RESEARCH Open Access

On weighted integrability of functions defined by trigonometric series with p-bounded variation coefficients

Bogdan Szal^{1*} and Maciej Kubiak¹

*Correspondence: B.Szal@wmie.uz.zgora.pl

¹ Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Zielona Góra, Poland

Abstract

In this paper we introduce new classes of *p*-bounded variation sequences and give a sufficient and necessary condition for weighted integrability of trigonometric series with coefficients belonging to these classes. This is a generalization of the results obtained by the first author [J. Inequal. Appl. 2010:1–19, 2010] and Dyachenko and Tikhonov [Stud. Math. 193(3):285–306, 2009].

MSC: 42A16; 42A20; 42A32; 41A50

Keywords: Trigonometric series; Sequences of p-bounded variation; Weighted L^p integrability

1 Introduction

Let L^s , $1 \le s < \infty$, be the space of all s-power integrable functions f of period 2π with the norm

$$||f||_{L^s} = \left(\int_{-\pi}^{\pi} |f(x)|^s dx\right)^{\frac{1}{s}}.$$

Write

$$f(x) = \sum_{k=1}^{\infty} a_k \cos kx, \qquad g(x) = \sum_{k=1}^{\infty} a_k \sin kx$$

for those *x*, where the above series converge.

Denote by ϕ and λ_n either f or g and either a_n and b_n , respectively.

Let $\triangle_r a_n = a_n - a_{n+r}$ for a sequence of complex numbers (a_n) and $r \in \mathbb{N}$.

Theorem 1 Let a nonnegative sequence $(\lambda_n) \in \Re$, $1 < s < \infty$ and $1 - s < \alpha < 1$. Then

$$x^{-\alpha}|\phi|^s \in L^1 \quad \Longleftrightarrow \quad \sum_{n=1}^{\infty} n^{\alpha+s-2} \lambda_n^s < \infty.$$

This theorem was proved for $\Re = DS$, where DS denotes all decreasing sequences, in [1, 5, 14], and [2]. Later, Theorem 1 was showed in [7] for

$$\mathfrak{R} = \overline{GM}({}_{1}\beta) := \left\{ (a_{n}) \subset \mathbb{C} : \sum_{k=n}^{\infty} |\Delta_{1}a_{k}| \leq C \cdot {}_{1}\beta_{n} \right\},\,$$

and in [12] for

$$\mathfrak{R} = GM({}_{1}\beta) := \left\{ (a_{n}) \subset \mathbb{C} : \sum_{k=n}^{2n-1} |\Delta_{1}a_{k}| \leq C \cdot {}_{1}\beta_{n} \right\},\,$$

where $_1\beta_n = |a_n|$; *C* here and throughout the paper denotes a positive constant.

The proof in the case of class

$$\mathfrak{R} = GM(2\beta) := \left\{ (a_n) \subset \mathbb{C} : \sum_{k=n}^{2n-1} |\Delta_1 a_k| \leq C \cdot 2\beta_n \right\},\,$$

where $_2\beta_n = \sum_{k=\lceil n/c \rceil}^{\lceil cn \rceil} \frac{|a_k|}{k}$ for some c > 1, is included in [13].

In [3] Dyachenko and Tikhonov extended this theorem to the class

$$\mathfrak{R} = \overline{GM}(_{3}\beta(\theta)) := \left\{ (a_{n}) \subset \mathbb{C} : \sum_{k=n}^{\infty} |\Delta_{1}a_{k}| \leq C \cdot {}_{3}\beta_{n}(\theta) \right\},\,$$

where ${}_{3}\beta_{n}(\theta)=n^{\theta-1}\sum_{k=[n/c]}^{\infty}\frac{|a_{k}|}{k^{\theta}}<\infty$ for some c>1 and $\theta\in(0,1]$.

From the articles of Dyachenko and Tikhonov [3] and Leindler [7], it is well known that

$$DS \subsetneq \overline{GM}(_1\beta) \subsetneq GM(_1\beta) \subsetneq GM(_2\beta)$$
$$\subsetneq \overline{GM}(_3\beta(1)) \subseteq \overline{GM}(_3\beta(\theta_2)) \subseteq \overline{GM}(_3\beta(\theta_1)), \tag{1}$$

for $0 < \theta_1 \le \theta_2 \le 1$.

Further, Szal defined a new class of sequences in the following way (see [9]):

Definition 1 Let $\beta := (\beta_n)$ be a nonnegative sequence and r a natural number. The sequence of complex numbers $a := (a_n) \in \overline{GM}(\beta, r)$ if the relation

$$\sum_{k=n}^{\infty} |\Delta_r a_n| \le C\beta_n$$

holds for all $n \in \mathbb{N}$.

Moreover, from [9] we know that

$$\overline{GM}(_{3}\beta(\theta), r_{1}) \subsetneq \overline{GM}(_{3}\beta(\theta), r_{2}), \tag{2}$$

where $r_1 < r_2$, $\theta \in (0, 1]$ and $r_1 | r_2$.

Let $r \in \mathbb{N}$ and $\alpha \in \mathbb{R}$. We define on the interval $[-\pi, \pi]$ an even function $\omega_{\alpha,r}$, which is given on the interval $[0,\pi]$ by the formula

$$\omega_{\alpha,r}(x) := \begin{cases} (x - \frac{2l\pi}{r})^{-\alpha} & \text{for } x \in (\frac{2l\pi}{r}, \frac{(2l+1)\pi}{r}] \text{ and } l \in U_1, \\ (\frac{2(l+1)\pi}{r} - x)^{-\alpha} & \text{for } x \in (\frac{(2l+1)\pi}{r}, \frac{2(l+1)\pi}{r}) \text{ and } l \in U_2, \\ 0 & \text{for } x = \frac{2l\pi}{r} \text{ and } l \in U_3, \end{cases}$$

where $U_1 = \{0, 1, ..., [r/2]\}$ if r is an odd number and $U_1 = \{0, 1, ..., [r/2] - 1\}$ if r is an even number, $U_2 = \{0, 1, ..., [r/2] - 1\}$ for $r \ge 2$, and $U_3 = \{0, 1, ..., [r/2]\}$ for $r \ge 1$.

Theorem 1 was generalized for the class $\overline{GM}(_3\beta(\theta), r)$, where $r \in \mathbb{N}$ and $\theta \in (0, 1]$, in [9]. We can formulate this result in the following way.

Theorem 2 ([9, Theorem 5]) *Let a nonnegative sequence* $(\lambda_n) \in \overline{GM}(_3\beta(\theta), r)$, where $r \in \mathbb{N}$, $\theta \in (0, 1]$ and $1 \le s < \infty$. *If*

$$1 - \theta s < \alpha < 1$$

then $\omega_{\alpha,r}|\phi|^s \in L^1$ if and only if

$$\sum_{n=1}^{\infty} n^{\alpha+s-2} |\lambda_n|^s < \infty.$$

Now, we define new classes of sequences.

Definition 2 Let $\beta := (\beta_n)$ be a nonnegative sequence, p a positive real number, $r \in \mathbb{N}$. One says that a sequence $a = (a_n)$ of complex numbers belongs to $GM(p, \beta, r)$ if the relation

$$\left(\sum_{k=n}^{2n-1} |\triangle_r a_k|^p\right)^{\frac{1}{p}} \le C\beta_n$$

holds for all $n \in \mathbb{N}$.

Moreover, we say that a sequence $(a_n) \in \overline{GM}(p, \beta, r)$ if the relation

$$\left(\sum_{k=n}^{\infty} \left| \triangle_r a_k \right|^p \right)^{\frac{1}{p}} \le C\beta_n$$

holds for all $n \in \mathbb{N}$.

The class $GM(p, \beta, 1)$ was defined by Tikhonov and Liflyand in [8].

In this paper we present some properties of the classes $\overline{GM}(p,_3\beta(\theta),r)$ and $GM(p,_3\beta(\theta),r)$. Moreover, we will generalize Theorem 2 for the class $GM(p,_3\beta(\theta),r)$ with $0 < \theta < \frac{1}{5}$ and $r \in \mathbb{N}$.

We will write $I_1 \ll I_2$ if there exists a positive constant C such that $I_1 \leq CI_2$.

2 Main results

We formulate our results as follows:

Theorem 3 Let $r \in \mathbb{N}$, $\theta \in (0,1)$, and p be a positive real number. Then

$$\overline{GM}(p,_3\beta(\theta),r) = GM(p,_3\beta(\theta),r) \quad and$$

$$\overline{GM}(p,_3\beta(1),r) \subseteq GM(p,_3\beta(1),r).$$

Theorem 4 Let $r \in \mathbb{N}$, $\theta \in (0,1)$, and p_1 , p_2 be two positive real numbers such that $0 < p_1 < p_2$. Then

$$GM(p_1, {}_3\beta(\theta), r) \subsetneq GM(p_2, {}_3\beta(\theta), r).$$

Theorem 5 *Let* $r_1, r_2 \in \mathbb{N}$, $r_1 < r_2, \theta \in (0, 1]$ *and* $p \ge 1$. *If* $r_1 | r_2$, *then*

$$GM(p, {}_{3}\beta(\theta), r_{1}) \subsetneq GM(p, {}_{3}\beta(\theta), r_{2}).$$

Theorem 6 Let $(b_n) \in GM(p, {}_3\beta(\theta), r)$, where $r \in \mathbb{N}$, $p \ge 1$, $0 < \theta < \frac{1}{p}$ and $1 \le s < \infty$. If

$$1-\theta s-s+\frac{s}{p}<\alpha<1$$

and

$$\sum_{n=1}^{\infty} n^{\alpha-2-\frac{s}{p}+2s} |b_n|^s < \infty$$

then $\omega_{\alpha,r}|\phi|^s \in L^1$.

Theorem 7 Let a nonnegative sequence (b_n) belong to $GM(p, {}_3\beta(\theta), r)$, where $r \in \mathbb{N}$, $p \ge 1$, $0 < \theta < \frac{1}{p}$ and $1 \le s < \infty$. If

$$1 - \theta s < \alpha < 1 + s$$

and $\omega_{\alpha,r}|\phi|^s \in L^1$ then

$$\sum_{n=1}^{\infty} n^{\alpha-2+\frac{s}{p}} b_n^s < \infty.$$

Remark 1 If we take p = 1, then the result of Szal [9] (Theorem 2) follows from our Theorem 6 and 7. Moreover, by the embedding relations (1) and (2), we can also derive from Theorem 6 and 7 the result of Dyachenko and Tikhonov [3] and all the results mentioned before.

3 Auxiliary results

For $n \in \mathbb{N}$ and $k = 0, 1, 2, \ldots$, denote by

$$D_{k,r}(x) = \frac{\sin(k+r/2)x}{2\sin(rx/2)},$$

$$\tilde{D}_{k,r}(x) = \frac{\cos(k+r/2)x}{2\sin(rx/2)}$$

the Dirichlet-type kernels.

Lemma 1 ([10, Lemma 3.1] and [11, Lemma 17]) *Let* $r \in \mathbb{N}$, $l \in \mathbb{Z}$, and $(a_n) \subset \mathbb{C}$. If $x \neq \frac{2l\pi}{r}$, then for all $m \geq n$

$$\sum_{k=n}^{m} a_k \cos kx = \sum_{k=n}^{m} \triangle_r a_k D_{k,r}(x) - \sum_{k=m+1}^{m+r} a_k D_{k,-r}(x) + \sum_{k=n}^{n+r-1} a_k D_{k,-r}(x),$$

$$\sum_{k=n}^{m} a_k \sin kx = \sum_{k=m+1}^{m+r} a_k \tilde{D}_{k,-r}(x) - \sum_{k=n}^{n+r-1} a_k \tilde{D}_{k,-r}(x) - \sum_{k=n}^{m} \triangle_r a_k \tilde{D}_{k,r}(x).$$

Lemma 2 ([6, Corollary 1]) *Let* $p \ge 1$, $\gamma_n > 0$, and $a_n \ge 0$ for $n \in \mathbb{N}$. Then

$$\sum_{n=1}^{\infty} \gamma_n \left(\sum_{k=1}^n a_k \right)^p \le p^p \sum_{n=1}^{\infty} \gamma_n^{1-p} a_n^p \left(\sum_{k=n}^{\infty} \gamma_k \right)^p,$$

$$\sum_{n=1}^{\infty} \gamma_n \left(\sum_{k=n}^{\infty} a_k \right)^p \le p^p \sum_{n=1}^{\infty} \gamma_n^{1-p} a_n^p \left(\sum_{k=1}^n \gamma_k \right)^p.$$

Lemma 3 ([4, Theorem 19]) *If* $a_n \ge 0$ *for* $n \in \mathbb{N}$ *and* $0 < p_1 \le p_2 < \infty$, *then*

$$\left(\sum_{n=1}^{\infty} a_n^{p_2}\right)^{\frac{1}{p_2}} \le \left(\sum_{n=1}^{\infty} a_n^{p_1}\right)^{\frac{1}{p_1}}.$$

Lemma 4 ([4]) Let $a_k \ge 0$ for $k \in \mathbb{N}$ and $p \ge 1$. Then

$$\left(\frac{1}{n}\sum_{k=n}^{2n-1}a_k^p\right)^{\frac{1}{p}} \ge \frac{1}{n}\sum_{k=n}^{2n-1}a_k.$$

Lemma 5 Let $(a_k) \subset \mathbb{C}$, $p \geq 1$, $r, n \in \mathbb{N}$ and $d \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Then

$$\sum_{k=2^{d+1}(n+1)+r-1}^{2^{d+1}(n+1)+r-1} |a_k| \le \sum_{k=2^{d}(n+1)}^{2^{d}(n+1)+r-1} |a_k| + \left[2^d(n+1)\right]^{1-\frac{1}{p}} \left(\sum_{k=2^d(n+1)}^{2^{d+1}(n+1)-1} |\triangle_r a_k|^p\right)^{\frac{1}{p}}.$$

Proof From Lemma 4 we have

$$\left(\sum_{k=2^{d}(n+1)}^{2^{d+1}(n+1)-1} |\Delta_{r}a_{k}|^{p}\right)^{\frac{1}{p}} = \left[2^{d}(n+1)\right]^{\frac{1}{p}} \left(\frac{1}{2^{d}(n+1)} \sum_{k=2^{d}(n+1)}^{2^{d+1}(n+1)-1} |\Delta_{r}a_{k}|^{p}\right)^{\frac{1}{p}} \\
\geq \left[2^{d}(n+1)\right]^{\frac{1}{p}} \frac{1}{2^{d}(n+1)} \sum_{k=2^{d}(n+1)}^{2^{d+1}(n+1)-1} |\Delta_{r}a_{k}| \\
\geq \left[2^{d}(n+1)\right]^{\frac{1}{p}-1} \left(\sum_{k=2^{d+1}(n+1)}^{2^{d+1}(n+1)+r-1} |a_{k}| - \sum_{k=2^{d}(n+1)}^{2^{d}(n+1)+r-1} |a_{k}|\right).$$

Hence

$$\sum_{k=2^{d+1}(n+1)}^{2^{d+1}(n+1)+r-1} |a_k| \le \sum_{k=2^{d}(n+1)}^{2^{d}(n+1)+r-1} |a_k| + \left[2^d(n+1)\right]^{1-\frac{1}{p}} \left(\sum_{k=2^d(n+1)}^{2^{d+1}(n+1)-1} |\triangle_r a_k|^p\right)^{\frac{1}{p}}$$

and this ends our proof.

Lemma 6 Let $(a_k) \in GM(p, {}_3\beta(\theta), r), p \ge 1, r \in \mathbb{N}, d \in \mathbb{N}_0, and 0 < \theta < \frac{1}{p}$. Then

$$\sum_{k=2^d(n+1)}^{2^d(n+1)+r-1} |a_k| \le C \frac{1}{1-2^{\theta-\frac{1}{p}}} \left(2^d(n+1)\right)^{\theta-\frac{1}{p}} \sum_{k=\left[\frac{2^d(n+1)}{c}\right]}^{\infty} \frac{|a_k|}{k^{\theta}}.$$

Proof We have

$$\sum_{k=2^d(n+1)}^{2^d(n+1)+r-1} |a_k| \le \sum_{j=0}^{\infty} \sum_{k=2^j 2^d(n+1)}^{2^{j+1} 2^d(n+1)-1} |\triangle_r a_k|.$$

Using Hölder inequality with p > 1, we get

$$\begin{split} &\sum_{j=0}^{\infty} \sum_{k=2^{j} 2^{d} (n+1)-1}^{2^{j+1} 2^{d} (n+1)-1} |\Delta_{r} a_{k}| \\ &\leq \sum_{j=0}^{\infty} \left[\left(\sum_{k=2^{j} 2^{d} (n+1)-1}^{2^{j+1} 2^{d} (n+1)-1} |\Delta_{r} a_{k}|^{p} \right)^{\frac{1}{p}} \left(\sum_{k=2^{j} 2^{d} (n+1)-1}^{2^{j+1} 2^{d} (n+1)-1} 1^{\frac{p}{p-1}} \right)^{1-\frac{1}{p}} \right] \\ &\leq C \sum_{j=0}^{\infty} \left(2^{j} 2^{d} (n+1) \right)^{1-\frac{1}{p}} \left(2^{j} 2^{d} (n+1) \right)^{\theta-1} \sum_{k=\left[\frac{2^{j} 2^{d} (n+1)}{c}\right]}^{\infty} \frac{|a_{k}|}{k^{\theta}} \\ &\leq C \left(2^{d} (n+1) \right)^{\theta-\frac{1}{p}} \sum_{k=\left[\frac{2^{d} (n+1)}{c}\right]}^{\infty} \frac{|a_{k}|}{k^{\theta}} \sum_{j=0}^{\infty} \left(2^{\theta-\frac{1}{p}} \right)^{j}. \end{split}$$

When p = 1, we have

$$\begin{split} \sum_{j=0}^{\infty} \sum_{k=2^{j} 2^{d}(n+1)}^{2^{j+1} 2^{d}(n+1)-1} |\triangle_{r} a_{k}| &\leq C \sum_{j=0}^{\infty} \left(2^{j} 2^{d}(n+1) \right)^{\theta-1} \sum_{k=\left[\frac{2^{j} 2^{d}(n+1)}{c}\right]}^{\infty} \frac{|a_{k}|}{k^{\theta}} \\ &\leq C \left(2^{d}(n+1) \right)^{\theta-1} \sum_{k=\left[\frac{2^{d}(n+1)}{c}\right]}^{\infty} \frac{|a_{k}|}{k^{\theta}} \sum_{j=0}^{\infty} \left(2^{\theta-1} \right)^{j}. \end{split}$$

If $\theta - \frac{1}{p} < 0$, then

$$\sum_{k=2^d(n+1)}^{2^d(n+1)+r-1}|a_k| \le C \frac{1}{1-2^{\theta-\frac{1}{p}}} \left(2^d(n+1)\right)^{\theta-\frac{1}{p}} \sum_{k=\left[\frac{2^d(n+1)}{r}\right]}^{\infty} \frac{|a_k|}{k^{\theta}}$$

and our proof is complete.

4 Proofs

4.1 Proof of Theorem 3

Let $(a_n) \in GM(p, {}_3\beta(\theta), r)$, where p > 0, $r \in \mathbb{N}$, and $\theta \in (0, 1)$. Then

$$\left(\sum_{k=n}^{\infty} |\Delta_r a_k|^p\right)^{\frac{1}{p}} = \left(\sum_{d=0}^{\infty} \sum_{k=2^d n}^{2^{d+1}n-1} |\Delta_r a_k|^p\right)^{\frac{1}{p}} \\
\leq \left(\sum_{d=0}^{\infty} \left(C(2^d n)^{\theta-1} \sum_{k=\left[\frac{2^d n}{c}\right]}^{\infty} \frac{|a_k|}{k^{\theta}}\right)^p\right)^{\frac{1}{p}} \\
\leq Cn^{\theta-1} \sum_{k=\left[\frac{n}{c}\right]}^{\infty} \frac{|a_k|}{k^{\theta}} \left(\sum_{d=0}^{\infty} (2^{(\theta-1)p})^d\right)^{\frac{1}{p}}.$$

If $0 < \theta < 1$ then $(\theta - 1)p < 0$, and we have

$$\left(\sum_{k=n}^{\infty}|\Delta_r a_k|^p\right)^{\frac{1}{p}} \leq C\left(\frac{1}{1-2^{(\theta-1)p}}\right)^{\frac{1}{p}}n^{\theta-1}\sum_{k=\lfloor\frac{n}{c}\rfloor}^{\infty}\frac{|a_k|}{k^{\theta}}.$$

So $(a_n) \in \overline{GM}(p, {}_3\beta(\theta), r)$.

Now we assume $(a_n) \in \overline{GM}(p, {}_3\beta(1), r), p > 0, r \in \mathbb{N}$. We have

$$\left(\sum_{k=n}^{2n-1}|\triangle_r a_k|^p\right)^{\frac{1}{p}} \leq \left(\sum_{k=n}^{\infty}|\triangle_r a_k|^p\right)^{\frac{1}{p}} \leq Cn^{\theta-1}\sum_{k=\lfloor \frac{n}{2}\rfloor}^{\infty} \frac{|a_k|}{k^{\theta}}.$$

This means $(a_n) \in GM(p, {}_3\beta(1), r)$. \square

4.2 Proof of Theorem 4

Let $r \in \mathbb{N}$, $\theta \in (0,1]$, $0 < p_1 \le p_2$, and $(a_n) \in GM(p_1, {}_3\beta(\theta), r)$. We will show that $GM(p_1, {}_3\beta(\theta), r) \subseteq GM(p_2, {}_3\beta(\theta), r)$. Using Lemma 3, we have

$$\left(\sum_{k=n}^{2n-1} |\triangle_r a_k|^{p_2}\right)^{\frac{1}{p_2}} \le \left(\sum_{k=n}^{2n-1} |\triangle_r a_k|^{p_1}\right)^{\frac{1}{p_1}} \le cn^{\theta-1} \sum_{k=n}^{\infty} \frac{|a_k|}{k^{\theta}}.$$

This means that $(a_n) \in GM(p_2, {}_3\beta(\theta), r)$.

Now we will show that $GM(p_1, {}_3\beta(\theta), r) \neq GM(p_2, {}_3\beta(\theta), r)$ for $0 < p_1 < p_2$. Let

$$a_n = \begin{cases} \frac{1}{n^2}, & \text{when } 2r \nmid n, \\ \frac{1}{(n-r)^2} + \frac{1}{n^2 n^{\frac{1}{p_2}}}, & \text{when } 2r \mid n. \end{cases}$$

We prove that $(a_n) \in GM(p_2, {}_3\beta(\theta), r)$. Suppose

$$A_n = \{k \in \mathbb{N} : n \le k \le 2n - 1 \text{ and } 2r|k\},$$

$$B_n = \{k \in \mathbb{N} : n \le k \le 2n - 1, 2r \nmid k \text{ and } 2r \nmid k + r\},$$

$$C_n = \{k \in \mathbb{N} : n \le k \le 2n - 1, 2r \nmid k \text{ and } 2r|k + r\}.$$

Then

$$\begin{split} &\left(\sum_{k=n}^{2n-1}|a_k-a_{k+r}|^{p_2}\right)^{\frac{1}{p_2}} \\ &= \left(\sum_{k\in A_n}\left|\frac{1}{(k-r)^2} + \frac{1}{k^2k^{\frac{1}{p_2}}} - \frac{1}{(k+r)^2}\right|^{p_2} \\ &\quad + \sum_{k\in B_n}\left|\frac{1}{k^2} - \frac{1}{(k+r)^2}\right|^{p_2} + \sum_{k\in C_n}\left|\frac{1}{k^2} - \frac{1}{k^2} - \frac{1}{(k+r)^2(k+r)^{\frac{1}{p_2}}}\right|^{p_2}\right)^{\frac{1}{p_2}} \\ &\leq \left(\sum_{k\in A_n}\left(\frac{4kr}{\frac{1}{4}k^2k^2} + \frac{1}{k^{2+\frac{1}{p_2}}}\right)^{p_2} + \sum_{k\in B_n}\left(\frac{2kr+r^2}{k^2(k+r)^2}\right)^{p_2} + \sum_{k\in C_n}\left(\frac{1}{(k+r)^{2+\frac{1}{p_2}}}\right)^{p_2}\right)^{\frac{1}{p_2}} \\ &\leq (16r+1)\left(\sum_{k=n}^{2n-1}\left(\frac{1}{k^{2+\frac{1}{p_2}}}\right)^{p_2}\right)^{\frac{1}{p_2}} \leq \frac{17r}{n^2}. \end{split}$$

Moreover,

$$\frac{17r}{n^2} \le 2^{2+\theta} 17r \left(n^{\theta-1} \sum_{k=n}^{2n-1} \frac{1}{k^2} \frac{1}{k^{\theta}} \right) \le 2^{2+\theta} 17r n^{\theta-1} \sum_{k=\lfloor \frac{n}{\varepsilon} \rfloor}^{\infty} \frac{|a_k|}{k^{\theta}}.$$

This means $(a_n) \in GM(p_2, {}_3\beta(\theta), r)$. We will show that $(a_n) \notin GM(p_1, {}_3\beta(\theta), r)$. We have

$$\left(\sum_{k=n}^{2n-1}|a_k-a_{k+r}|^{p_1}\right)^{\frac{1}{p_1}} \geq \left(\sum_{k\in C_n} \frac{1}{(k+r)^{2p_1+\frac{p_1}{p_2}}}\right)^{\frac{1}{p_1}} \geq \frac{1}{(4r)^{2+\frac{1}{p_2}+\frac{2}{p_1}}} \frac{n^{\frac{1}{p_1}}}{n^{2+\frac{1}{p_2}}}.$$

Let

$$D_n = \left\{ k \in \mathbb{N} : \left[\frac{n}{c} \right] \le k \text{ and } 2r|k \right\},$$

$$E_n = \left\{ k \in \mathbb{N} : \left[\frac{n}{c} \right] \le k \text{ and } 2r \nmid k \right\}.$$

On the other hand, we get

$$\begin{split} n^{\theta-1} \sum_{k=\left[\frac{n}{c}\right]}^{\infty} \frac{a_k}{k^{\theta}} &= n^{\theta-1} \bigg(\sum_{k \in D_n} \frac{1}{k^2 k^{\theta}} + \sum_{k \in E_n} \bigg(\frac{1}{(k-r)^2} + \frac{1}{k^{2+\frac{1}{p_2}}} \bigg) \frac{1}{k^{\theta}} \bigg) \\ &\leq 5 n^{\theta-1} \sum_{k=\left[\frac{n}{c}\right]}^{\infty} \frac{1}{k^{2+\theta}} \ll n^{-2}. \end{split}$$

Therefore the inequality

$$\left(\sum_{k=n}^{2n-1} |\Delta_r a_k|^{p_1}\right)^{\frac{1}{p_1}} \le C n^{\theta-1} \sum_{k=\lfloor \frac{n}{\sigma} \rfloor}^{\infty} \frac{a_k}{k^{\theta}}$$

cannot be satisfied because $n^{\frac{1}{p_1}-\frac{1}{p_2}} \to \infty$ as $n \to \infty$. \square

4.3 Proof of Theorem 5

Let $r_1, r_2 \in \mathbb{N}$, $r_1 \le r_2, r_1 | r_2, p \ge 1$ and $(a_n) \in GM(p, {}_3\beta(\theta), r_1)$. If $r_1 | r_2$, then $r_2 = \alpha r_1$, where $\alpha \in \mathbb{N}$. Using Hölder inequality with p > 1, we have

$$\begin{split} &\left(\sum_{k=n}^{2n-1}|a_{k}-a_{k+r_{2}}|^{p}\right)^{\frac{1}{p}} \\ &= \left(\sum_{k=n}^{2n-1}\left|\sum_{l=0}^{\alpha-1}(a_{k+lr_{1}}-a_{k+(l+1)r_{1}})\right|^{p}\right)^{\frac{1}{p}} \\ &\leq \left(\sum_{k=n}^{2n-1}\left(\sum_{l=0}^{\alpha-1}|a_{k+lr_{1}}-a_{k+(l+1)r_{1}}|\right)^{p}\right)^{\frac{1}{p}} \\ &\leq \left(\sum_{k=n}^{2n-1}\left(\left(\sum_{l=0}^{\alpha-1}|a_{k+lr_{1}}-a_{k+(l+1)r_{1}}|^{p}\right)^{\frac{1}{p}}\left(\sum_{l=0}^{\alpha-1}1^{\frac{p}{p-1}}\right)^{1-\frac{1}{p}}\right)^{p}\right)^{\frac{1}{p}} \\ &\leq \alpha^{1-\frac{1}{p}}\left(\sum_{k=n}^{2n-1}\left(\sum_{l=0}^{\alpha-1}|a_{k+lr_{1}}-a_{k+(l+1)r_{1}}|^{p}\right)\right)^{\frac{1}{p}} \\ &\leq \alpha^{1-\frac{1}{p}}\left(\sum_{l=0}^{\alpha-1}\left(C(n+lr_{1})^{\theta-1}\sum_{k=\left[\frac{n+lr_{1}}{c}\right]}^{\infty}\frac{|a_{k}|}{k^{\theta}}\right)^{p}\right)^{\frac{1}{p}} \\ &\leq \alpha Cn^{\theta-1}\sum_{k=\left[\frac{n}{c}\right]}^{\infty}\frac{|a_{k}|}{k^{\theta}}. \end{split}$$

If p = 1 then

$$\begin{split} \sum_{k=n}^{2n} |a_k - a_{k+r_2}| &\leq \sum_{k=n}^{2n-1} \sum_{l=0}^{\alpha-1} |a_{k+lr_1} - a_{k+(l-1)r_1}| \\ &\leq C \sum_{l=0}^{\alpha-1} (n + lr_1)^{\theta-1} \sum_{k=\lfloor \frac{n+lr_1}{\ell} \rfloor}^{\infty} \frac{|a_k|}{k^{\theta}} \leq \alpha C n^{\theta-1} \sum_{k=\lfloor \frac{n}{\ell} \rfloor}^{\infty} \frac{|a_k|}{k^{\theta}}. \end{split}$$

Hence $(a_n) \in GM(p, {}_3\beta(\theta), r_2)$.

Now, we will show that $GM(p, _3\beta(\theta), r_1) \subsetneq GM(p, _3\beta(\theta), r_2)$, when $r_1 < r_2$. Let $a_n = \frac{2 + \alpha_n}{n^2}$, where $\alpha_n = \begin{cases} -1, & \text{when } r_1 \mid n, \\ 1, & \text{when } r_1 \nmid n. \end{cases}$

We will prove that $(a_n) \in GM(p, {}_3\beta(\theta), r_2)$ and $(a_n) \notin GM(p, {}_3\beta(\theta), r_1)$. Let

$$A_n := \{k \in \mathbb{N} : n \le k \le 2n - 1 \text{ and } r_2 | k\},$$

 $B_n := \{k \in \mathbb{N} : n \le k \le 2n - 1 \text{ and } r_2 \nmid k\}.$

Then using Lemma 3 for $p \ge 1$, we have

$$\begin{split} \left(\sum_{k=n}^{2n-1}|a_k-a_{k+r_2}|^p\right)^{\frac{1}{p}} &= \left(\left(\sum_{k\in A_n}+\sum_{k\in B_n}\right)|a_k-a_{k+r_2}|^p\right)^{\frac{1}{p}} \\ &= \left(\sum_{k\in A_n}\left|\frac{1}{k^2}-\frac{1}{(k+r_2)^2}\right|^p + \sum_{k\in B_n}\left|\frac{3}{k^2}-\frac{3}{(k+r_2)^2}\right|^p\right)^{\frac{1}{p}} \\ &\leq \left(3^p\sum_{k=n}^{2n-1}\left|\frac{(k+r_2)^2-k^2}{(k+r_2)^2k^2}\right|^p\right)^{\frac{1}{p}} \\ &= 3\left(\sum_{k=n}^{2n-1}\left|\frac{2r_2k+r_2^2}{(k+r_2)^2k^2}\right|^p\right)^{\frac{1}{p}} \\ &\leq 6r_2\left(\sum_{k=n}^{2n-1}\left(\frac{1}{k^3}\right)^p\right)^{\frac{1}{p}} \leq 6r_2\sum_{k=n}^{2n-1}\frac{1}{k^3}\leq \frac{6r_2}{n}\sum_{k=n}^{2n-1}\frac{1}{k^2}. \end{split}$$

Moreover,

$$\frac{6r_2}{n} \sum_{k=n}^{2n-1} \frac{1}{k^2} = 6r_2 n^{\theta-1} \frac{1}{(2n)^{\theta}} 2^{\theta} \sum_{k=n}^{2n-1} \frac{1}{k^2}$$

$$\leq 6r_2 2^{\theta} n^{\theta-1} \sum_{k=n}^{2n-1} \frac{1}{k^2} \frac{1}{k^{\theta}}$$

$$\leq 6r_2 2^{\theta} n^{\theta-1} \sum_{k=n}^{2n-1} \frac{a_k}{k^{\theta}} \leq 6r_2 2^{\theta} n^{\theta-1} \sum_{k=\left[\frac{n}{c}\right]}^{\infty} \frac{a_k}{k^{\theta}}.$$

It means that $(a_n) \in GM(p, {}_3\beta(\theta), r_2)$. Furthermore,

$$\begin{split} \left(\sum_{k=n}^{2n-1} |a_k - a_{k+r_1}|^p\right)^{\frac{1}{p}} &\geq \left(\sum_{k \in A_n} |a_k - a_{k+r_1}|^p\right)^{\frac{1}{p}} \geq \left(\sum_{k \in A_n} \left|\frac{1}{k^3} - \frac{3}{(k+r_1)^2}\right|^p\right)^{\frac{1}{p}} \\ &= \left(\sum_{k \in A_n} \left|\frac{(k+r_1)^2 - 3k^2}{(k+r_1)^2k^2}\right|^p\right)^{\frac{1}{p}} = \left(\sum_{k \in A_n} \left|\frac{-2k^2 + 2kr_1 + r_1^2}{(k+r_1)^2k^2}\right|^p\right)^{\frac{1}{p}}. \end{split}$$

If $n \ge 5r_1$, then $2n^2 - 2nr_1 - r_1^2 \ge (n + r_1)^2$. Whence for $n \ge 5r_1$,

$$\left(\sum_{k=n}^{2n-1} |a_k - a_{k+r_1}|^p\right)^{\frac{1}{p}} \ge \left(\sum_{k \in A_n} \left(\frac{2k^2 - 2kr_1 - r_1^2}{(k+r_1)^2 k^2}\right)^p\right)^{\frac{1}{p}}$$
$$\ge \frac{1}{(2n)^2} \left(\frac{n}{2r_1}\right)^{\frac{1}{p}} = \frac{1}{2^{2+\frac{1}{p}}r_1} n^{-2+\frac{1}{p}}.$$

On the other hand,

$$n^{\theta-1} \sum_{k=[\frac{n}{c}]}^{\infty} \frac{a_k}{k^{\theta}} \le n^{\theta-1} \sum_{k=[\frac{n}{c}]}^{\infty} \frac{3}{k^2} \frac{1}{k^{\theta}} \le 3n^{\theta-1} \sum_{k=[\frac{n}{c}]}^{\infty} \frac{1}{k^{2+\theta}} \ll n^{-2}.$$

Therefore, the inequality

$$\left(\sum_{k=n}^{2n-1} |\triangle_{r_1} a_k|^p\right)^{\frac{1}{p}} \le C n^{\theta-1} \sum_{k=\left[\frac{n}{C}\right]}^{\infty} \frac{a_k}{k^{\theta}}$$

cannot be satisfied because $n^{\frac{1}{p}} \to \infty$ as $n \to \infty$. \square

4.4 Proof of Theorem 6

We prove the theorem for the case when $\phi(x) = g(x)$. We have

$$\left\|\omega_{\alpha,r}|g|^{s}\right\|_{L^{1}}=2\int_{0}^{\pi}\omega_{\alpha,r}(x)\left|g(x)\right|^{s}dx.$$

For an odd r,

$$\int_{0}^{\pi} \omega_{\alpha,r}(x) |g(x)|^{s} dx = \sum_{l=0}^{[r/2]} \int_{\frac{2l\pi}{r}}^{\frac{2l\pi}{r} + \frac{\pi}{r}} \omega_{\alpha,r}(x) \left| \sum_{k=1}^{\infty} b_{k} \sin kx \right|^{s} dx + \sum_{l=0}^{[r/2]-1} \int_{\frac{2l\pi}{r} + \frac{\pi}{r}}^{\frac{2(l+1)\pi}{r}} \omega_{\alpha,r}(x) \left| \sum_{k=1}^{\infty} b_{k} \sin kx \right|^{s} dx$$

(for r = 1 the last sum should be omitted), and for an even r,

$$\int_{0}^{\pi} \omega_{\alpha,r}(x) |g(x)|^{s} dx = \sum_{l=0}^{[r/2]} \left(\int_{\frac{2l\pi}{r}}^{\frac{2l\pi}{r} + \frac{\pi}{r}} + \int_{\frac{2l\pi}{r} + \frac{\pi}{r}}^{\frac{2(l+1)\pi}{r}} \right) \omega_{\alpha,r}(x) \left| \sum_{k=1}^{\infty} b_{k} \sin kx \right|^{s} dx.$$

Now, we estimate the following integral:

$$\int_{\frac{2l\pi}{r}}^{\frac{2l\pi}{r} + \frac{\pi}{r}} \omega_{\alpha,r}(x) \left| \sum_{k=1}^{\infty} b_k \sin kx \right|^s dx \ll \left(\int_{\frac{2l\pi}{r}}^{\frac{2l\pi}{r} + \frac{\pi}{r}} \omega_{\alpha,r}(x) \left| \sum_{k=1}^{n} b_k \sin kx \right|^s dx \right.$$

$$\left. + \int_{\frac{2l\pi}{r}}^{\frac{2l\pi}{r} + \frac{\pi}{r}} \omega_{\alpha,r}(x) \left| \sum_{k=n+1}^{\infty} b_k \sin kx \right|^s dx \right)$$

$$:= I_1 + I_2.$$

By Lemma 2, for α < 1, we have

$$I_{1} = \sum_{n=r}^{\infty} \int_{\frac{2l\pi}{r} + \frac{\pi}{n}}^{\frac{2l\pi}{r} + \frac{\pi}{n}} \left(x - \frac{2l\pi}{r} \right)^{-\alpha} \left| \sum_{k=1}^{n} b_{k} \sin kx \right|^{s} dx$$

$$\ll \sum_{n=r}^{\infty} n^{\alpha - 2} \left(\sum_{k=1}^{n} |b_{k}| \right)^{s}$$

$$\leq \sum_{n=1}^{\infty} n^{\alpha - 2 - \frac{s}{p} + 2s} |b_{n}|^{s}.$$

$$(3)$$

Using Lemma 1 when $m \to \infty$ and the inequality

$$\frac{r}{\pi}x - 2l \le \left|\sin\frac{rx}{2}\right| \quad \text{for } x \in \left(\frac{2l\pi}{r}, \frac{2l\pi}{r} + \frac{\pi}{r}\right),$$

we get

$$I_{2} = \sum_{n=r}^{\infty} \int_{2l\pi/r+\pi/(n+1)}^{2l\pi/r+\pi/n} \left(x - \frac{2l\pi}{r} \right)^{-\alpha} \left| \sum_{k=n+1}^{\infty} b_{k} \sin kx \right|^{s} dx$$

$$\ll \sum_{n=r}^{\infty} n^{\alpha} \int_{2l\pi/r+\pi/(n+1)}^{2l\pi/r+\pi/(n+1)} \left| \sum_{d=0}^{\infty} \left(\sum_{k=2^{d+1}(n+1)-1+r}^{2^{d+1}(n+1)-1+r} b_{k} \widetilde{D}_{k,-r}(x) \right) \right|^{s} dx$$

$$- \sum_{k=2^{d}(n+1)}^{2^{d}(n+1)+r-1} b_{k} \widetilde{D}_{k,-r}(x) - \sum_{k=2^{d}(n+1)}^{2^{d+1}(n+1)-1} \Delta_{r} b_{k} \widetilde{D}_{k,r}(x) \right) \right|^{s} dx$$

$$\leq \sum_{n=r}^{\infty} n^{\alpha} \int_{2l\pi/r+\pi/(n+1)}^{2l\pi/r+\pi/n} \frac{1}{(rx/\pi - 2l)^{s}}$$

$$\times \left(\sum_{d=0}^{\infty} \left(\sum_{k=2^{d+1}(n+1)}^{2^{d+1}(n+1)-1+r} |b_{k}| + \sum_{k=2^{d}(n+1)}^{2^{d}(n+1)+r-1} |b_{k}| + \sum_{k=2^{d}(n+1)}^{2^{d+1}(n+1)-1} |\Delta_{r} b_{k}| \right) \right)^{s} dx$$

$$\ll \sum_{n=r}^{\infty} n^{\alpha+s-2} \left(\sum_{d=0}^{\infty} \left(\sum_{k=2^{d+1}(n+1)}^{2^{d+1}(n+1)-1+r} |b_{k}| + \sum_{k=2^{d}(n+1)}^{2^{d}(n+1)+r-1} |b_{k}| + \sum_{k=2^{d}(n+1)}^{2^{d+1}(n+1)-1} |\Delta_{r} b_{k}| \right) \right)^{s}.$$

Further by Hölder inequality with p > 1, we get

$$I_{2} \ll \sum_{n=r}^{\infty} n^{\alpha+s-2} \left(\sum_{d=0}^{\infty} \left[\left(\sum_{k=2^{d}(n+1)}^{2^{d+1}(n+1)-1} |\Delta_{r}b_{k}|^{p} \right)^{\frac{1}{p}} \left(\sum_{k=2^{d}(n+1)}^{2^{d+1}(n+1)-1} 1 \right)^{1-\frac{1}{p}} \right.$$

$$+ \sum_{k=2^{d+1}(n+1)}^{2^{d+1}(n+1)-1+r} |b_{k}| + \sum_{k=2^{d}(n+1)}^{2^{d}(n+1)+r-1} |b_{k}| \right] \right)^{s}$$

$$\leq \sum_{n=r}^{\infty} n^{\alpha+s-2} \left(\sum_{d=0}^{\infty} \left[\left(\sum_{k=2^{d}(n+1)}^{2^{d+1}(n+1)-1} |\Delta_{r}b_{k}|^{p} \right)^{\frac{1}{p}} \left(2^{d}(n+1) \right)^{1-\frac{1}{p}} \right.$$

$$+ \sum_{k=2^{d+1}(n+1)-1+r}^{2^{d+1}(n+1)-1+r} |b_{k}| + \sum_{k=2^{d}(n+1)}^{2^{d}(n+1)+r-1} |b_{k}| \right] \right)^{s}.$$

Applying Lemma 5, we have

$$I_2 \ll \sum_{n=r}^{\infty} n^{\alpha+s-2} \left(\sum_{d=0}^{\infty} \left[\left(2^d (n+1) \right)^{1-\frac{1}{p}} \left(2^d (n+1) \right)^{\theta-1} \sum_{k=\left[\frac{2^d (n+1)}{c} \right]}^{\infty} \frac{|b_k|}{k^{\theta}} + \sum_{k=2^d (n+1)}^{2^d (n+1)+r-1} |b_k| \right] \right)^s.$$

From Lemma 6, we get

$$\begin{split} I_{2} \ll \sum_{n=r}^{\infty} n^{\alpha+s-2} \Biggl(\sum_{d=0}^{\infty} \Biggl[\left(2^{d} (n+1) \right)^{\theta-\frac{1}{p}} \sum_{k=\left[\frac{2^{d} (n+1)}{c}\right]}^{\infty} \frac{|b_{k}|}{k^{\theta}} \\ + \frac{1}{1-2^{\theta-\frac{1}{p}}} \Bigl(2^{d} (n+1) \Bigr)^{\theta-\frac{1}{p}} \sum_{k=\left[\frac{2^{d} (n+1)}{c}\right]}^{\infty} \frac{|b_{k}|}{k^{\theta}} \Biggr] \Biggr)^{s} \\ \ll \sum_{n=r}^{\infty} n^{\alpha+s-2+\theta s-\frac{s}{p}} \Biggl(\sum_{d=0}^{\infty} \left(2^{d} \right)^{\theta-\frac{1}{p}} \sum_{k=\left[\frac{2^{d} (n+1)}{c}\right]}^{\infty} \frac{|b_{k}|}{k^{\theta}} \Biggr)^{s}. \end{split}$$

If $\theta - \frac{1}{p} < 0$, then

$$\begin{split} I_2 &\ll \sum_{n=r}^{\infty} n^{\alpha+s-2+\theta s - \frac{s}{p}} \left(\sum_{k=\left[\frac{n+1}{c}\right]}^{\infty} \frac{|b_k|}{k^{\theta}} \right)^s \\ &\ll \sum_{n=r}^{\infty} n^{\alpha+s-2-\frac{s}{p}+\theta s} \left(\sum_{k=\left[\frac{n}{c}\right]}^{n} \frac{|b_k|}{k^{\theta}} \right)^s + \sum_{n=r}^{\infty} n^{\alpha+s-2-\frac{s}{p}+\theta s} \left(\sum_{k=n}^{\infty} \frac{|b_k|}{k^{\theta}} \right)^s \\ &\leq \sum_{n=1}^{\infty} n^{\alpha-2-\frac{s}{p}} \left(\sum_{k=1}^{n} k|b_k| \right)^s + \sum_{n=1}^{\infty} n^{\alpha+s-2-\frac{s}{p}+\theta s} \left(\sum_{k=n}^{\infty} \frac{|b_k|}{k^{\theta}} \right)^s. \end{split}$$

Now, we use Lemma 2 and get

$$I_{2} \ll \sum_{n=1}^{\infty} (n^{\alpha-2-\frac{s}{p}})^{1-s} (n|b_{n}|)^{s} \left(\sum_{k=n}^{\infty} k^{\alpha-2-\frac{s}{p}}\right)^{s} + \sum_{n=1}^{\infty} (n^{\alpha+s-2-\frac{s}{p}+\theta s})^{1-s} \left(\frac{|b_{n}|}{n^{\theta}}\right)^{s} \left(\sum_{k=1}^{n} k^{\alpha+s-2-\frac{s}{p}+\theta s}\right)^{s}.$$

For $1 + \frac{s}{p} - \theta s - s < \alpha < 1 + \frac{s}{p}$, we have

$$I_2 \ll \sum_{n=1}^{\infty} n^{\alpha - 2 - \frac{s}{p} + 2s} |b_n|^s. \tag{4}$$

Now, we estimate the following integral:

$$\int_{\frac{2(l+1)\pi}{r}}^{\frac{2(l+1)\pi}{r}} \omega_{\alpha,r}(x) \left| \sum_{k=1}^{\infty} b_k \sin kx \right|^s dx \ll \int_{\frac{2(l+1)\pi}{r} - \frac{\pi}{r}}^{\frac{2(l+1)\pi}{r}} \omega_{\alpha,r}(x) \left| \sum_{k=1}^{n} b_k \sin kx \right|^s dx \\ + \int_{\frac{2(l+1)\pi}{r} - \frac{\pi}{r}}^{\frac{2(l+1)\pi}{r}} \omega_{\alpha,r}(x) \left| \sum_{k=n+1}^{\infty} b_k \sin kx \right|^s dx \\ := I_3 + I_4.$$

By Lemma 2, for α < 1, we have

$$I_{3} = \sum_{n=r}^{\infty} \int_{\frac{2(l+1)\pi}{r} - \frac{\pi}{n+1}}^{\frac{2(l+1)\pi}{r} - \frac{\pi}{n+1}} \left(\frac{2(l+1)\pi}{r} - x\right)^{-\alpha} \left| \sum_{k=1}^{n} b_{k} \sin kx \right|^{s} dx$$

$$\ll \sum_{n=1}^{\infty} n^{\alpha-2} \left(\sum_{k=1}^{n} |b_{k}|\right)^{s}$$

$$\ll \sum_{n=1}^{\infty} n^{\alpha+s-2} |b_{n}|^{s} \leq \sum_{n=1}^{\infty} n^{\alpha-2-\frac{s}{p}+2s} |b_{n}|^{s}.$$
(5)

Using Lemma 1 with $m \to \infty$ and the inequality

$$2(l+1) - \frac{r}{\pi}x \le \left|\sin\frac{rx}{2}\right| \quad \text{for } x \in \left(\frac{(2l+1)\pi}{r}, \frac{2(l+1)\pi}{r}\right),$$

we have

$$I_4 = \sum_{n=r}^{\infty} \int_{\frac{2(l+1)\pi}{r} - \frac{\pi}{n}}^{\frac{2(l+1)\pi}{r} - \frac{\pi}{n+1}} \left(\frac{2(l+1)\pi}{r} - x \right)^{-\alpha} \left| \sum_{k=n+1}^{\infty} b_k \sin kx \right|^s dx,$$

and similarly as in the case I_2 we obtain

$$I_4 \ll \sum_{n=1}^{\infty} n^{\alpha - 2 - \frac{s}{p} + 2s} |b_n|^s. \tag{6}$$

Finally, combining (3)–(6), we obtain that

$$\int_{-\pi}^{\pi} \omega_{\alpha,r}(x) |g(x)|^{s} dx \le C \sum_{n=1}^{\infty} n^{\alpha - 2 - \frac{s}{p} + 2s} |b_{n}|^{s}.$$

The case when $\phi(x) = \sum_{k=1}^{\infty} b_k \cos kx$ can be proved similarly. \square

4.5 Proof of Theorem 7

We prove the theorem for the case where $\phi(x) = \sum_{k=1}^{\infty} b_k \sin kx$. We follow the method adopted by Tikhonov [9]. Note that if $1 - \theta s < \alpha < 1 + s$, then $\phi \in L^1$. Namely, if s > 1 then using Hölder inequality, we have

$$\int_{0}^{\pi} |\phi(x)| dx = \int_{0}^{\pi} (\omega_{\alpha,r}(x))^{\frac{1}{s}} |\phi(x)| \left(\frac{1}{\omega_{\alpha,r}(x)}\right)^{\frac{1}{s}} dx$$

$$\leq \left(\int_{0}^{\pi} \omega_{\alpha,r}(x) |\phi(x)|^{s} dx\right)^{\frac{1}{s}} \left(\int_{0}^{\pi} (\omega_{\alpha,r}(x)^{-\frac{1}{s}})^{\frac{1}{1-\frac{1}{s}}} dx\right)^{1-\frac{1}{s}}.$$

We will show that $\int_0^{\pi} (\omega_{\alpha,r}(x))^{-\frac{1}{s-1}} dx < \infty$. We can write

$$\int_0^{\pi} \left(\omega_{\alpha,r}(x)\right)^{-\frac{1}{s-1}} dx = \sum_{l=0}^{\left[\frac{r}{2}\right]} \left(\int_{\frac{2l\pi}{r}}^{\frac{(2l+1)\pi}{r}} \left(x - \frac{2l\pi}{r}\right)^{\frac{\alpha}{s-1}} dx + \int_{\frac{(2l+1)\pi}{r}}^{\frac{2(l+1)\pi}{r}} \left(\frac{2(l+1)\pi}{r} - x\right)^{\frac{\alpha}{s-1}} dx\right),$$

when r is an even number, and

$$\int_{0}^{\pi} \left(\omega_{\alpha,r}(x)\right)^{-\frac{1}{s-1}} dx$$

$$= \sum_{l=0}^{\left[\frac{r}{2}\right]} \int_{\frac{2l\pi}{r}}^{\frac{(2l+1)\pi}{r}} \left(x - \frac{2l\pi}{r}\right)^{\frac{\alpha}{s-1}} dx + \sum_{l=0}^{\left[\frac{r}{2}\right]-1} \int_{\frac{(2l+1)\pi}{r}}^{\frac{2(l+1)\pi}{r}} \left(\frac{2(l+1)\pi}{r} - x\right)^{\frac{\alpha}{s-1}} dx,$$

when r is an odd number.

Using integration by substitution, we get

$$\begin{split} \int_0^\pi \left(\omega_{\alpha,r}(x) \right)^{-\frac{1}{s-1}} dx &= \sum_{l=0}^{\left[\frac{r}{2}\right]} \left(\int_0^{\frac{\pi}{r}} y^{\frac{\alpha}{s-1}} \, dy + \int_0^{\frac{\pi}{r}} y^{\frac{\alpha}{s-1}} \, dy \right) \\ &= 2 \left(\left[\frac{r}{2}\right] + 1 \right) \frac{s-1}{\alpha+s-1} \left(\frac{\pi}{r}\right)^{\frac{\alpha+s-1}{s-1}}, \end{split}$$

when r is an even number, and

$$\int_{0}^{\pi} \left(\omega_{\alpha,r}(x)\right)^{-\frac{1}{s-1}} dx = \sum_{l=0}^{\left[\frac{r}{2}\right]} \int_{0}^{\frac{\pi}{r}} y^{\frac{\alpha}{s-1}} dy + \sum_{l=0}^{\left[\frac{r}{2}\right]-1} \int_{0}^{\frac{\pi}{r}} y^{\frac{\alpha}{s-1}} dx$$
$$= \left(2\left[\frac{r}{2}\right] + 1\right) \frac{s-1}{\alpha+s-1} \left(\frac{\pi}{r}\right)^{\frac{\alpha+s-1}{s-1}},$$

when r is an odd number.

If s = 1 then $\alpha > 0$ and

$$\int_0^{\pi} |\phi(x)| dx = \int_0^{\pi} \omega_{\alpha,r}(x) |\phi(x)| \frac{1}{\omega_{\alpha,r}(x)} dx$$

$$\leq \sup_x \frac{1}{\omega_{\alpha,r}(x)} \int_0^{\pi} \omega_{\alpha,r}(x) |\phi(x)| dx = \left(\frac{\pi}{r}\right)^{\alpha} \int_0^{\pi} \omega_{\alpha,r}(x) |\phi(x)| dx.$$

Further, integrating ϕ , we have

$$F(x) := \int_0^x \phi(t) dt = \sum_{n=1}^\infty \frac{b_n}{n} (1 - \cos nx) = 2 \sum_{n=1}^\infty \frac{b_n}{n} \sin^2 \frac{nx}{2},$$

and consequently,

$$F\left(\frac{\pi}{k}\right) \ge \sum_{n=\lfloor k/2\rfloor}^{k} \frac{b_n}{n}.\tag{7}$$

Since $(b_n) \in GM(p, {}_3\beta(\theta), r)$ and using Lemma 4, we get for $\theta - \frac{1}{p} < 0$ that

$$\begin{split} b_{\nu} &\leq \sum_{k=\nu}^{\nu+r-1} b_{l} = \sum_{d=0}^{\infty} \sum_{k=2^{d}\nu}^{2^{d+1}\nu-1} |\Delta_{r}b_{k}| \leq \sum_{d=0}^{\infty} 2^{d}\nu \left[\frac{1}{2^{d}\nu} \sum_{k=2^{d}\nu}^{2^{d+1}\nu-1} |\Delta_{r}b_{k}|^{p} \right]^{\frac{1}{p}} \\ &\leq C \sum_{d=0}^{\infty} \left(2^{d}\nu \right)^{\theta-\frac{1}{p}} \sum_{k=\left[\frac{2^{d}\nu}{c}\right]}^{\infty} \frac{b_{k}}{k^{\theta}} \leq C \nu^{\theta-\frac{1}{p}} \sum_{d=0}^{\infty} \left(2^{\theta-\frac{1}{p}} \right)^{d} \sum_{k=\left[\frac{\nu}{c}\right]}^{\infty} \frac{b_{k}}{k^{\theta}} \\ &\leq \frac{1}{1-2^{\theta-\frac{1}{p}}} C \nu^{\theta-\frac{1}{p}} \sum_{k=\left[\frac{\nu}{2}\right]}^{\infty} \frac{b_{k}}{k^{\theta}} \ll \nu^{\theta-\frac{1}{p}} \sum_{k=\left[\frac{\nu}{2}\right]}^{\infty} \frac{b_{k}}{k^{\theta}} \leq C \nu^{\theta-\frac{1}{p}} \sum_{d=0}^{\infty} \left(2^{d+1} \left[\frac{\nu}{c} \right] \right)^{1-\theta} \sum_{k=2^{d}\left[\frac{\nu}{2}\right]}^{2^{d+1}\left[\frac{\nu}{c}\right]} \frac{b_{k}}{k}. \end{split}$$

Using (7) yields

$$b_{\nu} \ll \nu^{\theta - \frac{1}{p}} \sum_{d=0}^{\infty} \left(2^{d} \left[\frac{\nu}{c} \right] \right)^{1-\theta} F\left(\frac{\pi}{2^{d+1} \left[\frac{\nu}{c} \right]} \right) \ll \nu^{\theta - \frac{1}{p}} \sum_{d=0}^{\infty} \left(2^{d} \left[\frac{\nu}{c} \right] \right)^{-\theta} \sum_{k=2^{d} \left[\frac{\nu}{c} \right]}^{2^{d+1} \left[\frac{\nu}{c} \right] - 1} F\left(\frac{\pi}{k} \right)$$

$$\ll \nu^{\theta - \frac{1}{p}} \sum_{k=\left[\frac{\nu}{c} \right]}^{\infty} \frac{1}{k^{\theta}} F\left(\frac{\pi}{k} \right).$$

Elementary calculations give

$$\begin{split} \sum_{k=1}^{\infty} k^{\alpha-2+\frac{s}{p}} b_k^s &\ll \sum_{k=1}^{\infty} k^{\alpha-2+\frac{s}{p}+(\theta-\frac{1}{p})s} \Biggl(\sum_{\nu=\left[\frac{k}{c}\right]}^{\infty} \frac{1}{\nu^{\theta}} F \left(\frac{\pi}{\nu}\right) \Biggr)^s \\ &\ll \sum_{k=1}^{\infty} k^{\alpha-2} \Biggl(\sum_{\nu=\left[\frac{k}{c}\right]}^{k} F \left(\frac{\pi}{\nu}\right) \Biggr)^s + \sum_{k=1}^{\infty} k^{\alpha-2+\theta s} \Biggl(\sum_{\nu=k}^{\infty} \frac{1}{\nu^{\theta}} F \left(\frac{\pi}{\nu}\right) \Biggr)^s \\ &\ll \sum_{k=1}^{\infty} k^{\alpha-2-s} \Biggl(\sum_{\nu=\left[\frac{k}{c}\right]}^{k} \nu F \left(\frac{\pi}{\nu}\right) \Biggr)^s + \sum_{k=1}^{\infty} k^{\alpha-2+\theta s} \Biggl(\sum_{\nu=k}^{\infty} \frac{1}{\nu^{\theta}} F \left(\frac{\pi}{\nu}\right) \Biggr)^s. \end{split}$$

Using Lemma 2, for $1 - \theta s < \alpha < 1 + s$, we have

$$\sum_{k=1}^{\infty} k^{\alpha - 2 - s} \left(\sum_{\nu = \lfloor \frac{k}{c} \rfloor}^{k} \nu F\left(\frac{\pi}{\nu}\right) \right)^{s} \ll \sum_{k=1}^{\infty} k^{(\alpha - 2 - s)(1 - s)} \left(k F\left(\frac{\pi}{k}\right) \right)^{s} \left(\sum_{\nu = k}^{\infty} \nu^{\alpha - 2 - s} \right)^{s}$$

and

$$\sum_{k=1}^{\infty} k^{\alpha-2+\theta s} \left(\sum_{v=k}^{\infty} \frac{1}{v^{\theta}} F\left(\frac{\pi}{v}\right) \right)^{s} \ll \sum_{k=1}^{\infty} k^{(\alpha-2+\theta s)(1-s)} \left(\frac{1}{k^{\theta}} F\left(\frac{\pi}{k}\right)\right)^{s} \left(\sum_{v=1}^{k} v^{\alpha-2+\theta s}\right)^{s}.$$

Therefore, for $1 - \theta s < \alpha < 1 + s$, we get

$$\sum_{k=1}^{\infty} k^{\alpha-2+\frac{s}{p}} b_k^s \ll \sum_{k=1}^{\infty} k^{\alpha-2+s} \left(F\left(\frac{\pi}{k}\right) \right)^s.$$

Denoting by $d_v := \int_{\frac{\pi}{v+1}}^{\frac{\pi}{v}} |\phi(x)| dx$, we get

$$\sum_{k=1}^{\infty} k^{\alpha-2+\frac{s}{p}} b_k^s \ll \sum_{k=1}^{\infty} k^{\alpha-2+s} \left(\sum_{\nu=k}^{\infty} d_{\nu} \right)^s.$$

By Lemma 2, for $\alpha > 1 - s$, we obtain

$$\sum_{k=1}^{\infty} k^{\alpha - 2 + s} \left(\sum_{\nu = k}^{\infty} d_{\nu} \right)^{s} \ll \sum_{k=1}^{\infty} k^{(\alpha - 2 + s)(1 - s)} d_{k}^{s} \left(\sum_{\nu = 1}^{k} \nu^{\alpha - 2 + s} \right)^{s}$$

$$\ll \sum_{k=1}^{\infty} k^{(\alpha - 2 + s)(1 - s)} k^{(\alpha - 2 + s + 1)s} d_{k}^{s} = \sum_{k=1}^{\infty} k^{\alpha - 2 + 2s} d_{k}^{s}.$$

Applying Hölder inequality when s > 1, we have

$$d_k^s \ll \frac{1}{k^{2(s-1)}} \int_{\frac{\pi}{(k+1)}}^{\frac{\pi}{k}} \left| \phi(x) \right|^s dx.$$

Finally, using the latter estimate, we get

$$\begin{split} \sum_{k=1}^{\infty} k^{\alpha - 2 + \frac{s}{p}} b_k^s & \ll \sum_{k=1}^{\infty} k^{\alpha - 2 + 2s} d_k^s \\ & \leq \sum_{k=1}^{r} k^{\alpha - 2 + 2s} \left(\int_{\frac{\pi}{(k+1)}}^{\frac{\pi}{k}} |\phi(x)| \, dx \right)^s + \sum_{k=r}^{\infty} k^{\alpha} \int_{\frac{\pi}{(k+1)}}^{\frac{\pi}{k}} |\phi(x)|^s \, dx \\ & \ll \left(\int_{0}^{\pi} |\phi(x)| \, dx \right)^s + \sum_{k=r}^{\infty} \int_{\frac{\pi}{k+1}}^{\frac{\pi}{k}} x^{-\alpha} |\phi(x)|^s \, dx \\ & \leq \left(\int_{0}^{\pi} |\phi(x)| \, dx \right)^s + \int_{0}^{\pi} \omega_{\alpha,r}(x) |\phi(x)|^p \, dx < \infty. \end{split}$$

The case when $\phi(x) = \sum_{k=1}^{\infty} b_k \cos kx$ can by proved similarly. \square

5 Conclusions

We have introduced two new classes of p-bounded variation sequences, $\overline{GM}(p,\beta,r)$ and $GM(p,\beta,r)$, where $\beta := (\beta_n)$ is a nonnegative sequence, p a positive real number, $r \in \mathbb{N}$, $\theta \in (0,1]$. Moreover, we have studied properties of such classes and obtained a sufficient and necessary condition for weighted integrability of functions defined by trigonometric series with coefficients belonging to these classes. In particular, from our theorems we derive all related earlier results.

Acknowledgements

The publication costs of this article were covered by University of Zielona Góra.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The study was carried out in collaboration with equal responsibility. All authors read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 16 May 2019 Accepted: 16 October 2019 Published online: 26 October 2019

References

- 1. Boas, R.P. Jr.: Integrability Theorems for Trigonometric Transforms. Springer, New York (1967)
- 2. Chen, Y.M.: On the integrability of functions defined by trigonometrical series. Math. Z. 66, 9-12 (1956)
- 3. Dyachenko, M., Tikhonov, S.: Integrability and continuity of functions represented by trigonometric series: coefficients criteria. Stud. Math. 193(3), 285–306 (2009)
- 4. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)
- 5. Heywood, P.: On the integrability of functions defined by trigonometric series. Quart. J. Math. **5**, 71–76 (1954)
- 6. Leindler, L.: Further sharpening of inequalities of Hardy and Littlewood. Acta Sci. Math. 54, 285–289 (1990)
- Leindler, L.: A new class of numerical sequences and its applications to sine and cosine series. Anal. Math. 28, 279–286 (2002)
- 8. Liflyand, E., Tikhonov, S.: A concept of general monotonicity and applications. Math. Nachr. 284(8–9), 1083–1098 (2011)
- 9. Szal, B.: On weighted L^p integrability of functions defined by trigonometric series. J. Inequal. Appl. 2010, 1 (2010)
- Szal, B.: A new class of numerical sequences and its applications to uniform convergence of sine series. Math. Nachr. 284(14–15), 1985–2002 (2011)
- 11. Szal, B.: On L-convergence of trigonometric series. J. Math. Anal. Appl. 373, 449–463 (2011)
- 12. Tikhonov, S.: Trigonometric series with general monotone coefficients. J. Math. Anal. Appl. 326, 721–735 (2007)
- 13. You, D.S., Zhou, P., Zhou, S.P.: On L^p integrability and convergence of trigonometric series. Stud. Math. **182**(3), 215–226 (2007)
- 14. Zygmund, A.: Trigonometric Series. Cambridge University Press, Cambridge (1977)

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com