT
1

0 A2 0
–B1 0 0

⎤
⎥⎦ , (7)

and apply the two nonnegative diagonal matrices D1 and D2 to the new splitting such
that another new alternate direction iterative scheme is obtained. Then some convergence
results are established for the two alternate direction iterative schemes and a numerical
example is given to show that the proposed ADI methods are much more effective and
efficient than the existing one.

The paper is organized as follows. Two alternate direction iterative schemes are pro-
posed in Sect. 2. The main convergence results of these two schemes are given in Sect. 3.
In Sect. 4, a numerical examples is presented to demonstrate the proposed methods are
very effective and efficient in this paper. A conclusion is given in Sect. 5.
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2 The ADI methods
In this section, two alternate direction iterative schemes are proposed based on the pre-
vious two splittings (3) and (6). Let

D1 =

⎡
⎢⎣

0 0 0
0 αIn2 0
0 0 α

2 Im

⎤
⎥⎦ and D2 =

⎡
⎢⎣

αIn1 0 0
0 0 0
0 0 α

2 Im

⎤
⎥⎦ , (8)

where α > 0 and Im is the m × m identity matrix. Then for the two splittings (3) and (6)
one has

A = (D1 + A1) – (D1 – A2)

= (D2 + A2) – (D2 – A1)

= (D1 + B1) – (D1 – B2)

= (D2 + B2) – (D2 – B1), (9)

which form the following two alternate direction iterative schemes.
Given an initial guess x(0), for k = 0, 1, 2, . . . , until {x(k)} converges, compute

⎧⎨
⎩(D1 + A1)x(k+ 1

2 ) = (D1 – A2)x(k) + b,

(D2 + A2)x(k+1) = (D2 – A1)x(k+ 1
2 ) + b,

and (10)

⎧⎨
⎩(D1 + B1)x(k+ 1

2 ) = (D1 – B2)x(k) + b,

(D2 + B2)x(k+1) = (D2 – B1)x(k+ 1
2 ) + b,

(11)

where D1 and D2 are defined in (8).
Eliminating x(k+ 1

2 ) in iterations (10) and (11), we obtain the stationary schemes

x(k+1) = L x(k) + f , k = 1, 2, . . . , and (12)

x(k+1) = T x(k) + g, k = 1, 2, . . . , (13)

where

L = (D2 + A2)–1(D2 – A1)(D1 + A1)–1(D1 – A2) (14)

and

T = (D2 + B2)–1(D2 – B1)(D1 + B1)–1(D1 – B2) (15)

are the iteration matrices of the ADI iterations (12) and (13), respectively. It is easy to see
that (14) and (15), respectively, are similar to the matrices

L̂ = (D2 – A1)(D1 + A1)–1(D1 – A2)(D2 + A2)–1 (16)
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and

T̂ = (D2 – B1)(D1 + B1)–1(D1 – B2)(D2 + B2)–1. (17)

As is shown in [8], the iteration matrix L is induced by the unique splitting A = P –Q

with P nonsingular, i.e., L = P–1Q = I – P–1A . Furthermore, f = P–1b. The matrices
P and Q are given by

P =
1
α

(D1 + A1)(D2 + A2), Q =
1
α

(D2 – A1)(D1 – A2). (18)

Also, the iteration matrix T is induced by the unique splitting A = M – N with

M =
1
α

(D1 + B1)(D2 + B2) nonsingular, N =
1
α

(D2 – B1)(D1 – B2), (19)

i.e., T = M –1N = I – M –1A . Furthermore, g = M –1b. We often refer to P or M as the
preconditioner.

3 The convergence of the ADI methods
In this section, some convergence results on the ADI methods will be established. First,
the following lemmas will used in this section.

Lemma 1 Let A = M – N ∈ Cn×n with A and M nonsingular and let T = NM–1. Then
A – TAT∗ = (I – T)(AA–∗M∗ + N)(I – T∗).

The proof is similar to the proof of Lemma 5.30 in [1].

Lemma 2 Let A ∈ Rn×n be symmetric and positive definite. If A = M – N with M non-
singular is a splitting such that M + N has a nonnegative definite symmetric part, then
‖T‖A = ‖A–1/2TA1/2‖2 ≤ 1, where T = NM–1.

Proof It follows from Lemma 1 that

A – TATT = (I – T)
(
MT A–T A + N

)(
I – TT)

= (I – T)
(
MT + N

)(
I – TT)

. (20)

Since

2
(
MT + N

)
= 2

(
MT + M – A

)
=

(
M + NT)

+
(
MT + N

)
= (M + N) + (M + N)T

� 0, (21)

it follows from (20) that A – TATT � 0 and thus

A � TATT . (22)
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From (22), we have I � (A–1/2TA1/2)(A–1/2TA1/2)T � 0. Therefore,

‖T‖A =
∥∥A–1/2TA1/2∥∥

2 =
√

ρ
[(

A–1/2TA1/2
)(

A–1/2TA1/2
)T] ≤ 1.

This completes the proof. �

Lemma 3 Let Ai, Bi and Di be defined in (4) and (8) for i = 1, 2. If Ai has positive definite
symmetric part Hi and 0 < α ≤ 2λmin(Hi) with λmin(Hi) the smallest eigenvalue of Hi, then

∥∥(Dj – Ai)(Di + Ai)–1∥∥
2 ≤ 1 and

∥∥(Dj – Bi)(Di + Bi)–1∥∥
2 ≤ 1, (23)

where j = 2 if i = 1 and j = 1 if i = 2.

Proof We only prove the former inequality in (23) and the same method can yield the
latter one. Let Mi = Di + Ai and Ni = –Dj + Ai. Then we have

Ci := Mi – Ni = Di + Dj = α diag(In1 , In1 , Im) = αI � 0,

where I is the (n1 + n2 + m) × (n1 + n2 + m) identity matrix, and

Mi + Ni = 2Ai + Di – Dj.

When i = 1 and j = 2

M1 + N1 = 2A1 + D1 – D2 =

⎡
⎢⎣

2A1 – αIn1 0 2BT
1

0 αIn2 0
–2B1 0 0

⎤
⎥⎦ .

Noting 0 < α ≤ 2λmin(Hi), 2Hi – αIni = (AT
i + Ai) – αIni � 0. Thus

[
(M1 + N1)T + (M1 + N1)

]
/2 =

⎡
⎢⎣

(AT
i + Ai) – αIni 0 0

0 αIn2 0
0 0 0

⎤
⎥⎦ � 0,

which shows that M1 + N1 has a nonnegative definite symmetric part. Similarly, M2 + N2

also has a nonnegative definite symmetric part. Thus, Mi + Ni has a nonnegative definite
symmetric part for i = 1, 2. Let Ti = NiM–1

i . Then it follows from Lemma 2 that

‖Ti‖Ci =
∥∥C–1/2

i TC1/2
i

∥∥
2 = ‖T‖2 ≤ 1.

Consequently, ‖Ti‖2 = ‖NiM–1
i ‖2 = ‖(Dj – Ai)(Di + Ai)–1‖2 ≤ 1 for i = 1, 2. This completes

the proof. �

Theorem 1 Consider problem (1) and assume that A satisfies the assumptions above.
Then A is nonsingular. Further, if 0 < α ≤ 2δ with δ = min{λmin(H1),λmin(H2)}, then
‖L̂ ‖2 ≤ 1 and ‖T̂ ‖2 ≤ 1.
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Proof The proof of the nonsingularity of A can be found in [10]. Since 0 < α ≤ 2δ =
2 min{λmin(H1),λmin(H2)}, Lemma 3 shows that (23) hold for i = 1, j = 2 and i = 2, j = 1.
As a result,

‖L̂ ‖2 =
∥∥(D2 – A1)(D1 + A1)–1(D1 – A2)(D2 + A2)–1∥∥

2

≤ ∥∥(D2 – A1)(D1 + A1)–1∥∥
2

∥∥(D1 – A2)(D2 + A2)–1∥∥
2

≤ 1,

‖T̂ ‖2 =
∥∥(D2 – B1)(D1 + B1)–1(D1 – B2)(D2 + B2)–1∥∥

2

≤ ∥∥(D2 – B1)(D1 + B1)–1∥∥
2

∥∥(D1 – B2)(D2 + B2)–1∥∥
2

≤ 1.

(24)

This completes the proof. �

Theorem 2 Consider problem (1) and assume that A satisfies the assumptions above. If
0 < α ≤ 2δ with δ = min{λmin(H1),λmin(H2)}, then the iterations (10) and (11) are conver-
gent; that is, ρ(L ) < 1 and ρ(T ) < 1.

Proof Firstly, we prove ρ(L ) < 1. Since L (α) is similar to L̂ , ρ(L ) = ρ(L̂ ). Let λ is an
eigenvalue of L̂ (α) satisfying |λ| = ρ(L̂ ) and x is the corresponding eigenvector with
‖x‖2 = 1 (note that it must have x �= 0). Then L̂ x = λx and consequently,

λ = x∗L̂ x = x∗(D2 – A1)(D1 + A1)–1(D1 – A2)(D2 + A2)–1x

= u∗v, (25)

where u = (D1 + A ∗
1 )–1(D2 – A ∗

1 )x and v = (D1 – A2)(D2 + A2)–1x. Using the Cauchy–
Schwarz inequality,

|λ|2 ≤ u∗u · v∗v. (26)

The equality in (26) holds if and only if u = kv, where k ∈C. Also, Lemma 3 yields

u∗u = x∗(D2 – A1)(D1 + A1)–1(D1 + A ∗
1
)–1(

D2 – A ∗
1
)
x

≤ max
‖x‖2=1

x∗(D2 – A1)(D1 + A1)–1(D1 + A ∗
1
)–1(

D2 – A ∗
1
)
x

≤ ∥∥(D2 – A1)(D1 + A1)–1∥∥2
2

≤ 1,

v∗v = x∗(D2 + A ∗
2
)–1(

D1 – A ∗
2
)
(D1 – A2)(D2 + A2)–1x

≤ max
‖x‖2=1

x∗(D2 + A ∗
2
)–1(

D1 – A ∗
2
)
(D1 – A2)(D2 + A2)–1x

≤ ∥∥(D1 – A2)(D2 + A2)–1∥∥2
2

≤ 1.

(27)
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As a result, if u �= kv, then it follows from (26) and (27) that

ρ2[L (α)
]

= ρ2[L̂ (α)
]

= |λ|2 < u∗u · v∗v ≤ 1; (28)

if u = kv and u∗u · v∗v < 1, then

ρ2[L (α)
]

= ρ2[L̂ (α)
]

= |λ|2 = u∗u · v∗v < 1. (29)

In what follows we will prove by contradiction that u = kv and u∗u · v∗v = 1 do not hold
simultaneously.

Assume that u = kv and u∗u · v∗v = 1. Since u∗u ≤ 1 and v∗v ≤ 1, |k| = u∗u = v∗v = 1.
Then it follows from (27) that

u∗u = x∗(D2 – A1)(D1 + A1)–1(D1 + A ∗
1
)–1(

D2 – A ∗
1
)
x

= ρ
[
(D2 – A1)(D1 + A1)–1(D1 + A ∗

1
)–1(

D2 – A ∗
1
)]

= 1,

v∗v = x∗(D2 + A ∗
2
)–1(

D1 – A ∗
2
)
(D1 – A2)(D2 + A2)–1x

= ρ
[(

D2 + A ∗
2
)–1(

D1 – A ∗
2
)
(D1 – A2)(D2 + A2)–1]

= 1.

(30)

Noting ‖x‖2 = 1, (30) implies that x is the eigenvector of (D2 – A1)(D1 + A1)–1(D1 +
A ∗

1 )–1(D2 – A ∗
1 ) and (D2 + A ∗

2 )–1(D1 – A ∗
2 )(D1 – A2)(D2 + A2)–1 corresponding to their

having the same eigenvalue, 1, i.e.,

(D2 – A1)(D1 + A1)–1(D1 + A ∗
1
)–1(

D2 – A ∗
1
)
x = x,(

D2 + A ∗
2
)–1(

D1 – A ∗
2
)
(D1 – A2)(D2 + A2)–1x = x.

(31)

Since

(D2 – A1)(D1 + A1)–1(D1 + A ∗
1
)–1(

D2 – A ∗
1
)

=

⎡
⎢⎣

E 0 FT

0 0 0
F 0 G

⎤
⎥⎦ , (32)

where E, F and G denote nonzero matrices, the former equation in (31) can be written as

⎡
⎢⎣

F 0 FT

0 0 0
F 0 G

⎤
⎥⎦

⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦ ,

which indicates x2 = 0. Therefore, x = [x∗
1, 0, x∗

3]∗. Let y = (D2 +A2)–1x. Then x = (D2 +A2)y.
The latter equation in (31) becomes

(
D1 – A ∗

2
)
(D1 – A2)y =

(
D2 + A ∗

2
)
(D2 + A2)y, (33)
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and consequently

[
D2

2 – D2
1 + α

(
A ∗

2 + A2
)]

y = 0, (34)

that is,

⎡
⎢⎣

α2In1 0 0
0 α(A∗

2 + A2 – αIn2 ) 0
0 0 0

⎤
⎥⎦

⎡
⎢⎣

y1

y2

y3

⎤
⎥⎦ = 0, (35)

which indicates y1 = 0. Therefore, y = [0, y∗
2, y∗

3]∗. Also, x = (D2 + A2)y. Then

⎡
⎢⎣

x1

0
x3

⎤
⎥⎦ =

⎡
⎢⎣

αIn1 0 0
0 A2 BT

2

0 –B2
α
2 Im

⎤
⎥⎦

⎡
⎢⎣

0
y2

y3

⎤
⎥⎦ =

⎡
⎢⎣

0
A2y2 + BT

2 y3

–B2y2 + α
2 y3

⎤
⎥⎦ , (36)

which shows that

x1 = y1 = 0, A2y2 + BT
2 y3 = 0, and x3 = –B2y2 +

α

2
y3. (37)

Since u = kv,

(
D1 + A ∗

1
)–1(

D2 – A ∗
1
)
x = k(D1 – A2)(D2 + A2)–1x, (38)

which can be written as

(
D2 – A ∗

1
)
(D2 + A2)y = k

(
D1 + A ∗

1
)
(D1 – A2)y (39)

for x = (D2 + A2)y. Further, (39) becomes

[(
D2

2 – kD2
1
)

+ (D2 + kD1)A2 – A ∗
1 (D2 + kD1) – (1 – k)A ∗

1 A2
]
y = 0, (40)

i.e.,

⎡
⎢⎣

α2In1 – αA∗
1 (k – 1)B1BT

2
(1+k)α

2 BT
1

0 kα(A2 – αIn2 ) kαBT
2

–αB1 – (1+k)α
2 B1

(1–k)α2

4 Im

⎤
⎥⎦

⎡
⎢⎣

0
y2

y3

⎤
⎥⎦ =

⎡
⎢⎣

0
0
0

⎤
⎥⎦ , (41)

i.e.,

⎧⎪⎪⎨
⎪⎪⎩

(k – 1)B1BT
2 y2 + (1+k)α

2 BT
1 y3 = 0,

kα(A2 – αIn2 )y2 + kαBT
2 y3 = 0,

– (1+k)α
2 B1y2 + (1–k)α2

4 y3 = 0.

(42)

Here, we assert k �= 1. Otherwise, assume k = 1. Then (25) shows λ = u∗v = v∗v = 1 for
u = kv and v∗v = 1. Note that λ is an eigenvalue of L̂ which is similar to L (α). Thus L̂

and L = [(D1 + A1)(D2 + A2)]–1[(D2 – A1)(D1 – A2)] have the same eigenvalue, 1. Let w
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be the eigenvector of L corresponding to the eigenvalue 1 (note that necessarily w �= 0).
One has

L w =
[
(D1 + A1)(D2 + A2)

]–1[(D2 – A1)(D1 – A2)
]
w = w (43)

and consequently

[
(D2 – A1)(D1 – A2) – (D1 + A1)(D2 + A2)

]
w = –αA w = 0. (44)

Since A is nonsingular, (44) yields w = 0, which contradicts that w is an eigenvector of
L (α). Thus, k �= 1 and 1 – k �= 0. From the third equation in (42), one has

y3 = κB1y2 (45)

with κ := 2(1+k)
α(1–k) . Then it follows from the second equation in (37) that

J y2 =
(
A2 + κBT

1 B1
)
y2 = 0, (46)

where J = A2 +κBT
1 B1. Note |k| = 1 and k �= 1. Let k = cos θ + i sin θ , where i =

√
–1, θ ∈ R,

θ �= 2tπ and t is an integer. Then

κ :=
2(1 + k)
α(1 – k)

=
2[(1 + cos θ ) + i sin θ ]
α[(1 – cos θ ) – i sin θ ]

=
2i
α

tan
θ

2
(47)

is either pure imaginary or zero. As a result, J ∗ + J = AT
2 + A2 � 0 for A2 is positive

definite. Thus, J is positive definite and hence nonsingular. Equation (46) indicates y2 = 0
and thus (45) shows that y3 = 0. Then it follows from the third equation in (37) that x3 = 0.
Therefore, x = [0, 0, 0]∗, which contradicts that x is an eigenvector of L̂ (α) with ‖x‖2 = 1.
By the proof above, it is easy to see that u = kv and u∗u ·v∗v = 1 do not hold simultaneously.
Therefore, ρ[L (α)] = |λ| < 1 and consequently, the iteration (10) converges.

By the same method, we can obtain ρ(T ) < 1. Therefore, iterations (10) and (11) are
both convergent. This completes the proof. �

4 A numerical example
A numerical example is given in this section to show that the proposed alternate direction
iterative methods are very effective.

Example 1 Consider problem (1) and assume that A is shown in (2), where A1 = A2 =
tri(1, 1, –1) ∈ Rn×n, B1 = B2 = In ∈ Rn×n, an n×n identity matrix and b = (1, 1, . . . , 1)T ∈ R2n.

We conduct numerical experiments to compare the performance of the three alternate
direction iterative schemes (5), (10) and (11) for the problem (1). The former scheme (5)
written as Algorithm 1 (A1) was proposed denoted by Benzi et al. in [12, 13], while the
latter schemes (10) and (11) written by Algorithm 2 (A2) and Algorithm 3 (A3) are pro-
posed in this paper. These three algorithms were coded in Matlab, and all computations
were performed on a HP dx7408 PC (Intel core E4500 CPU, 2.2 GHz, 1 GB RAM) with
Matlab 7.9 (R2009b).
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Table 1 Performance of A1, A2, and A3 with different n

Algorithm n RE k Time (s)

A1 500 9.97e–07 263 1.05
1000 9.56e–07 260 10.38
1500 9.47e–07 261 34.12

A2 500 8.99e–07 17 0.69
1000 9.03e–07 17 5.13
1500 9.17e–07 17 23.77

A3 500 9.29e–07 126 0.63
1000 9.69e–07 126 4.37
1500 9.90e–07 125 12.18

Figure 1 When n = 1000 the change of RE of A1, A2 and A3 with the iteration number increasing

The stopping criterion is defined as

RERE =
‖xk+1 – xk‖2

max{1,‖xk‖2} =< 10–6.

Numerical results are presented in Table 1. In particular, we report in Fig. 1 the change
of RE of A1, A2 and A3 when n = 1000 with the iteration number increasing.

From Table 1, we can make the following observations. (i) A2 (i.e., Algorithm 2) gener-
ally has much smaller iteration number than A1 and A3 (Algorithm 1 and Algorithm 3)
when n = 500, n = 1000 and n = 1500; (ii) A3 has much less computing time than A2 and
A1. Thus, both A2 and A3 are generally superior to A1 in terms of iteration number and
computing time. Therefore, the proposed methods are more effective and efficient than
the existing method.

Figure 1 shows that RE generated by A3 quickly converges to 0 with the iteration number
increasing when n = 1000. Therefore, A2 is superior to A1 and A3 in terms of iteration
number.
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5 Conclusions
In this paper we propose two alternate direction iterative methods for generalized saddle-
point systems based on two splitting forms of generalized saddle-point matrix, and then
establish some convergence theorems for these two iterative methods. Finally, we present a
numerical example to demonstrate that the proposed alternate direction iterative methods
are superior to the existing one.
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