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Abstract
The conjecture proposed by Raina and Sokòł [Hacet. J. Math. Stat. 44(6):1427–1433
(2015)] for a sharp upper bound on the fourth coefficient has been settled in this
manuscript. An example is constructed to show that their conjectures for the bound
on the fifth coefficient and the bound related to the second Hankel determinant are
false. However, the correct bound for the latter is stated and proved. Further, a sharp
bound on the initial coefficients for normalized analytic function f such that
zf ′(z)/f (z)≺ √

1 + λz, λ ∈ (0, 1], have also been obtained, which contain many existing
results.
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1 Introduction
The class of analytic functions of the form

f (z) = z +
∞∑

n=2

anzn (1)

defined in the unit disk D := {z ∈ C : |z| < 1} is denoted by A and its subclass contain-
ing univalent functions is denoted by S . Among the many subclasses of S the classes
of starlike and convex functions are the most studied classes. We recall that a domain
D in the complex plane C is called starlike with respect to w0 ∈ D if each line joining
w0 to other points of D lies entirely in D. A domain which is starlike with respect to
all its points is called a convex domain. Using the concept of subordination, in 1994,
Ma and Minda [12] introduced general form of starlike and convex functions as follows:
S∗(ϕ) := {f ∈A : zf ′(z)/f (z) ≺ ϕ(z)} and K(ϕ) := {f ∈A : 1 + zf ′′(z)/f ′(z) ≺ ϕ(z)}, where the
symbol ‘≺’ denotes the subordination and ϕ is an analytic function with positive real part
in the unit disk D and mapping D onto a domain starlike with respect to 1, ϕ′(0) > 0 which
is symmetric about the real axis.

For various choices of the function ϕ, the class S∗(ϕ) gives to several well-known/new
classes. The class S∗

l := S∗(
√

1 + z) was introduced by Sokół and Stankiewicz [25]. In 2009,
Sokół [24] derived the sharp upper bound for first four coefficients for the class S∗

l and
conjectured that |an+1| ≤ 1/2n. In 2015, Ravichandran and Verma [21] verified this con-
jecture for the fifth coefficient. In 1998, Sokół generalized this class by introducing a more

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-019-2231-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-019-2231-3&domain=pdf
mailto:yjsim@ks.ac.kr


Cho et al. Journal of Inequalities and Applications        (2019) 2019:276 Page 2 of 13

general class S∗
lλ := S∗(

√
1 + λz), λ ∈ (0, 1] and obtained structural formula, growth the-

orem and also derived the sharp radius of convexity for this class. The functions in this
class are strongly starlike of order arcsin(λ/π ) and hence are univalent. Actuated by these
classes, Mendiratta et al. [13] put before us a subclass of starlike functions associated with
left-half of the shifted lemniscate of Bernoulli and discussed the geometric properties, co-
efficient estimates and the radius of starlikeness. Inspired by their work, Naveen et al. [23]
considered the class starlike functions associated with cardioid discussed various proper-
ties of this class. In 2015, Raina and Sokół [19] introduced the interesting class S∗

q := S∗(q),
q(z) =

√
1 + z2 + z and proved that the class S∗

q is a subclass of the class consisting of func-
tions f ∈A such that

∣∣∣∣
zf ′(z)
f (z)

– 1
∣∣∣∣ < 2

∣∣∣∣
zf ′(z)
f (z)

∣∣∣∣

and discussed several other properties of the class S∗
q . They derived bound on the coeffi-

cients. They proved the bounds (a) |a2| ≤ 1, (b) |a3| ≤ 3/4, (c) |a4| ≤ 1/2, (d) |a3 – λa2
2| ≤

max{1/2, |λ – 3/4|}, λ ∈ C and (e) |a2a4 – a2
3| ≤ 39/48. The bounds (a), (b) and (d) were

proven to be sharp. Further they conjectured that |a4| ≤ 5/12, |a5| ≤ 2/9 and |a2a4 – a2
3| ≤

7/48. Recently, Gandhi and Ravichandran [6] discussed radius problems for this class.
Finding the upper bound for coefficients have been one of the central topic of research in

geometric function theory as it gives several properties of functions. In particular, bound
for the second coefficient gives growth and distortion theorems for functions in the class
S . Similarly, using the Hankel determinants (which also deals with the bound on coeffi-
cients), Cantor [1] proved that the “if ratio of two bounded analytic functions in D, then
the function is rational”. For given natural numbers n, q, the Hankel determinant Hq,n(f )
of a function f ∈A is defined by

Hq,n(f ) :=

∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q–1

an+1 an+2 · · · an+q
...

...
...

...
an+q–1 an+q · · · an+2(q–1)

∣∣∣∣∣∣∣∣∣∣

,

with a1 = 1.
Note that H2,1(f ) = a3 – a2

2 is the well-known Fekete–Szegö functional. The second Han-
kel determinant is given by H2,2(f ) = a2a4 – a2

3. The Hankel determinant Hq,n(f ) for the
class of univalent functions was investigated by Pommerenke [15] and Hayman [7]. For
successive developments in this direction till 2013, refer to [9]. In 2013, Sarfraz and Malik
[22] obtained the upper bound on the third Hankel determinant for functions in the class
S∗

l . For more results and recent development in this direction, see [4, 5, 15, 16].
Motivated by the above work, in this manuscript, the conjecture |a4| ≤ 5/12 posed by

Raina and Sokòł [18] for functions in the class S∗
q has been settled. However, an example is

given to show that their conjecture |a2a4 – a2
3| ≤ 7/48 is false and a sharp upper bound for

this functional is shown to be 1/4, that is, |a2a4 – a2
3| ≤ 1/4. The same example also shows

that their conjecture |a5| ≤ 2/9 is also false. In addition to that, for functions in the class
S∗

q a sharp upper bound on the functional |a2a3 – a4| is also derived. Furthermore, all the
results proved by Sarfraz and Malik [22] have been generalized by proving sharp upper
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bound on the initial coefficients and bounds on |a2a4 – a2
3| and |a2a3 – a4| for functions

in the class S∗
lλ . There were several mistakes/typos in their paper which have also been

corrected.
Throughout this manuscript, let P denote the class of Carathéodory [2, 3] functions of

the form

p(z) = 1 +
∞∑

n=1

pnzn, z ∈ D. (2)

The following results related to the class P are required for the discussion of the result
in this manuscript.

Lemma 1.1 ([10, 11, Libera and Zlotkiewicz]) If p ∈ P has the form given by (2) with
p1 ≥ 0, then

2p2 = p2
1 + x

(
4 – p2

1
)

(3)

and

4p3 = p3
1 + 2p1

(
4 – p2

1
)
x – p1

(
4 – p2

1
)
x2 + 2

(
4 – p2

1
)(

1 – |x|2)y (4)

for some x and y such that |x| ≤ 1 and |y| ≤ 1.

Lemma 1.2 ([21, Ravichandran and Verma]) Let α, β , γ and a satisfy the inequalities
0 < α < 1, 0 < a < 1 and

8a(1 – a)
[
(αβ – 2γ )2 +

(
α(a + α) – β

)2] + α(1 – α)(β – 2aα)2 ≤ 4aα2(1 – α)2(1 – a).

If p ∈P has the form given by (2), then

∣∣γ p4
1 + ap2

2 + 2αp1p3 – (3/2)βp2
1p2 – p4

∣∣ ≤ 2.

Let B be the class of analytic functions w of the form

w(z) =
∞∑

n=1

cnzn, z ∈D, (5)

and satisfying the condition |w(z)| < 1 for z ∈ D. And let us consider a functional Ψ (w) =
|c3 + μc1c2 + νc3

1| for w ∈ B and μ, ν ∈R. Now we define sets A and B by

A =
{

(μ,ν) ∈R
2 : 2 ≤ |μ| ≤ 4, ν ≥ 1

12
(
μ2 + 8

)}

and

B =
{

(μ,ν) ∈R
2 :

1
2

≤ |μ| ≤ 2, –
2
3
(|μ| + 1

) ≤ ν ≤ 4
27

(|μ| + 1
)3 –

(|μ| + 1
)}

,

respectively.
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Lemma 1.3 ([17, Prokhorov and Szynal]) If w ∈ B, then for any real numbers μ and ν the
following sharp estimate Ψ (w) ≤ Φ(μ,ν) holds:

Φ(μ,ν) =

⎧
⎨

⎩
|ν|, if (μ,ν) ∈ A,
2
3 (|μ| + 1)( |μ|+1

3(|μ|+1+ν) )1/2, if (μ,ν) ∈ B.

Lemma 1.4 ([14, Ohno and Sugawa]) For any real numbers a, b and c, let the quantity
Y (a, b, c) be given by

Y (a, b, c) = max
z∈D

{∣∣a + bz + cz2∣∣ + 1 – |z|2},

where D := {z ∈C : |z| ≤ 1}. If ac ≥ 0, then

Y (a, b, c) =

⎧
⎨

⎩
|a| + |b| + |c|, if |b| ≥ 2(1 – |c|),
1 + |a| + b2

4(1–|c|) , if |b| < 2(1 – |c|).

Furthermore, if ac < 0, then

Y (a, b, c) =

⎧
⎪⎪⎨

⎪⎪⎩

1 – |a| + b2

4(1–|c|) , if – 4ac(c–2 – 1) ≤ b2 and |b| < 2(1 – |c|),
1 + |a| + b2

4(1+|c|) , if b2 < min{4(1 + |c|)2, –4ac(c–2 – 1)},
R(a, b, c), otherwise,

where

R(a, b, c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|a| + |b| – |c|, if |c|(|b| + 4|a|) ≤ |ab|,
–|a| + |b| + |c|, if |ab| ≤ |c|(|b| – 4|a|),
(|c| + |a|)

√
1 – b2

4ac , otherwise.

2 Main results
Raina and Sokół [18], for functions in the class S∗

q , proved that |a4| ≤ 1/2 and |a2a4 – a2
3| ≤

39/48 and conjectured that |a4| ≤ 5/12, |a5| ≤ 2/9 and |a2a4 – a2
3| ≤ 7/48. In the following

proposition, the conjecture for |a4| has been settled. However, their conjectures |a2a4 –
a2

3| ≤ 7/48 and |a5| ≤ 2/9 are shown to be false. To this aim, consider the Schwarz function
w(z) = z(

√
6 – 3z)/(3 –

√
6z) such that zf ′(z)/f (z) = (w(z) +

√
1 + w(z)2). The solution of this

equation is

f1(z) := z +
√

2
3

z2 +
z3

3
–

1
9

√
2
3

z4 –
13
54

z5 + · · · . (6)

Here we see that |a5| = 13/54 ≈ 0.240 > 2/9 ≈ 0.222 and |a2a3 – a4| = 4
√

6/27 ≈
0.362887 > 7/48 ≈ 0.145833. We shall provide two proofs, both of which give sharp
bounds on |a2a3 – a4| and |a2a4 – a2

3|. The following proposition gives sharp bounds on
|a4|, |a2a3 – a4| and |a2a4 – a2

3|.

Theorem 2.1 Let f ∈ S∗
q with the form given by (1). Then the following inequalities hold:
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(1) |a4| ≤ 5/12;
(2) |a2a3 – a4| ≤ 4

√
6/27 and |a2a4 – a2

3| ≤ 1/4.
The inequalities are sharp.

Proof Since f ∈ S∗
q , it follows that there exists a Schwarz function w ∈ B, with the form

given by (5), such that

zf ′(z)
f (z)

= w(z) +
√

1 + w(z)2. (7)

Thus, we have

a2 = c1, a3 =
1
2

(
c2 +

3
2

c2
1

)
and a4 =

1
3

(
5
4

c3
1 +

5
2

c1c2 + c3

)
. (8)

(1) Setting μ = 5/2 and ν = 5/4 in (8), we have

|a4| =
1
3
∣∣νc3

1 + μc1c2 + c3
∣∣.

We now use Lemma 1.3 for μ = 5/2 and ν = 5/4. In this case, we see that |νc3
1 +μc1c2 +c3| ≤

|ν| = 5/4 as (μ,ν) = (5/2, 5/4) ∈ A. Thus, we conclude that |a4| ≤ 5/12. The result is sharp
as equality in the result holds for the function

f2(z) :=
2(

√
1 + z2 – 1)

z
exp

{
z +

√
1 + z2 – 1

}

= z + z2 +
3
4

z3 +
5

12
z4 +

1
8

z5 + · · · .

(2) First proof : We now find sharp upper bound for functional |a2a3 – a4|. To this aim,
from (8), we have

|a2a3 – a4| =
1
3
∣∣c3 + c1c2 – c3

1
∣∣. (9)

Setting μ = 1 and ν = –1 and using Lemma 1.3, we see that (μ,ν) = (1, –1) ∈ B and |νc3
1 +

μc1c2 + c3| ≤ 4
√

6/9. Thus, we conclude from (9) that |a4| ≤ 4
√

6/27. The result is sharp
as equality occurs in the case of the function f satisfying (7) with the Schwarz function is
defined by w(z) = z(u0 – 2z)/(2 – u0z), where u0 = 2

√
6/3, that is, the equality occurs in the

case of the function f1 given by (6).
Now it remains to find sharp upper bound for |a2a4 – a2

3|. To find bound on this func-
tional, we shall use the relation between Carathéodory and Schwarz’s functions. Setting
w(z) = (p(z) – 1)/(p(z) + 1) with p ∈ P of the form given by (2) in (7) and equating the
coefficients, we have

a2 =
p1

2
, a3 =

1
16

(
p2

1 + 4p2
)

and a4 =
1

96
(
16p3 + 4p1p2 – p3

1
)
.

A computation gives

a2a4 – a2
3 =

1
768

(
–7p4

1 – 8p2
1p2 – 48p2

2 + 64p1p3
)
. (10)
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We substitute expression for p2 and p3 from (3) and (4) in (10). Since |x| ≤ 1, |y| ≤ 1 for
some x and y and the class S∗

q is invariant under rotation, without loss of any generality
we can assume that p1 = |p1| =: s ∈ [0, 2] and |x| =: t ∈ [0, 1], we get

∣∣a2a4 – a2
3
∣∣ ≤ 1

768
F1(s, t),

where

F1(s, t) := 7s4 + 32
(
4 – s2) + 4

(
4 – s2)(s2 + 4

)
t2 + 4s2(4 – s2)t

with s ∈ [0, 2] and t ∈ [0, 1].
A computation reveals that the function F1 has no critical point inside (0, 2) × (0, 1).

Now we shall check the boundary of the rectangular domain (0, 2) × (0, 1) for maxima.
(i) F1(0, t) = (2 + t2)/12 ≤ 1/4, t ∈ [0, 1];

(ii) F1(2, t) = 5/42 < 1/4, t ∈ [0, 1];
(iii) F1(s, 0) = (7s4 + 32(4 – s2))/768 ≤ 5/42, s ∈ [0, 2];
(iv) F1(s, 1) = (192 – 16s2 – s4)/768 ≤ 1/4, s ∈ [0, 2].

It is clear, therefore, that F1(s, t) ≤ 1/4 for all (s, t) ∈ [0, 2] × [0, 1]. Thus, |a2a4 – a2
3| ≤ 1/4.

Equality holds in the case of the function

f3(z) := z exp

(∫ z

0

√
1 + ζ 4 + ζ 2 – 1

ζ
dζ

)
= z +

z3

2
+

z5

4
+ · · · . (11)

Hence the result is sharp.
(2) Second proof (estimate on |a2a3 – a4|): From (7) with the relation w(z) = (p(z) –

1)/(p(z) + 1), where p is a Carathéodory function with the form given by (2). From (9),
we have

|a2a3 – a4| =
1

24
(
p3

1 + 2p1p2 – 4p3
)
.

Applying Lemma 1.1 and the invariant property for the class S∗
q under rotation, we have

|a2a3 – a4| =
1

24
[
s3 – s

(
4 – s2)x + s

(
4 – s2)x2 – 2

(
4 – s2)(1 – |x|2)y

]
, (12)

where s := p1 ∈ [0, 2], |x| ≤ 1 and |y| ≤ 1. We note that, for s = 0 and s = 2

|a2a3 – a4| ≤ 1/3. (13)

Now assume that s ∈ (0, 2). Then from (12) we obtain

|a2a3 – a4| ≤ 1
12

(
4 – s2)F2(s, x),

where

F2(s, x) :=
∣∣a + bx + cx2∣∣ + 1 – |x|2
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with

a =
s3

2(4 – s2)
, b = –

1
2

s and c =
1
2

s.

Here it is easy to verify that ac > 0. Here we have two cases now:
(i) When s ∈ [4/3, 2), we obtain |b| ≥ 2(1 – |c|). Therefore, by Lemma 1.4, we have

|a2a3 – a4| ≤ 1
12

(
4 – s2)F2(s, x) ≤ 1

12
(
4 – s2)(|a| + |b| + |c|) =

1
12

g(s),

where g : [4/3, 2) →R is a function defined by g(s) = (8s – s3)/2. Since g has its
maximum at s = s1 :=

√
8/3, we have

|a2a3 – a4| ≤ 1
12

g(s1) =
4

27
√

6.

(ii) When s ∈ (0, 4/3), we obtain |b| < 2(1 – |c|). Therefore, by Lemma 1.4, we have

|a2a3 – a4| ≤ 1
12

(
4 – s2)F2(s, x) ≤ 1

12
(
4 – s2)

(
1 + |a| +

b2

4(1 – |c|)
)

=
1

12
h(s),

where h : (0, 4/3) →R is a function defined by h(s) = (32 – 6s2 + 5s3)/8. Since
h′(s) = 0 occurs only at s = s2 := 4/5 in (0, 4/3) and h′′(s2) > 0, h has no maximum in
(0, 4/3) and

h(s) ≤ h
(

4
3

)
=

112
27

<
4

27
√

6, s ∈ (0, 4/3).

Therefore, by (13) and as discussed in the cases (i) and (ii), we have |a2a3 –a4| ≤ 4
√

6/27.
To show sharpness of this bound, we note that equality holds when p1 = s1 =

√
8/3, x = –1

and |z| = 1. In this condition, it follows from Lemma 1.1 that p2 = 2/3 and p3 = –2
√

6/9. We
can easily check that the function p defined by p(z) = (1– z2)/(1– u0z + z2) with u0 = 2

√
6/3

satisfies them. The relation w(z) = (p(z) – 1)/(p(z) + 1) shows that for the function f1, given
by (6), the resulting equality holds.

Estimate on |a2a4 – a2
3|: From (10) with Lemma 1.1, we have

a2a4 – a2
3

=
1

768
[
–7s4 + 4s2(4 – s2)x – 4

(
4 – s2)(12 + s2)x2 + 32s

(
4 – s2)(1 – |x|2)y

]
, (14)

where s := p1 ∈ [0, 2], |x| ≤ 1 and |y| ≤ 1. We have the following two cases now:
(I) For s = 0 and s = 2, we get the bound 1/4 and 7/48, respectively, for |a2a4 – a2

3|.
(II) Now assume that s ∈ (0, 2). Then from (14), we have

∣∣a2a4 – a2
3
∣∣ ≤ 1

24
s
(
4 – s2)F3(s, x),

where

F3(s, x) :=
∣∣a + bx + cx2∣∣ + 1 – |x|2
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with

a =
–7s3

32(4 – s2)
, b =

1
8

s and c = –
12 + s2

8s
.

We note that ac > 0 and |b| ≥ 2(1 – |c|) for all s ∈ (0, 2). Therefore, by Lemma 1.4,
we have

∣∣a2a4 – a2
3
∣∣ ≤ 1

24
s
(
4 – s2)(|a| + |b| + |c|)

=
1

24

(
6 –

1
2

s2 –
1

32
s4

)
<

1
4

, s ∈ (0, 2).

Therefore, we have |a2a4 – a2
3| ≤ 1/4. To find the extremal function, we note that the max-

imum of the bound for |a2a4 – a2
3| occurs when p1 = s = 0 and x = 1 and by applying

Lemma 1.1 again, we get p1 = 0 and p2 = 2 and p3 = 0. Thus, we get the function p ∈ P
defined by p(z) = (1 + z2)/(1 – z2) and the corresponding function for which equality holds
in the result is f3, given by (11). �

The function (6) suggests the following conjecture.

Conjecture 2.2 Let f ∈ S∗
q . Then |a5| ≤ 13/54.

3 Coefficient bounds for the class S∗
lλ

In this section, the work of Sarfraz and Malik [22] has been generalized for the class S∗
lλ .

In addition to that a sharp upper bound for |a5| is also obtained.

Theorem 3.1 Let f ∈ S∗
lλ , λ ∈ (0, 1] with the form given by (1). Then the following inequal-

ities hold:
(1) |a2| ≤ λ/2, |a3| ≤ λ/4, |a4| ≤ λ/6, |a5| ≤ λ/8; and for any complex number μ

∣∣a3 – μa2
2
∣∣ ≤ λ

4
max

{
1;

|4μ – 1|
4

}
;

(2) |a2a4 – a2
3| ≤ λ2/16 and |a2a3 – a4| ≤ λ/6.

The inequalities are sharp.

Proof Since f ∈ S∗
lλ , there exists a Schwarz function w ∈ B, with the form given by (5),

such that

zf ′(z)
f (z)

=
√

1 + λw(z). (15)

The function w is related with the Carathéodory [2, 3] function p with the form given by
(2) as follows:

w(z) =
p(z) – 1
p(z) + 1

.
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Thus, from (15), we have

a2 =
λ

4
p1, a3 =

λ

8

(
p2 +

λ – 4
8

p2
1

)
,

a4 =
λ

12
p3 +

λ(λ – 8)
96

p1p2 +
λ(λ2 – 4λ + 16)

768
p3

1,

(16)

and

a5 = –
λ

16

(
λ3 + 8λ2 – 8λ + 48

384
p4

1 –
λ2 – 2λ + 18

24
p2

1p2 –
λ – 12

12
p1p3 +

1
2

p2
2 – p4

)
.

(1) Upper bounds on |a2|, |a3| and |a3 – μa2
2| are readily obtained by just an application

of the well-known results: |pn| ≤ 2 (n ∈ N); and for any complex number ν , |p2 – νp2
1| ≤

2 max{1; |2ν – 1|} (see [8, 20]).
Now to find upper bound on |a4|, we write

a4 =
λ

768
[(

λ2 – 4λ + 16
)
p3

1 + 8(λ – 8)p1p2 + 64p3
]
. (17)

Substituting expression for p2 and p3 from (3) and (4) in (17) and simplifying, we get

a4 =
λ

768
[
λ2p3

1 + 4λ
(
4 – p2

1
)
p1x – 16

(
4 – p2

1
)
p1x2 + 32

(
4 – p2

1
)(

1 – |x|2)y
]
.

Since |x| ≤ 1, |y| ≤ 1, for some x and y and the class S∗
lλ is invariant under rotation, without

loss of any generality we can assume that p1 = |p1| =: s ∈ [0, 2] and |x| =: t ∈ [0, 1]. Thus,
we can write

|a4| ≤ λ

768
[
λ2s3 + 4λ

(
4 – s2)st + 16

(
4 – s2)st2 + 32

(
4 – s2)(1 – t2)]

=
λ

768
[
λ2s3 + 4

(
4 – s2)(4(s – 2)t2 + λst + 8

)]
.

Let us denote

G1(s, t) := λ2s3 + 4
(
4 – s2)(4(s – 2)t2 + λst + 8

)
.

Now we need to find the least upper bound of G1 on [0, 2] × [0, 1]. For this consider the
function G1 defined on the interior to the rectangular domain [0, 2]×[0, 1]. A computation
shows that the function G1 has no critical point in (0, 2)× (0, 1). To this aim we note that G1

has a unique critical point (s1, t1), where s1 := (256 – 4λ2)/(15λ2) and t1 = λ(λ2 – 64)/(512 –
68λ2) which possible lies in (0, 2) × (0, 1). It follows from t1 < 0 for all λ ∈ (0, 1] that G1 has
no critical point in (0, 2) × (0, 1). Now we check the boundary of (0, 2) × (0, 1) for maxima
of G1. On the boundary of the rectangular domain (0, 2) × (0, 1), we have

(i) G1(0, t) = 128(1 – t2) ≤ 128, t ∈ [0, 1];
(ii) G1(2, t) = 8λ2 ≤ 8, t ∈ [0, 1];

(iii) G1(s, 0) = 128 – s2(32 – λ2s) ≤ 128, s ∈ [0, 2];
(iv) G1(s, 1) = (λ2 – 4λ – 16)s3 + 16(4 + λ)s =: H1(s), s ∈ [0, 2].
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We now find the maximum of the function H1(s), s ∈ [0, 2]. To this aim we note that H ′
1(s) =

0 if and only if s = s2 :=
√

16(4 + λ)/(3(16 + 4λ – λ2)) and H1(s2) = (32(4 +λ)s2)/3 ≤ 320/3 ≤
128, as s2 < 2. Thus, we conclude that

|a4| ≤ max
(s,t)∈[0,2]×[0,1]

F1(s, t) =
λ

6
.

To find the upper bound for |a5|, we use Lemma 1.2 with

a =
1
2

, α = –
λ – 12

24
, β =

λ2 – 2λ + 18
36

and γ =
λ3 + 8λ2 – 8λ + 48

384
,

in

|a5| =
λ

16

∣∣∣∣
λ3 + 8λ2 – 8λ + 48

384
p4

1 –
λ2 – 2λ + 18

24
p2

1p2 –
λ – 12

12
p1p3 +

1
2

p2
2 – p4

∣∣∣∣. (18)

Then we see that all the conditions of Lemma 1.2 are satisfied. Indeed, we have

8a(1 – a)
[
(αβ – 2γ )2) +

(
α(a + α) – β

)2] + α(1 – α)(β – 2aα)2 – 4aα2(1 – α)2(1 – a)

=
1

1,492,992
(
–93,312 + 1656λ2 + 1848λ3 + 4508λ4 + 970λ5 + 119λ6)

≤ –
84,211

1,492,992
< 0

for all λ ∈ (0, 1]. Thus,

∣∣∣∣
λ3 + 8λ2 – 8λ + 48

384
p4

1 –
λ2 – 2λ + 18

24
p2

1p2 –
λ – 12

12
p1p3 +

1
2

p2
2 – p4

∣∣∣∣ ≤ 2

and, therefore, the result follows at once from (18).
Bounds on |an| (n = 2, 3, 4, 5) are sharp as equality holds in the results in the case of the

function gn,λ defined by

gn,λ(z) := z exp

(∫ z

0

√
1 + λζ n–1 – 1

ζ
dζ

)
= z +

λ

2n – 2
zn + · · · , (19)

respectively. Here we note that

g2,λ(z) =
4z exp (2

√
1 + λz – 2)

(
√

1 + λz + 1)2
= z +

λ

2
z2 + · · · .

The extremal function of the functional |a3 –μa2
2| is g2,λ when |1 – 4μ| ≤ 4 and g2,

√
λ when

|1 – 4μ| ≥ 4, respectively.
(2) From (16), we have

12,288
(
a2a4 – a2

3
)

= λ2[(4 + λ)2p4
1 – 16(4 + λ)p2

1p2 – 192p2
2 + 256p1p3

]
. (20)
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Using (3), (4) in (20) and, for some x and y such that |x| ≤ 1, |y| ≤ 1, by setting |p1| =: s ∈
[0, 2] and |x| =: t ∈ [0, 1], we can write

12,288
∣∣a2a4 – a2

3
∣∣

≤ λ2[λ2s4 + 16
(
4 – s2)(s2 – 8s + 12

)
t2 + 8λ

(
4 – s2)s2t + 128

(
4 – s2)s

]
. (21)

Let us consider the function

G2(s, t) := λ2s4 + 16
(
4 – s2)(s2 – 8s + 12

)
t2 + 8λ

(
4 – s2)s2t + 128

(
4 – s2)s

defined on the domain [0, 2]× [0, 1]. It can be verified that the function G2 is an increasing
function of t, it follows that G2(s, ·) has its maximum at t = 1, and

G2(s, 1) =
(
λ2 – 8λ – 16

)
s4 + 32(λ – 4)s2 + 768.

Furthermore, since λ2 –8λ–16 < 0 and λ–4 < 0, it follows that |G2(s, 1)| ≤ 768 for s ∈ [0, 2].
Using this conclusion in (21), we get the asserted bound on |a2a4 – a2

3|. The equality holds
in the case of the function g3,λ defined by (19). Hence the bound thus obtained is sharp.

We now find the bound on |a2a3 – a4|. Using (16), we have

384(a2a3 – a4) = λ
[(

λ2 – 4λ – 8
)
p3

1 + 8(λ + 4)p1p2 – 32p3
]
. (22)

Using Lemma 1.1 in (22) and setting |p1| =: s ∈ [0, 2] and |x| =: t ∈ [0, 1], we have

384|a2a3 – a4| ≤ G3(s, t),

where the function G3 is defined on [0, 2] × [0, 1] by

G3(s, t) := λ
[
λ2s3 + 8(s – 2)

(
4 – s2)t2 + 4λ

(
4 – s2)st + 16

(
4 – s2)].

It is easy to check that there is only one critical point of G3 in (0, 2) × (0, 1), viz.

(s3, t3) :=
(

4(λ2 – 16)
9λ2 ,

λ(λ2 – 16)
64 – 22λ2

)
.

Further computation shows that

G3(s3, t3) =
λ6 + 924λ4 + 768λ2 – 4096

5832λ3 ≤ λ

6
.

On the boundary of rectangular domain (0, 2) × (0, 1), we have
(i) G3(0, t) = λ(1 – t2)/6 ≤ λ/6, t ∈ [0, 1];

(ii) G3(2, t) = λ3/48 < λ/6, t ∈ [0, 1];
(iii) G3(s, 0) = λ(λ2s3 – 16s2 + 64)/384 =: H2(s), s ∈ [0, 2];
(iv) G3(s, 1) = λs(16(s + 2) + (s2 – 4s – 8)s2)/384 =: H3(s), s ∈ [0, 2].
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The function H2 is decreasing on (0, 2), so H2(s) ≤ H2(0) = λ/6. Now a computation shows
that the function H3 is increasing in (0, s4) and decreasing in (s4, 1), and

H3(s4) =
λ + 2

9

√
λ + 2

3(8 + 4λ – λ2)
<

λ

6
,

where s4 := 4
√

(λ + 2)/(3(8 + 4λ – λ2)). Thus, we have |a2a3 – a4| ≤ λ/6. Sharpness of the
result could be seen in the case of the function g4,λ defined by (19). This completes the
proof. �

Conjecture 3.2 Since the function gn,λ given by (19) is extremal for the first five coefficients
for functions in the class S∗

lλ , one may expect naturally |an+1| ≤ λ/2n, for all n ≥ 6.

Theorem 3.3 Let f ∈ S∗
lλ . Then

∞∑

k=2

(
k2 – λ – 1

)|ak|2 ≤ 1.

Proof Since f ∈ S∗
lλ , it follows from (15) that λf (z)2w(z) = (zf ′(z))2 – f (z)2. For |z| = r ∈ [0, 1)

and t ∈ [0, 2π ], we have

2π

∞∑

k=1

|ak|2r2k =
∫ 2π

0

∣∣f
(
reit)∣∣2 dt

≥ 1
λ

∫ 2π

0

∣∣(reitf ′(reit))2 – f
(
reit)2∣∣dt

=
2π

λ

∞∑

k=1

(
k2 – 1

)|ak|2r2k .

This on simplification after letting r → 1– gives the required result. �
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