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Abstract
The main purpose of this article is to establish Anderson–Taylor type inequalities for
τ -measurable operators. Some related results forM-operators are also obtained.
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1 Introduction
Let Mn(C) be the space of n × n complex matrices. For two Hermitian matrices A, B ∈
Mn(C), A > B (A ≥ B) means A – B is positive (semi) definite. Then A > 0 (A ≥ 0) means
A is positive (semi) definite. Of course, B > A (B ≥ A) is not distinguished from A > B
(A ≥ B). And we call the comparison of Hermitian matrices in this way Löewner partial
order. Let A ≥ 0, thus it has a unique square root A 1

2 ≥ 0. Let tr A denote the trace of
A. In view of the applications in probability theory, Anderson and Taylor [1, Proposition
1] proved a quadratic inequality for real numbers. In 1983, Olkin [9, Proposition] estab-
lished a stronger matrix version of Anderson–Taylor inequality as well as a related trace
inequality. Using the well-known arithmetic-geometric mean inequality for singular val-
ues due to Bhatia and Kittaneh [3], Zhan [10] gave a trace inequality for sums of positive
semi-definite matrices, which is a generalization of Anderson–Taylor quadratic inequal-
ity for real numbers. Recently, Lin [8] provided a complement to Olkin’s generalization of
Anderson–Taylor trace inequality and some related results for M-matrices.

In this article we consider τ -measurable operators affiliated with a finite von Neumann
algebra equipped with a normal faithful finite trace τ . By virtue of the method of Lin and
Zhan [8, 10], based on the notion of generalized singular value studied by Fack and Kosaki
[5], we obtain generalizations of results in [8] and [10] with regard to Anderson–Taylor
type inequalities for τ -measurable operators case.

2 Preliminaries
Unless stated otherwise, throughout the paperMwill always denote a finite von Neumann
algebra acting on the complex separable Hilbert space H, with a normal faithful finite
trace τ . We denote the identity in M by 1 and let P denote the projection lattice of M.
The closed densely defined linear operator x in H with domain D(x) ⊆ H is said to be
affiliated with M if u∗xu = x for all unitary u which belong to the commutant M′ of M.
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If x is affiliated with M, then x is said to be τ -measurable if for every ε > 0 there exists
a projection e ∈ M such that e(H) ⊆ D(x) and τ (1 – e) < ε. The set of all τ -measurable
operators will be denoted by L0(M, τ ), or simply L0(M). The set L0(M) is a ∗-algebra
with sum and product being the respective closures of the algebraic sum and product.
The space L0(M) is a partially ordered vector space under the ordering x ≥ 0 defined by
(xξ , ξ ) ≥ 0, ξ ∈ D(x). When x ≥ 0 is invertible, we write x > 0.

Recall that the geometric mean of two positive definite operators x and y, denoted by x�y,
is the positive definite solution of the operator equation zy–1z = x and it has the explicit
expression

x�y = y
1
2
(
y– 1

2 xy– 1
2
) 1

2 y
1
2 .

From this, we find that x�y = y�x and the monotonicity property: x�y ≥ x�z, whenever
y ≥ z > 0 and x > 0. One of the motivations for geometric mean is the following arithmetic
mean-geometric mean inequality:

x + y
2

≥ x�y.

A remarkable property of the geometric mean is a maximal characterization which is a
generalization of the result in [4, Theorem 3.7]; see Lemma 3.4 in Sect. 3 for more details.

Definition 2.1 Let x ∈ L0(M) and t > 0. The “tth singular number (or generalized s-
number) of x” is defined by

μt(x) = inf
{‖xe‖ : e ∈P , τ (1 – e) ≤ t

}
.

We will denote simply by μ(x) the function t → μt(x). The generalized singular number
function t → μt(x) is decreasing right-continuous. Furthermore,

μ(uxv) ≤ ‖v‖‖u‖μ(x), u, v ∈M, x ∈ L0(M) (2.1)

and

μ
(
f (x)

)
= f

(
μ(x)

)
(2.2)

whenever 0 ≤ x ∈ L0(M) and f is an increasing continuous function on [0,∞) satisfy-
ing f (0) = 0. See [5] for basic properties and detailed information on the generalized s-
numbers.

Let M2(M) denote the linear space of 2 × 2 matrices

x =

[
x11 x12

x21 x22

]

with entries xjk ∈ M, j, k = 1, 2. Let H2 = H⊕H, then M2(M) is a von Neumann algebra
in the Hilbert space H2. For x ∈ M2(M), define τ2(x) =

∑2
j=1 τ (xjj). Then τ2 is a normal
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faithful finite trace on M2(M). The direct sum of operators x1, x2 ∈ L0(M), denoted by
⊕2

j=1 xj, is the block-diagonal operator matrix defined on H2 by

2⊕

j=1

xj =

[
x1 0
0 x2

]

.

3 Anderson–Taylor type inequalities
To present our main results, we firstly give the following lemma. Since it is easy to obtain
in a similar way to [9, Lemma], we omit the proof.

Lemma 3.1 Let x, y ∈M with x > 0, y ≥ 0, then

(x + y)–1y(x + y)–1 ≤ x–1 – (x + y)–1. (3.1)

Our next result provides an operator generalization of a quadratic inequality for a ma-
trix.

Theorem 3.2 Let z, xj ∈M with z > 0 and xj ≥ 0 (j = 1, 2, . . . , n), then

z–1 >
n∑

k=1

(

z +
k∑

j=1

xj

)–1

xk

(

z +
k∑

j=1

xj

)–1

. (3.2)

Proof Let x = z + x0 +
∑k–1

j=1 xj, y = xk , with x0 ≡ 0. By an application of (3.1) we obtain

n∑

k=1

(

z + x0 +
k∑

j=1

xj

)–1

xk

(

z + x0 +
k∑

j=1

xj

)–1

≤
n∑

k=1

((

z +
k–1∑

j=0

xj

)–1

–

(

z +
k∑

j=0

xj

)–1)

= z–1 –

(

z +
n∑

j=1

xj

)–1

< z–1,

which completes the proof of (3.2). �

An immediate consequence from (3.2) is as follows:

n∑

k=1

τ

((

z +
k∑

j=1

xj

)–1

xk

(

z +
k∑

j=1

xj

)–1)

=
n∑

k=1

τ

(

xk

(

z +
k∑

j=1

xj

)–2)

< τ
(
z–1).
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Furthermore, under the same condition as in Theorem 3.2 we observe that

z–1 >
n∑

k=1

(

z +
k∑

j=1

xj

)–1

xk

(

z +
k∑

j=1

xj

)–1

. (3.3)

In what follows, we first give an inequality complementary to (3.3). To obtain it, we need
several lemmas.

Lemma 3.3 Let x, z ∈ M with x, z > 0 and x = x∗, z = z∗, and let x be invertible, y ∈ M.
Then the 2 × 2 operator matrix

[
x y
y∗ z

]

is positive semi-definite if and only if z ≥ y∗x–1y.

Proof Put D = z – y∗x–1y, thus

[
x y
y∗ z

]

=

[
x y
y∗ y∗x–1y

]

+

[
0 0
0 D

]

.

Note that
[

x y
y∗ y∗x–1y

]

=

[
x 1

2 x– 1
2 y

0 0

]∗
·
[

x 1
2 x– 1

2 y
0 0

]

≥ 0. (3.4)

Hence, the fact that D is positive semi-definite is sufficient to ensure that
[ x y

y∗ z
]

is positive
semi-definite.

On the other hand, it is also evident from (3.4) that for any ν ∈ C
n, the vector

[ x–1yν
ν

]

belongs to the null space of
[ x y

y∗ y∗x–1y
]
, therefore,

〈[
x–1yν

ν

]

,

[
x y
y∗ z

]

·
[

x–1yν
ν

]〉

= 〈ν, Dν〉,

consequently, the positive semi-definiteness of D is necessary to ensure that
[ x y

y∗ z
]

is pos-
itive semi-definite. �

Lemma 3.3 says that the set of positive Hermitian operators z ∈ M such that
[ x y

y∗ z
]

is
positive semi-definite has a minimum, namely z = y∗x–1y.

In the next result, we give a generalization of [4, Theorem 3.7].

Lemma 3.4 For all positive x, z ∈M, the set of all y ∈M such that

[
x y
y z

]

> 0

has a maximal element, which is M(x, z).
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Proof If

[
x y
y z

]

> 0,

then via Lemma 3.3, z ≥ yx–1y, and hence

x– 1
2 zx– 1

2 ≥ x– 1
2 yx–1yx– 1

2 =
(
x– 1

2 yx– 1
2
)2.

From the operator monotonicity of the square root functions, it follows that

x
1
2
(
x– 1

2 zx– 1
2
) 1

2 x
1
2 ≤ y.

This shows the maximality property of M(x, z), i.e.,

x�z = max

{

y
∣∣∣
∣

[
x y
y∗ z

]

≥ 0, y = y∗
}

. �

Applying Lemma 3.4 to the summation of positive semi-definite operator matrices
[ xi xi�yi

xi�yi yi

]
, i = 1, 2, . . . , n, we get the following inequality:

( n∑

i=1

xi

)

�

( n∑

i=1

yi

)

�
n∑

i=1

(xi�yi). (3.5)

The operator geometric mean has the similar properties to that of matrix geometric
mean in [2]. As for the next lemma, its proof is similar to that of [8, Lemma 2.2] and we
give it for easy reference.

Lemma 3.5 Let x, y ∈M with x > 0 and y Hermitian. Then

x�
(
yx–1y

) ≥ y. (3.6)

Proof We may assume that y is invertible and the general case follows from a continuity
argument. In fact, via Lemma 3.4, the notion of geometric mean can be extended to cover
the case of positive semi-definite operators. Based on the proof of Lemma 3.3, it is easy to
check that

[
x y
y yx–1y

]

≥ 0.

Now from Lemma 3.4, the desired inequality follows. �

Remark 3.6 Observe that inequality (3.6) is surely a refinement of the following inequality
for M � x > 0 and Hermitian operator y ∈M:

x + yx–1y ≥ 2y. (3.7)

Lemma 3.7 Let x, y ∈M with x, y > 0. Then x�y ≥ y if and only if x ≥ y.
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Now we are ready to state our main result. It is easy to get this theorem in a similar way
to [8, Theorem 2.5], for completeness, we include a simple proof.

Theorem 3.8 Let xi ∈M with xi > 0 for i = 1, 2, . . . , n. Then

n∑

j=1

( j∑

i=1

xi

)

x–1
j

( j∑

i=1

xi

)

>
1
2

n∑

k=1

k∑

j=1

j∑

i=1

xi. (3.8)

Moreover, the constant 1/2 is best possible.

Proof Interchange the order of summation and we deduce that

n∑

k=1

k∑

j=1

j∑

i=1

xi =
n∑

j=1

n∑

k=j

( j∑

i=1

xi

)

=
n∑

j=1

(n – j + 1)
j∑

i=1

xi

=
n∑

i=1

xi

n∑

j=1

(n – j + 1)

=
n∑

i=1

(
2

n – i + 2

)
xi

>
1
2

n∑

i=1

(n – i + 1)2xi,

i.e.,

2
n∑

k=1

k∑

j=1

j∑

i=1

xi >
n∑

i=1

(n – i + 1)2xi. (3.9)

On the other hand, combining (3.5) and (3.9), by an application of Lemma 3.4 we obtain

n∑

k=1

k∑

j=1

j∑

i=1

xi =
n∑

j=1

(n – j + 1)

( j∑

i=1

xi

)

<
n∑

j=1

(
(n – j + 1)2xj

)
�

{( j∑

i=1

xi

)

x–1
j

( j∑

i=1

xi

)}

<

{ n∑

j=1

(
(n – j + 1)2xj

)
}

�

{ n∑

j=1

( j∑

i=1

xi

)

x–1
j

( j∑

i=1

xi

)}

< 2

{ n∑

k=1

k∑

j=1

j∑

i=1

xi

}

�

{ n∑

j=1

( j∑

i=1

xi

)

x–1
j

( j∑

i=1

xi

)}

=

{ n∑

k=1

k∑

j=1

j∑

i=1

xi

}

�

{

2
n∑

j=1

( j∑

i=1

xi

)

x–1
j

( j∑

i=1

xi

)}

.

Hence, the assertion follows from Lemma 3.7. �



Shao Journal of Inequalities and Applications        (2019) 2019:272 Page 7 of 8

Regarding the proof that the constant 1/2 in (3.8) is best possible, it could be organized
by using the method applied in [8, Appendix], thus we omit it.

Remark 3.9 Under the same condition as in Theorem 3.8, we have the following inequality:

τ

( n∑

j=1

x–1
j

( j∑

i=1

xi

)2)

>
1
2

n∑

k=1

k∑

j=1

j∑

i=1

τ (xi). (3.10)

4 M-Operators analog
In this section, we extend some results for M-matrix established in [8] to M-operators.
From the definition of M-matrix, namely, [7, Definition 2.4.3], we could define the M-
operator as follows.

Definition 4.1 Let x ∈ M be positive and invertible operator. x is called an M-operator
if x = sI – x1, where x1 ≥ 0 and s > r(x1) with r(x1) the spectral radius of x1.

Next we give the following lemma without the proof, as it is immediate from [6, p. 117].

Lemma 4.2 Let x, x + y ∈M be two M-operators with y ≥ 0. Then

x–1 – (x + y)–1 ≥ (x + y)–1y(x + y)–1. (4.1)

Observe that the following result can also be given according to Theorem 3.2 and here
we give another proof.

Proposition 4.3 Let x1, x1 +
∑n

i=2 xi ∈M be M-operators with xi ≥ 0 for i = 2, . . . , n. Then

2x–1
1 >

n∑

j=1

( j∑

i=1

xi

)–1

xj

( j∑

i=1

xi

)–1

. (4.2)

Proof Observe that x1 +
∑j

i=2 xi ∈M is an M-operator for j = 2, . . . , n. Moreover, we note
that (4.2) is the same as

x–1
1 >

n∑

j=2

( j∑

i=1

xi

)–1

xj

( j∑

i=1

xi

)–1

. (4.3)

In fact, let x =
∑j–1

i=1 xi, y = xj (2 ≤ j ≤ n). By Lemma 4.2 we have

( j–1∑

i=1

xi

)–1

–

( j–1∑

i=1

xi + xj

)–1

>

( j–1∑

i=1

xi + xj

)–1

xj

( j–1∑

i=1

xi + xj

)–1

,

i.e.,

( j–1∑

i=1

xi

)–1

–

( j∑

i=1

xi

)–1

>

( j∑

i=1

xi

)–1

xj

( j∑

i=1

xi

)–1

. (4.4)
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Summing up from 2 to n on both sides of inequality (4.4), we deduce that

n∑

j=2

(( j–1∑

i=1

xi

)–1

–

( j∑

i=1

xi

)–1)

>
n∑

j=2

(( j∑

i=1

xi

)–1

xj

( j∑

i=1

xi

)–1)

,

thus we get the desired result. �

Remark 4.4 Under the assumption of Proposition 4.3, take the trace in (4.2) and we im-
mediately derive that

2τ
(
x–1

1
)

> τ

( n∑

j=1

xj

( j∑

i=1

xi

)–2)

. (4.5)
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