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1 Introduction
Let Ls, 1 ≤ s < ∞, be the space of all s-power integrable functions f of period 2π with the
norm

‖f ‖Ls =
(∫ π

–π

∣∣f (x)
∣∣s dx

) 1
s
.

Write

f (x) =
∞∑

k=1

ak cos kx, g(x) =
∞∑

k=1

ak sin kx

for those x, where the above series converge.
Denote by φ and λn either f or g and either an and bn, respectively.
Let �ran = an – an+r for a sequence of complex numbers (an) and r ∈N.

Theorem 1 Let a nonnegative sequence (λn) ∈ �, 1 < s < ∞ and 1 – s < α < 1. Then

x–α|φ|s ∈ L1 ⇐⇒
∞∑

n=1

nα+s–2λs
n < ∞.
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This theorem was proved for � = DS, where DS denotes all decreasing sequences, in [1,
5, 14], and [2]. Later, Theorem 1 was showed in [7] for

� = GM(1β) :=

{
(an) ⊂C :

∞∑
k=n

|�1ak| ≤ C · 1βn

}
,

and in [12] for

� = GM(1β) :=

{
(an) ⊂C :

2n–1∑
k=n

|�1ak| ≤ C · 1βn

}
,

where 1βn = |an|; C here and throughout the paper denotes a positive constant.
The proof in the case of class

� = GM(2β) :=

{
(an) ⊂C :

2n–1∑
k=n

|�1ak| ≤ C · 2βn

}
,

where 2βn =
∑[cn]

k=[n/c]
|ak |

k for some c > 1, is included in [13].
In [3] Dyachenko and Tikhonov extended this theorem to the class

� = GM
(

3β(θ )
)

:=

{
(an) ⊂C :

∞∑
k=n

|�1ak| ≤ C · 3βn(θ )

}
,

where 3βn(θ ) = nθ–1 ∑∞
k=[n/c]

|ak |
kθ < ∞ for some c > 1 and θ ∈ (0, 1].

From the articles of Dyachenko and Tikhonov [3] and Leindler [7], it is well known that

DS � GM(1β) � GM(1β) � GM(2β)

� GM
(

3β(1)
) ⊆ GM

(
3β(θ2)

) ⊆ GM
(

3β(θ1)
)
, (1)

for 0 < θ1 ≤ θ2 ≤ 1.
Further, Szal defined a new class of sequences in the following way (see [9]):

Definition 1 Let β := (βn) be a nonnegative sequence and r a natural number. The se-
quence of complex numbers a := (an) ∈ GM(β , r) if the relation

∞∑
k=n

|�ran| ≤ Cβn

holds for all n ∈N.

Moreover, from [9] we know that

GM
(

3β(θ ), r1
)
� GM

(
3β(θ ), r2

)
, (2)

where r1 < r2, θ ∈ (0, 1] and r1 | r2.
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Let r ∈ N and α ∈ R. We define on the interval [–π ,π ] an even function ωα,r , which is
given on the interval [0,π ] by the formula

ωα,r(x) :=

⎧⎪⎪⎨
⎪⎪⎩

(x – 2lπ
r )–α for x ∈ ( 2lπ

r , (2l+1)π
r ] and l ∈ U1,

( 2(l+1)π
r – x)–α for x ∈ ( (2l+1)π

r , 2(l+1)π
r ) and l ∈ U2,

0 for x = 2lπ
r and l ∈ U3,

where U1 = {0, 1, . . . , [r/2]} if r is an odd number and U1 = {0, 1, . . . , [r/2] – 1} if r is an even
number, U2 = {0, 1, . . . , [r/2] – 1} for r ≥ 2, and U3 = {0, 1, . . . , [r/2]} for r ≥ 1.

Theorem 1 was generalized for the class GM(3β(θ ), r), where r ∈N and θ ∈ (0, 1], in [9].
We can formulate this result in the following way.

Theorem 2 ([9, Theorem 5]) Let a nonnegative sequence (λn) ∈ GM(3β(θ ), r), where r ∈N,
θ ∈ (0, 1] and 1 ≤ s < ∞. If

1 – θs < α < 1,

then ωα,r|φ|s ∈ L1 if and only if

∞∑
n=1

nα+s–2|λn|s < ∞.

Now, we define new classes of sequences.

Definition 2 Let β := (βn) be a nonnegative sequence, p a positive real number, r ∈N. One
says that a sequence a = (an) of complex numbers belongs to GM(p,β , r) if the relation

(2n–1∑
k=n

|�rak|p
) 1

p

≤ Cβn

holds for all n ∈N.
Moreover, we say that a sequence (an) ∈ GM(p,β , r) if the relation

( ∞∑
k=n

|�rak|p
) 1

p

≤ Cβn

holds for all n ∈N.

The class GM(p,β , 1) was defined by Tikhonov and Liflyand in [8].
In this paper we present some properties of the classes GM(p, 3β(θ ), r) and GM(p,

3β(θ ), r). Moreover, we will generalize Theorem 2 for the class GM(p, 3β(θ ), r) with 0 <
θ < 1

s and r ∈N.
We will write I1 
 I2 if there exists a positive constant C such that I1 ≤ CI2.
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2 Main results
We formulate our results as follows:

Theorem 3 Let r ∈N, θ ∈ (0, 1), and p be a positive real number. Then

GM
(
p, 3β(θ ), r

)
= GM

(
p, 3β(θ ), r

)
and

GM
(
p, 3β(1), r

) ⊆ GM
(
p, 3β(1), r

)
.

Theorem 4 Let r ∈ N, θ ∈ (0, 1), and p1, p2 be two positive real numbers such that 0 <
p1 < p2. Then

GM
(
p1, 3β(θ ), r

)
� GM

(
p2, 3β(θ ), r

)
.

Theorem 5 Let r1, r2 ∈N, r1 < r2, θ ∈ (0, 1] and p ≥ 1. If r1|r2, then

GM
(
p, 3β(θ ), r1

)
� GM

(
p, 3β(θ ), r2

)
.

Theorem 6 Let (bn) ∈ GM(p, 3β(θ ), r), where r ∈N, p ≥ 1, 0 < θ < 1
p and 1 ≤ s < ∞. If

1 – θs – s +
s
p

< α < 1

and

∞∑
n=1

nα–2– s
p +2s|bn|s < ∞

then ωα.r|φ|s ∈ L1.

Theorem 7 Let a nonnegative sequence (bn) belong to GM(p, 3β(θ ), r), where r ∈N, p ≥ 1,
0 < θ < 1

p and 1 ≤ s < ∞. If

1 – θs < α < 1 + s

and ωα.r|φ|s ∈ L1 then

∞∑
n=1

nα–2+ s
p bs

n < ∞.

Remark 1 If we take p = 1, then the result of Szal [9] (Theorem 2) follows from our The-
orem 6 and 7. Moreover, by the embedding relations (1) and (2), we can also derive from
Theorem 6 and 7 the result of Dyachenko and Tikhonov [3] and all the results mentioned
before.
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3 Auxiliary results
For n ∈N and k = 0, 1, 2, . . . , denote by

Dk,r(x) =
sin(k + r/2)x
2 sin(rx/2)

,

∼
Dk,r(x) =

cos(k + r/2)x
2 sin(rx/2)

the Dirichlet-type kernels.

Lemma 1 ([10, Lemma 3.1] and [11, Lemma 17]) Let r ∈N, l ∈ Z, and (an) ⊂C. If x �= 2lπ
r ,

then for all m ≥ n

m∑
k=n

ak cos kx =
m∑

k=n

�rakDk,r(x) –
m+r∑

k=m+1

akDk,–r(x) +
n+r–1∑

k=n

akDk,–r(x),

m∑
k=n

ak sin kx =
m+r∑

k=m+1

ak
∼
Dk,–r(x) –

n+r–1∑
k=n

ak
∼
Dk,–r(x) –

m∑
k=n

�rak
∼
Dk,r(x).

Lemma 2 ([6, Corollary 1]) Let p ≥ 1,γn > 0, and an ≥ 0 for n ∈N. Then

∞∑
n=1

γn

( n∑
k=1

ak

)p

≤ pp
∞∑

n=1

γ 1–p
n ap

n

( ∞∑
k=n

γk

)p

,

∞∑
n=1

γn

( ∞∑
k=n

ak

)p

≤ pp
∞∑

n=1

γ 1–p
n ap

n

( n∑
k=1

γk

)p

.

Lemma 3 ([4, Theorem 19]) If an ≥ 0 for n ∈N and 0 < p1 ≤ p2 < ∞, then

( ∞∑
n=1

ap2
n

) 1
p2

≤
( ∞∑

n=1

ap1
n

) 1
p1

.

Lemma 4 ([4]) Let ak ≥ 0 for k ∈ N and p ≥ 1. Then

(
1
n

2n–1∑
k=n

ap
k

) 1
p

≥ 1
n

2n–1∑
k=n

ak .

Lemma 5 Let (ak) ⊂C, p ≥ 1, r, n ∈N and d ∈N0 = N ∪{0}. Then

2d+1(n+1)+r–1∑
k=2d+1(n+1)

|ak| ≤
2d(n+1)+r–1∑

k=2d(n+1)

|ak| +
[
2d(n + 1)

]1– 1
p

(2d+1(n+1)–1∑
k=2d(n+1)

|�rak|p
) 1

p

.
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Proof From Lemma 4 we have

(2d+1(n+1)–1∑
k=2d(n+1)

|�rak|p
) 1

p

=
[
2d(n + 1)

] 1
p

(
1

2d(n + 1)

2d+1(n+1)–1∑
k=2d(n+1)

|�rak|p
) 1

p

≥ [
2d(n + 1)

] 1
p 1

2d(n + 1)

2d+1(n+1)–1∑
k=2d(n+1)

|�rak|

≥ [
2d(n + 1)

] 1
p –1

(2d+1(n+1)+r–1∑
k=2d+1(n+1)

|ak| –
2d(n+1)+r–1∑

k=2d(n+1)

|ak|
)

.

Hence

2d+1(n+1)+r–1∑
k=2d+1(n+1)

|ak| ≤
2d(n+1)+r–1∑

k=2d(n+1)

|ak| +
[
2d(n + 1)

]1– 1
p

(2d+1(n+1)–1∑
k=2d(n+1)

|�rak|p
) 1

p

and this ends our proof. �

Lemma 6 Let (ak) ∈ GM(p, 3β(θ ), r), p ≥ 1, r ∈ N, d ∈ N0, and 0 < θ < 1
p . Then

2d(n+1)+r–1∑
k=2d(n+1)

|ak| ≤ C
1

1 – 2θ– 1
p

(
2d(n + 1)

)θ– 1
p

∞∑
k=[ 2d (n+1)

c ]

|ak|
kθ

.

Proof We have

2d(n+1)+r–1∑
k=2d(n+1)

|ak| ≤
∞∑
j=0

2j+12d(n+1)–1∑
k=2j2d(n+1)

|�rak|.

Using Hölder inequality with p > 1, we get

∞∑
j=0

2j+12d(n+1)–1∑
k=2j2d(n+1)

|�rak|

≤
∞∑
j=0

[(2j+12d(n+1)–1∑
k=2j2d(n+1)

|�rak|p
) 1

p
(2j+12d(n+1)–1∑

k=2j2d(n+1)

1
p

p–1

)1– 1
p
]

≤ C
∞∑
j=0

(
2j2d(n + 1)

)1– 1
p
(
2j2d(n + 1)

)θ–1
∞∑

k=[ 2j2d (n+1)
c ]

|ak|
kθ

≤ C
(
2d(n + 1)

)θ– 1
p

∞∑
k=[ 2d (n+1)

c ]

|ak|
kθ

∞∑
j=0

(
2θ– 1

p
)j.
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When p = 1, we have

∞∑
j=0

2j+12d(n+1)–1∑
k=2j2d(n+1)

|�rak| ≤ C
∞∑
j=0

(
2j2d(n + 1)

)θ–1
∞∑

k=[ 2j2d (n+1)
c ]

|ak|
kθ

≤ C
(
2d(n + 1)

)θ–1
∞∑

k=[ 2d (n+1)
c ]

|ak|
kθ

∞∑
j=0

(
2θ–1)j.

If θ – 1
p < 0, then

2d(n+1)+r–1∑
k=2d(n+1)

|ak| ≤ C
1

1 – 2θ– 1
p

(
2d(n + 1)

)θ– 1
p

∞∑
k=[ 2d (n+1)

c ]

|ak|
kθ

and our proof is complete. �

4 Proofs
4.1 Proof of Theorem 3
Let (an) ∈ GM(p, 3β(θ ), r), where p > 0, r ∈N, and θ ∈ (0, 1). Then

( ∞∑
k=n

|�rak|p
) 1

p

=

( ∞∑
d=0

2d+1n–1∑
k=2dn

|�rak|p
) 1

p

≤
( ∞∑

d=0

(
C

(
2dn

)θ–1
∞∑

k=[ 2dn
c ]

|ak|
kθ

)p) 1
p

≤ Cnθ–1
∞∑

k=[ n
c ]

|ak|
kθ

( ∞∑
d=0

(
2(θ–1)p)d

) 1
p

.

If 0 < θ < 1 then (θ – 1)p < 0, and we have

( ∞∑
k=n

|�rak|p
) 1

p

≤ C

(
1

1 – 2(θ–1)p

) 1
p

nθ–1
∞∑

k=[ n
c ]

|ak|
kθ

.

So (an) ∈ GM(p, 3β(θ ), r).
Now we assume (an) ∈ GM(p, 3β(1), r), p > 0, r ∈ N. We have

(2n–1∑
k=n

|�rak|p
) 1

p

≤
( ∞∑

k=n

|�rak|p
) 1

p

≤ Cnθ–1
∞∑

k=[ n
c ]

|ak|
kθ

.

This means (an) ∈ GM(p, 3β(1), r). �
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4.2 Proof of Theorem 4
Let r ∈ N, θ ∈ (0, 1], 0 < p1 ≤ p2, and (an) ∈ GM(p1, 3β(θ ), r). We will show that
GM(p1, 3β(θ ), r) ⊆ GM(p2, 3β(θ ), r). Using Lemma 3, we have

(2n–1∑
k=n

|�rak|p2

) 1
p2

≤
(2n–1∑

k=n

|�rak|p1

) 1
p1

≤ cnθ–1
∞∑

k=n

|ak|
kθ

.

This means that (an) ∈ GM(p2, 3β(θ ), r).
Now we will show that GM(p1, 3β(θ ), r) �= GM(p2, 3β(θ ), r) for 0 < p1 < p2. Let

an =

⎧⎨
⎩

1
n2 , when 2r � n,

1
(n–r)2 + 1

n2n
1

p2
, when 2r|n.

We prove that (an) ∈ GM(p2, 3β(θ ), r). Suppose

An = {k ∈N : n ≤ k ≤ 2n – 1 and 2r|k},
Bn = {k ∈N : n ≤ k ≤ 2n – 1, 2r � k and 2r � k + r},
Cn = {k ∈N : n ≤ k ≤ 2n – 1, 2r � k and 2r|k + r}.

Then

(2n–1∑
k=n

|ak – ak+r|p2

) 1
p2

=
(∑

k∈An

∣∣∣∣ 1
(k – r)2 +

1

k2k
1

p2
–

1
(k + r)2

∣∣∣∣
p2

+
∑
k∈Bn

∣∣∣∣ 1
k2 –

1
(k + r)2

∣∣∣∣
p2

+
∑
k∈Cn

∣∣∣∣ 1
k2 –

1
k2 –

1

(k + r)2(k + r)
1

p2

∣∣∣∣
p2) 1

p2

≤
(∑

k∈An

(
4kr

1
4 k2k2

+
1

k2+ 1
p2

)p2

+
∑
k∈Bn

(
2kr + r2

k2(k + r)2

)p2

+
∑
k∈Cn

(
1

(k + r)2+ 1
p2

)p2) 1
p2

≤ (16r + 1)

(2n–1∑
k=n

(
1

k2+ 1
p2

)p2
) 1

p2

≤ 17r
n2 .

Moreover,

17r
n2 ≤ 22+θ 17r

(
nθ–1

2n–1∑
k=n

1
k2

1
kθ

)
≤ 22+θ 17rnθ–1

∞∑
k=[ n

c ]

|ak|
kθ

.

This means (an) ∈ GM(p2, 3β(θ ), r). We will show that (an) /∈ GM(p1, 3β(θ ), r). We have

(2n–1∑
k=n

|ak – ak+r|p1

) 1
p1

≥
(∑

k∈Cn

1

(k + r)2p1+ p1
p2

) 1
p1 ≥ 1

(4r)2+ 1
p2

+ 2
p1

n
1

p1

n2+ 1
p2

.
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Let

Dn =
{

k ∈N :
[

n
c

]
≤ k and 2r|k

}
,

En =
{

k ∈N :
[

n
c

]
≤ k and 2r � k

}
.

On the other hand, we get

nθ–1
∞∑

k=[ n
c ]

ak

kθ
= nθ–1

(∑
k∈Dn

1
k2kθ

+
∑
k∈En

(
1

(k – r)2 +
1

k2+ 1
p2

)
1
kθ

)

≤ 5nθ–1
∞∑

k=[ n
c ]

1
k2+θ


 n–2.

Therefore the inequality

(2n–1∑
k=n

|�rak|p1

) 1
p1

≤ Cnθ–1
∞∑

k=[ n
c ]

ak

kθ

cannot be satisfied because n
1

p1
– 1

p2 → ∞ as n → ∞. �

4.3 Proof of Theorem 5
Let r1, r2 ∈N, r1 ≤ r2, r1|r2, p ≥ 1 and (an) ∈ GM(p, 3β(θ ), r1).

If r1|r2, then r2 = αr1, where α ∈N. Using Hölder inequality with p > 1, we have

(2n–1∑
k=n

|ak – ak+r2 |p
) 1

p

=

(2n–1∑
k=n

∣∣∣∣∣
α–1∑
l=0

(ak+lr1 – ak+(l+1)r1 )

∣∣∣∣∣
p) 1

p

≤
(2n–1∑

k=n

(
α–1∑
l=0

|ak+lr1 – ak+(l+1)r1 |
)p) 1

p

≤
(2n–1∑

k=n

((
α–1∑
l=0

|ak+lr1 – ak+(l+1)r1 |p
) 1

p
(

α–1∑
l=0

1
p

p–1

)1– 1
p
)p) 1

p

≤ α
1– 1

p

(2n–1∑
k=n

(
α–1∑
l=0

|ak+lr1 – ak+(l+1)r1 |p
)) 1

p

≤ α
1– 1

p

(
α–1∑
l=0

(
C(n + lr1)θ–1

∞∑
k=[ n+lr1

c ]

|ak|
kθ

)p) 1
p

≤ αCnθ–1
∞∑

k=[ n
c ]

|ak|
kθ

.
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If p = 1 then

2n∑
k=n

|ak – ak+r2 | ≤
2n–1∑
k=n

α–1∑
l=0

|ak+lr1 – ak+(l–1)r1 |

≤ C
α–1∑
l=0

(n + lr1)θ–1
∞∑

k=[ n+lr1
c ]

|ak|
kθ

≤ αCnθ–1
∞∑

k=[ n
c ]

|ak|
kθ

.

Hence (an) ∈ GM(p, 3β(θ ), r2).
Now, we will show that GM(p, 3β(θ ), r1) � GM(p, 3β(θ ), r2), when r1 < r2. Let an = 2+αn

n2 ,
where αn =

{ –1, when r1|n,
1, when r1 � n.

We will prove that (an) ∈ GM(p, 3β(θ ), r2) and (an) /∈ GM(p, 3β(θ ), r1). Let

An := {k ∈N : n ≤ k ≤ 2n – 1 and r2|k},
Bn := {k ∈N : n ≤ k ≤ 2n – 1 and r2 � k}.

Then using Lemma 3 for p ≥ 1, we have

(2n–1∑
k=n

|ak – ak+r2 |p
) 1

p

=
((∑

k∈An

+
∑
k∈Bn

)
|ak – ak+r2 |p

) 1
p

=
(∑

k∈An

∣∣∣∣ 1
k2 –

1
(k + r2)2

∣∣∣∣
p

+
∑
k∈Bn

∣∣∣∣ 3
k2 –

3
(k + r2)2

∣∣∣∣
p) 1

p

≤
(

3p
2n–1∑
k=n

∣∣∣∣ (k + r2)2 – k2

(k + r2)2k2

∣∣∣∣
p
) 1

p

= 3

(2n–1∑
k=n

∣∣∣∣ 2r2k + r2
2

(k + r2)2k2

∣∣∣∣
p
) 1

p

≤ 6r2

(2n–1∑
k=n

(
1
k3

)p
) 1

p

≤ 6r2

2n–1∑
k=n

1
k3 ≤ 6r2

n

2n–1∑
k=n

1
k2 .

Moreover,

6r2

n

2n–1∑
k=n

1
k2 = 6r2nθ–1 1

(2n)θ
2θ

2n–1∑
k=n

1
k2

≤ 6r22θ nθ–1
2n–1∑
k=n

1
k2

1
kθ

≤ 6r22θ nθ–1
2n–1∑
k=n

ak

kθ
≤ 6r22θ nθ–1

∞∑
k=[ n

c ]

ak

kθ
.
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It means that (an) ∈ GM(p, 3β(θ ), r2). Furthermore,

(2n–1∑
k=n

|ak – ak+r1 |p
) 1

p

≥
(∑

k∈An

|ak – ak+r1 |p
) 1

p
≥

(∑
k∈An

∣∣∣∣ 1
k3 –

3
(k + r1)2

∣∣∣∣
p) 1

p

=
(∑

k∈An

∣∣∣∣ (k + r1)2 – 3k2

(k + r1)2k2

∣∣∣∣
p) 1

p
=

(∑
k∈An

∣∣∣∣–2k2 + 2kr1 + r2
1

(k + r1)2k2

∣∣∣∣
p) 1

p
.

If n ≥ 5r1, then 2n2 – 2nr1 – r2
1 ≥ (n + r1)2. Whence for n ≥ 5r1,

(2n–1∑
k=n

|ak – ak+r1 |p
) 1

p

≥
(∑

k∈An

(
2k2 – 2kr1 – r2

1
(k + r1)2k2

)p) 1
p

≥ 1
(2n)2

(
n

2r1

) 1
p

=
1

22+ 1
p r1

n–2+ 1
p .

On the other hand,

nθ–1
∞∑

k=[ n
c ]

ak

kθ
≤ nθ–1

∞∑
k=[ n

c ]

3
k2

1
kθ

≤ 3nθ–1
∞∑

k=[ n
c ]

1
k2+θ


 n–2.

Therefore, the inequality

(2n–1∑
k=n

|�r1 ak|p
) 1

p

≤ Cnθ–1
∞∑

k=[ n
c ]

ak

kθ

cannot be satisfied because n
1
p → ∞ as n → ∞. �

4.4 Proof of Theorem 6
We prove the theorem for the case when φ(x) = g(x). We have

∥∥ωα,r|g|s∥∥L1 = 2
∫ π

0
ωα,r(x)

∣∣g(x)
∣∣s dx.

For an odd r,

∫ π

0
ωα,r(x)

∣∣g(x)
∣∣s dx =

[r/2]∑
l=0

∫ 2lπ
r + π

r

2lπ
r

ωα,r(x)

∣∣∣∣∣
∞∑

k=1

bk sin kx

∣∣∣∣∣
s

dx

+
[r/2]–1∑

l=0

∫ 2(l+1)π
r

2lπ
r + π

r

ωα,r(x)

∣∣∣∣∣
∞∑

k=1

bk sin kx

∣∣∣∣∣
s

dx

(for r = 1 the last sum should be omitted), and for an even r,

∫ π

0
ωα,r(x)

∣∣g(x)
∣∣s dx =

[r/2]∑
l=0

(∫ 2lπ
r + π

r

2lπ
r

+
∫ 2(l+1)π

r

2lπ
r + π

r

)
ωα,r(x)

∣∣∣∣∣
∞∑

k=1

bk sin kx

∣∣∣∣∣
s

dx.
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Now, we estimate the following integral:

∫ 2lπ
r + π

r

2lπ
r

ωα,r(x)

∣∣∣∣∣
∞∑

k=1

bk sin kx

∣∣∣∣∣
s

dx 

(∫ 2lπ

r + π
r

2lπ
r

ωα,r(x)

∣∣∣∣∣
n∑

k=1

bk sin kx

∣∣∣∣∣
s

dx

+
∫ 2lπ

r + π
r

2lπ
r

ωα,r(x)

∣∣∣∣∣
∞∑

k=n+1

bk sin kx

∣∣∣∣∣
s

dx

)

:= I1 + I2.

By Lemma 2, for α < 1, we have

I1 =
∞∑

n=r

∫ 2lπ
r + π

n

2lπ
r + π

n+1

(
x –

2lπ
r

)–α
∣∣∣∣∣

n∑
k=1

bk sin kx

∣∣∣∣∣
s

dx



∞∑

n=r
nα–2

( n∑
k=1

|bk|
)s

≤
∞∑

n=1

nα–2– s
p +2s|bn|s. (3)

Using Lemma 1 when m → ∞ and the inequality

r
π

x – 2l ≤
∣∣∣∣sin

rx
2

∣∣∣∣ for x ∈
(

2lπ
r

,
2lπ

r
+

π

r

)
,

we get

I2 =
∞∑

n=r

∫ 2lπ/r+π/n

2lπ/r+π/(n+1)

(
x –

2lπ
r

)–α
∣∣∣∣∣

∞∑
k=n+1

bk sin kx

∣∣∣∣∣
s

dx



∞∑

n=r
nα

∫ 2lπ/r+π/n

2lπ/r+π/(n+1)

∣∣∣∣∣
∞∑

d=0

(2d+1(n+1)–1+r∑
k=2d+1(n+1)

bk
∼
Dk,–r(x)

–
2d(n+1)+r–1∑

k=2d(n+1)

bk
∼
Dk,–r(x) –

2d+1(n+1)–1∑
k=2d(n+1)

�rbk
∼
Dk,r(x)

)∣∣∣∣∣
s

dx

≤
∞∑

n=r
nα

∫ 2lπ/r+π/n

2lπ/r+π/(n+1)

1
(rx/π – 2l)s

×
( ∞∑

d=0

(2d+1(n+1)–1+r∑
k=2d+1(n+1)

|bk| +
2d(n+1)+r–1∑

k=2d(n+1)

|bk| +
2d+1(n+1)–1∑

k=2d(n+1)

|�rbk|
))s

dx



∞∑

n=r
nα+s–2

( ∞∑
d=0

(2d+1(n+1)–1+r∑
k=2d+1(n+1)

|bk| +
2d(n+1)+r–1∑

k=2d(n+1)

|bk| +
2d+1(n+1)–1∑

k=2d(n+1)

|�rbk|
))s

.
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Further by Hölder inequality with p > 1, we get

I2 

∞∑

n=r
nα+s–2

( ∞∑
d=0

[(2d+1(n+1)–1∑
k=2d(n+1)

|�rbk|p
) 1

p
(2d+1(n+1)–1∑

k=2d(n+1)

1

)1– 1
p

+
2d+1(n+1)–1+r∑

k=2d+1(n+1)

|bk| +
2d(n+1)+r–1∑

k=2d(n+1)

|bk|
])s

≤
∞∑

n=r
nα+s–2

( ∞∑
d=0

[(2d+1(n+1)–1∑
k=2d(n+1)

|�rbk|p
) 1

p (
2d(n + 1)

)1– 1
p

+
2d+1(n+1)–1+r∑

k=2d+1(n+1)

|bk| +
2d(n+1)+r–1∑

k=2d(n+1)

|bk|
])s

.

Applying Lemma 5, we have

I2 

∞∑

n=r
nα+s–2

( ∞∑
d=0

[(
2d(n + 1)

)1– 1
p
(
2d(n + 1)

)θ–1
∞∑

k=[ 2d (n+1)
c ]

|bk|
kθ

+
2d(n+1)+r–1∑

k=2d(n+1)

|bk|
])s

.

From Lemma 6, we get

I2 

∞∑

n=r
nα+s–2

( ∞∑
d=0

[(
2d(n + 1)

)θ– 1
p

∞∑
k=[ 2d (n+1)

c ]

|bk|
kθ

+
1

1 – 2θ– 1
p

(
2d(n + 1)

)θ– 1
p

∞∑
k=[ 2d (n+1)

c ]

|bk|
kθ

])s



∞∑

n=r
nα+s–2+θs– s

p

( ∞∑
d=0

(
2d)θ– 1

p
∞∑

k=[ 2d (n+1)
c ]

|bk|
kθ

)s

.

If θ – 1
p < 0, then

I2 

∞∑

n=r
nα+s–2+θs– s

p

( ∞∑
k=[ n+1

c ]

|bk|
kθ

)s



∞∑

n=r
nα+s–2– s

p +θs

( n∑
k=[ n

c ]

|bk|
kθ

)s

+
∞∑

n=r
nα+s–2– s

p +θs

( ∞∑
k=n

|bk|
kθ

)s

≤
∞∑

n=1

nα–2– s
p

( n∑
k=1

k|bk|
)s

+
∞∑

n=1

nα+s–2– s
p +θs

( ∞∑
k=n

|bk|
kθ

)s

.
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Now, we use Lemma 2 and get

I2 

∞∑

n=1

(
nα–2– s

p
)1–s(n|bn|

)s
( ∞∑

k=n

kα–2– s
p

)s

+
∞∑

n=1

(
nα+s–2– s

p +θs)1–s
( |bn|

nθ

)s
( n∑

k=1

kα+s–2– s
p +θs

)s

.

For 1 + s
p – θs – s < α < 1 + s

p , we have

I2 

∞∑

n=1

nα–2– s
p +2s|bn|s. (4)

Now, we estimate the following integral:

∫ 2(l+1)π
r

2lπ
r + π

r

ωα,r(x)

∣∣∣∣∣
∞∑

k=1

bk sin kx

∣∣∣∣∣
s

dx 

∫ 2(l+1)π

r

2(l+1)π
r – π

r

ωα,r(x)

∣∣∣∣∣
n∑

k=1

bk sin kx

∣∣∣∣∣
s

dx

+
∫ 2(l+1)π

r

2(l+1)π
r – π

r

ωα,r(x)

∣∣∣∣∣
∞∑

k=n+1

bk sin kx

∣∣∣∣∣
s

dx

:= I3 + I4.

By Lemma 2, for α < 1, we have

I3 =
∞∑

n=r

∫ 2(l+1)π
r – π

n+1

2(l+1)π
r – π

n

(
2(l + 1)π

r
– x

)–α
∣∣∣∣∣

n∑
k=1

bk sin kx

∣∣∣∣∣
s

dx



∞∑

n=1

nα–2

( n∑
k=1

|bk|
)s



∞∑

n=1

nα+s–2|bn|s ≤
∞∑

n=1

nα–2– s
p +2s|bn|s. (5)

Using Lemma 1 with m → ∞ and the inequality

2(l + 1) –
r
π

x ≤
∣∣∣∣sin

rx
2

∣∣∣∣ for x ∈
(

(2l + 1)π
r

,
2(l + 1)π

r

)
,

we have

I4 =
∞∑

n=r

∫ 2(l+1)π
r – π

n+1

2(l+1)π
r – π

n

(
2(l + 1)π

r
– x

)–α
∣∣∣∣∣

∞∑
k=n+1

bk sin kx

∣∣∣∣∣
s

dx,

and similarly as in the case I2 we obtain

I4 

∞∑

n=1

nα–2– s
p +2s|bn|s. (6)
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Finally, combining (3)–(6), we obtain that

∫ π

–π

ωα,r(x)
∣∣g(x)

∣∣s dx ≤ C
∞∑

n=1

nα–2– s
p +2s|bn|s.

The case when φ(x) =
∑∞

k=1 bk cos kx can be proved similarly. �

4.5 Proof of Theorem 7
We prove the theorem for the case where φ(x) =

∑∞
k=1 bk sin kx. We follow the method

adopted by Tikhonov [9]. Note that if 1 – θs < α < 1 + s, then φ ∈ L1. Namely, if s > 1 then
using Hölder inequality, we have

∫ π

0

∣∣φ(x)
∣∣dx =

∫ π

0

(
ωα,r(x)

) 1
s
∣∣φ(x)

∣∣( 1
ωα,r(x)

) 1
s

dx

≤
(∫ π

0
ωα,r(x)

∣∣φ(x)
∣∣s dx

) 1
s
(∫ π

0

(
ωα,r(x)– 1

s
) 1

1– 1
s dx

)1– 1
s
.

We will show that
∫ π

0 (ωα,r(x))– 1
s–1 dx < ∞. We can write

∫ π

0

(
ωα,r(x)

)– 1
s–1 dx =

[ r
2 ]∑

l=0

(∫ (2l+1)π
r

2lπ
r

(
x–

2lπ
r

) α
s–1

dx+
∫ 2(l+1)π

r

(2l+1)π
r

(
2(l + 1)π

r
–x

) α
s–1

dx
)

,

when r is an even number, and
∫ π

0

(
ωα,r(x)

)– 1
s–1 dx

=
[ r

2 ]∑
l=0

∫ (2l+1)π
r

2lπ
r

(
x –

2lπ
r

) α
s–1

dx +
[ r

2 ]–1∑
l=0

∫ 2(l+1)π
r

(2l+1)π
r

(
2(l + 1)π

r
– x

) α
s–1

dx,

when r is an odd number.
Using integration by substitution, we get

∫ π

0

(
ωα,r(x)

)– 1
s–1 dx =

[ r
2 ]∑

l=0

(∫ π
r

0
y

α
s–1 dy +

∫ π
r

0
y

α
s–1 dy

)

= 2
([

r
2

]
+ 1

)
s – 1

α + s – 1

(
π

r

) α+s–1
s–1

,

when r is an even number, and

∫ π

0

(
ωα,r(x)

)– 1
s–1 dx =

[ r
2 ]∑

l=0

∫ π
r

0
y

α
s–1 dy +

[ r
2 ]–1∑
l=0

∫ π
r

0
y

α
s–1 dx

=
(

2
[

r
2

]
+ 1

)
s – 1

α + s – 1

(
π

r

) α+s–1
s–1

,

when r is an odd number.
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If s = 1 then α > 0 and
∫ π

0

∣∣φ(x)
∣∣dx =

∫ π

0
ωα,r(x)

∣∣φ(x)
∣∣ 1
ωα,r(x)

dx

≤ sup
x

1
ωα,r(x)

∫ π

0
ωα,r(x)

∣∣φ(x)
∣∣dx =

(
π

r

)α ∫ π

0
ωα,r(x)

∣∣φ(x)
∣∣dx.

Further, integrating φ, we have

F(x) :=
∫ x

0
φ(t) dt =

∞∑
n=1

bn

n
(1 – cos nx) = 2

∞∑
n=1

bn

n
sin2 nx

2
,

and consequently,

F
(

π

k

)
≥

k∑
n=[k/2]

bn

n
. (7)

Since (bn) ∈ GM(p, 3β(θ ), r) and using Lemma 4, we get for θ – 1
p < 0 that

bv ≤
v+r–1∑

k=v

bl =
∞∑

d=0

2d+1v–1∑
k=2dv

|�rbk| ≤
∞∑

d=0

2dv

[
1

2dv

2d+1v–1∑
k=2dv

|�rbk|p
] 1

p

≤ C
∞∑

d=0

(
2dv

)θ– 1
p

∞∑
k=[ 2dv

c ]

bk

kθ
≤ Cvθ– 1

p

∞∑
d=0

(
2θ– 1

p
)d

∞∑
k=[ v

c ]

bk

kθ

≤ 1

1 – 2θ– 1
p

Cvθ– 1
p

∞∑
k=[ v

c ]

bk

kθ

 vθ– 1

p

∞∑
k=[ v

c ]

bk

kθ
≤ Cvθ– 1

p

∞∑
d=0

(
2d+1

[
v
c

])1–θ 2d+1[ v
c ]∑

k=2d[ v
c ]

bk

k
.

Using (7) yields

bv 
 vθ– 1
p

∞∑
d=0

(
2d

[
v
c

])1–θ

F
(

π

2d+1[ v
c ]

)

 vθ– 1

p

∞∑
d=0

(
2d

[
v
c

])–θ 2d+1[ v
c ]–1∑

k=2d[ v
c ]

F
(

π

k

)


 vθ– 1
p

∞∑
k=[ v

c ]

1
kθ

F
(

π

k

)
.

Elementary calculations give

∞∑
k=1

kα–2+ s
p bs

k 

∞∑

k=1

kα–2+ s
p +(θ– 1

p )s

( ∞∑
v=[ k

c ]

1
vθ

F
(

π

v

))s



∞∑

k=1

kα–2

( k∑
v=[ k

c ]

F
(

π

v

))s

+
∞∑

k=1

kα–2+θs

( ∞∑
v=k

1
vθ

F
(

π

v

))s



∞∑

k=1

kα–2–s

( k∑
v=[ k

c ]

vF
(

π

v

))s

+
∞∑

k=1

kα–2+θs

( ∞∑
v=k

1
vθ

F
(

π

v

))s

.
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Using Lemma 2, for 1 – θs < α < 1 + s, we have

∞∑
k=1

kα–2–s

( k∑
v=[ k

c ]

vF
(

π

v

))s



∞∑

k=1

k(α–2–s)(1–s)
(

kF
(

π

k

))s
( ∞∑

v=k

vα–2–s

)s

and

∞∑
k=1

kα–2+θs

( ∞∑
v=k

1
vθ

F
(

π

v

))s



∞∑

k=1

k(α–2+θs)(1–s)
(

1
kθ

F
(

π

k

))s
( k∑

v=1

vα–2+θs

)s

.

Therefore, for 1 – θs < α < 1 + s, we get

∞∑
k=1

kα–2+ s
p bs

k 

∞∑

k=1

kα–2+s

(
F
(

π

k

))s

.

Denoting by dv :=
∫ π

v
π

v+1
|φ(x)|dx, we get

∞∑
k=1

kα–2+ s
p bs

k 

∞∑

k=1

kα–2+s

( ∞∑
v=k

dv

)s

.

By Lemma 2, for α > 1 – s, we obtain

∞∑
k=1

kα–2+s

( ∞∑
v=k

dv

)s



∞∑

k=1

k(α–2+s)(1–s)ds
k

( k∑
v=1

vα–2+s

)s



∞∑

k=1

k(α–2+s)(1–s)k(α–2+s+1)sds
k =

∞∑
k=1

kα–2+2sds
k .

Applying Hölder inequality when s > 1, we have

ds
k 
 1

k2(s–1)

∫ π
k

π
(k+1)

∣∣φ(x)
∣∣s dx.

Finally, using the latter estimate, we get

∞∑
k=1

kα–2+ s
p bs

k 

∞∑

k=1

kα–2+2sds
k

≤
r∑

k=1

kα–2+2s
(∫ π

k

π
(k+1)

∣∣φ(x)
∣∣dx

)s

+
∞∑

k=r

kα

∫ π
k

π
(k+1)

∣∣φ(x)
∣∣s dx



(∫ π

0

∣∣φ(x)
∣∣dx

)s

+
∞∑

k=r

∫ π
k

π
k+1

x–α
∣∣φ(x)

∣∣s dx

≤
(∫ π

0

∣∣φ(x)
∣∣dx

)s

+
∫ π

0
ωα,r(x)

∣∣φ(x)
∣∣p dx < ∞.

The case when φ(x) =
∑∞

k=1 bk cos kx can by proved similarly. �
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5 Conclusions
We have introduced two new classes of p-bounded variation sequences, GM(p,β , r) and
GM(p,β , r), where β := (βn) is a nonnegative sequence, p a positive real number, r ∈ N,
θ ∈ (0, 1]. Moreover, we have studied properties of such classes and obtained a sufficient
and necessary condition for weighted integrability of functions defined by trigonometric
series with coefficients belonging to these classes. In particular, from our theorems we
derive all related earlier results.
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