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Abstract
In this paper, we introduce the concept ofMν -metric as a generalization ofM-metric
and ν-generalized metric and also prove an analogue of Banach contraction principle
in anMν -metric space. Also, we adopt an example to highlight the utility of our main
result which extends and improves the corresponding relevant results of the existing
literature. Finally, we use our main result to examine the existence and uniqueness of
solution for a Fredholm integral equation.
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1 Introduction
In metric fixed point theory, the classical Banach contraction principle [11] remains a
vital instrument which ensures the existence and uniqueness of fixed points of contraction
maps in the setting of complete metric spaces. However, many researchers generalized and
extended the Banach contraction principle in numerous ways by improving contraction
conditions, using auxiliary mappings, and enlarging the class of metric spaces for this kind
of results. One may recall the existing notions, namely of partial metric space [16], partial
symmetric space [9], partial JS-metric space [7], metric like space [1], b-metric space [14],
rectangular metric space [8, 12], cone metric space [15], M-metric space [5], Mb-metric
space [18], rectangular M-metric space [25], and several others. Very recently, Asim et
al. [10] introduced the class of rectangular Mrb-metric spaces to enlarge the classes of
Mb-metric spaces and rectangular M-metric spaces wherein the newly refined ideas are
utilized to prove some fixed point results.

In 2000, Branciari [12] enlarged the class of metric spaces by introducing an interesting
class of ν-generalized metric spaces wherein the triangular inequality is replaced by a more
general inequality, often called polygonal inequality (namely, involving x, u1, u2, . . . , uν , y
points instead of three). In [12], Branciari proved a generalization of Banach contraction
principle whose proof was erroneous (see [28, 29]). However, one is required to be careful
while proving results involving ν-generalized metric spaces because such spaces need not
have a compatible topology (see [30]).

In 2014, Asadi et al. [5] extended the partial metric spaces (see [17]) by introducing M-
metric spaces and utilized the same to prove fixed point results, which were extended in
many ways (see [2–4, 6, 13, 19–27]). Thereafter, Özgür [25] extended both the rectangular
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metric spaces and M-metric spaces by introducing rectangular Mr-metric spaces which
were used to prove fixed point results.

Inspired by the concepts of M-metric spaces and ν-generalized metric spaces, we intro-
duce the notion of an Mν-metric space and utilize the same approach to prove an analogue
of the Banach contraction principle in such a space. Also, we adopt an example to estab-
lish the genuineness of our main result. Finally, as an application of our main result, we
prove a result establishing the existence and uniqueness of solution for a Fredholm integral
equation.

2 Preliminaries
In this section, we begin with some notions and definitions which are needed in our sub-
sequent discussions.

Notation 1 ([5]) The following notations will be utilized in our presentation:
(1) mx,y = min{m(x, x), m(y, y)},
(2) Mx,y = max{m(x, x), m(y, y)}.
(3) mrx,y = min{mr(x, x), mr(y, y)},
(4) Mrx,y = max{mr(x, x), mr(y, y)}.

In 2014, Asadi et al. [5] introduced the notion of an M-metric spaces as follows:

Definition 2.1 ([5]) Let X be a nonempty set. A mapping m : X × X →R+ is said to be an
M-metric, if m satisfies the following (for all x, y, z ∈ X):

(1m) m(x, x) = m(x, y) = m(y, y) if and only if x = y,
(2m) mx,y ≤ m(x, y),
(3m) m(x, y) = m(y, x),
(4m) (m(x, y) – mx,y) ≤ (m(x, z) – mx,z) + (m(z, y) – mz,y).

Then the pair (X, m) is said to be an M-metric space.

In 2018, Özgür [25] introduced the notion of rectangular Mr-metric spaces as follows:

Definition 2.2 ([25]) Let X be a nonempty set. A mapping mr : X × X → R+ is said to
be a rectangular Mr-metric, if mr satisfies the following (for all x, y ∈ X and all distinct
u, v ∈ X \ {x, y}):

(1mr) mr(x, x) = mr(x, y) = mr(y, y) if and only if x = y,
(2mr) mrx,y ≤ mr(x, y),
(3mr) mr(x, y) = mr(y, x),
(4mr) (mr(x, y) – mrx,y ) ≤ (mr(x, u) – mrx,u ) + (mr(u, v) – mru,v ) + (mr(v, y) – mrv,y ).

Then the pair (X, mr) is said to be a rectangular Mr-metric space.

In 2000, Branciari [12] introduced the notion of rectangular metric spaces as follows:

Definition 2.3 ([12]) Let X be a nonempty set. A mapping r : X × X → R
+ is said to

be a rectangular metric on X, if r satisfies the following (for all x, y ∈ X and all distinct
u, v ∈ X \ {x, y}):

(1r) r(x, y) = 0 if and only if x = y,
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(2r) r(x, y) = r(y, x),
(3r) r(x, y) ≤ r(x, u) + r(u, v) + r(v, y).

Then the pair (X, r) is said to be a rectangular metric space.

In 2000, Branciari [12] introduced the following very interesting metric.

Definition 2.4 ([12]) Let X be a nonempty set. A mapping rν : X × X → R
+ is said to be

a ν-generalized metric on X, if rν satisfies the following (for all distinct x, u1, u2, . . . , uν , y ∈
X):

(1rν ) rν(x, y) = 0 if and only if x = y,
(2rν ) rν(x, y) = rv(y, x),
(3rν ) rν(x, y) ≤ rν(x, u1) + rν(u1, u2) + · · · + rν(uν , y).

Then the pair (X, rν) is said to be a ν-generalized metric space.

Remark 2.1 Observe that when ν = 1 the ν-generalized metric space coincides with a met-
ric space whereas for ν = 2 the same space coincides with a rectangular metric space.

3 Main results
In this section, we introduce the notion of an Mν-metric space (for any fixed ν ∈ N) and
utilize it to prove a fixed point theorem besides deriving some lemmas, propositions, and
corollaries. Some natural examples are also furnished. The following notations will be
utilized in the sequel.

Notation 2
(1) mνx,y = min{mν(x, x), mν(y, y)},
(2) Mνx,y = max{mν(x, x), mν(y, y)}.

Definition 3.1 Let X be a nonempty set. A mapping mν : X × X → R+ is said to be an
Mν-metric, if mν satisfies the following (for all x, u1, u2, . . . , uν , y ∈ X):

(1mν ) mν(x, x) = mν(x, y) = mν(y, y) if and only if x = y,
(2mν ) mνx,y ≤ mν(x, y),
(3mν ) mν(x, y) = mν(y, x),
(4mν ) (mν(x, y) – mνx,y ) ≤ (mν(x, u1) – mνx,u1

) + (mν(u1, u2) – mνu1,u2
) + · · · + (mν(uν , y) –

mνuν ,y ) such that x, u1, u2, . . . , uν , y are distinct.
Then the pair (X, mν) is said to be an Mν-metric space.

Notice that (X, mν) is an M-metric space if and only if (X, mν) is an M1-metric space and
a rectangular Mr-metric space if and only if (X, mν) is an M2-metric space.

Now, we adopt an example in support of Definition 3.1 which is as follows:

Example 3.1 Let X = R. Define mν : X × X →R+ by

mν(x, y) =
|x| + |y|

2
, for all x, y ∈ X.

Here, one can easily check that conditions (1mν)-(3mν) are trivially satisfied. Now, we
merely need to show that condition (4mν) holds. In doing so, we distinguish the following
six cases:
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Case 1. Firstly, assume that |u1| ≤ |u2| ≤ · · · ≤ |uν | ≤ |x| ≤ |y|. Hence, mνx,y = |x|, mνx,u1
=

|u1|, mνu1,u2
= |u1|, mνu2,u3

= |u2|, . . . , mνuν ,y = |uν |. Then (4mν) can be written as

|x| + |y|
2

– |x| ≤ |x| + |u1|
2

– |u1| +
|u1| + |u2|

2
– |u1| + · · · +

|uν | + |y|
2

– |uν |

=
|x| + |y|

2
– |u1| + |u1| + · · · + |uν | – |u1| – · · · – |uν |

=
|x| + |y|

2
– |u1|,

and since |u1| ≤ |x|, the above inequality is correct.
Case 2. Next, assume that |u1| ≤ · · · ≤ |ur| ≤ |x| ≤ |ur+1| ≤ · · · ≤ |uν | ≤ |y|, for some

1 < r < v. Then, (4mν) can be written as

|x| + |y|
2

– |x| ≤ |x| + |u1|
2

– |u1| +
|u1| + |u2|

2
– |u1| + · · · +

|ur| + |x|
2

– |ur|

+
|x| + |ur+1|

2
– |x| + · · · +

|uν | + |y|
2

– |uν |

=
|x| + |y|

2
– |u1| + |u1| + · · · + |uν | – |u1| – · · · – |uν |

=
|x| + |y|

2
– |u1|,

and since |uν | ≤ |x|, then above inequality is correct.
Case 3. Now, assume that |u1| ≤ · · · ≤ |ur| ≤ |x| ≤ |y| ≤ |ur+1| ≤ · · · ≤ |uν |, for some

1 < r < v. Then, (4mν) can be written as

|x| + |y|
2

– |x| ≤ |x| + |u1|
2

– |u1| +
|u1| + |u2|

2
– |u1| + · · · +

|ur| + |x|
2

– |ur|

+
|x| + |y|

2
– |x| +

|y| + |ur+1|
2

– |y| + · · · +
|uν | + |y|

2
– |y|

=
|x| + |y|

2
– |u1| + |u1| + · · · + |uν | – |u1| – · · · – |y|

=
|x| + |y|

2
–

(|x| + |y| – |uν |
)
,

and since |x| + |y| – |uν | ≤ |x|, then above inequality is correct.
Case 4. Now, assume that |x| ≤ |u1| ≤ |u2| ≤ · · · ≤ |uν | ≤ |y|. Then, (4mν) can be written

as

|x| + |y|
2

– |x| ≤ |x| + |u1|
2

– |x| +
|u1| + |u2|

2
– |u1| + · · · |uν | + |y|

2
– |uν |

=
|x| + |y|

2
– |x| + |u1| + · · · + |uν | – |u1| – · · · – |uν |

=
|x| + |y|

2
– |x|.

Case 5. Now, assume that |x| ≤ |u1| ≤ · · · ≤ |ur| ≤ |y| ≤ |ur+1| ≤ · · · ≤ |uν |, for some
1 < r < v. Then, (4mν) can be written as:

|x| + |y|
2

– |x| ≤ |x| + |u1|
2

– |x| +
|u1| + |u2|

2
– |u1| + · · · +

|ur| + |y|
2

– |ur|



Asim et al. Journal of Inequalities and Applications        (2019) 2019:280 Page 5 of 19

+
|y| + |ur+1|

2
– |y| + · · · +

|uν | + |y|
2

– |uν |

=
|x| + |y|

2
– |x| + |u1| + · · · + |uν | – |u1| – · · · – |uν |

=
|x| + |y|

2
– |x|.

Case 6. Finally, assume that |x| ≤ |y| ≤ |u1| ≤ |u2| ≤ · · · ≤ |uν |. Then, (4mν) can be writ-
ten as:

|x| + |y|
2

– |x| ≤ |x| + |u1|
2

– |x| +
|u1| + |u2|

2
– |u1| + · · · +

|uν | + |y|
2

– |y|

=
|x| + |y|

2
– |x| + |u1| + · · · + |uν | – |u1| – · · · – |y|

=
|x| + |y|

2
–

(|x| + |y| – |uν |
)
,

and since |x| + |y| – |uν | ≤ |x|, then above inequality is correct.

Now, we furnish two examples by which one can obtain a ν-generalized metric space
from an Mν-metric space.

Example 3.2 Let (X, mν) be an Mν-metric space. Define a function m∗
ν : X × X → R+ by

(for all x, y ∈ X)

m∗
ν(x, y) = mν(x, y) – 2mνx,y + Mνx,y . (3.1)

Then m∗
ν is a ν-generalized metric and the pair (X, m∗

ν) is ν-generalized metric space.

Proof To verify condition (1rν ), for any x, y ∈ X, we have

m∗
ν(x, y) = 0

⇐⇒ mν(x, y) – 2mνx,y + Mνx,y = 0

⇐⇒ mν(x, y) = 2mνx,y – Mνx,y .

Also,

mνx,y ≤ 2mνx,y – Mνx,y

⇐⇒ Mνx,y ≤ mνx,y

⇐⇒ mν(x, y) = mνx,y = Mνx,y

⇐⇒ x = y.

Now, for condition (2rν ), for any x, y ∈ X, we have

m∗
ν(x, y) = mν(x, y) – 2mνx,y + Mνx,y

= mν(y, x) – 2mνy,x + Mνy,x

= m∗
ν(y, x).
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Finally, we show that condition (3rν ) holds. Observe that for all distinct x, u1, u2, . . . , uν , y ∈
X, we have

m∗
ν(x, y) = mν(x, y) – 2mνx,y + Mνx,y

=
(
mν(x, y) – mνx,y

)
+ (Mνx,y – mνx,y )

≤ [(
mν(x, u1) – mνx,u1

)
+

(
mν(u1, u2) – mνu1,u2

)

+ · · · +
(
mν(uν , y) – mνuν ,y

)]
+

[
(Mνx,u1

– mνx,u1
)

+ (Mνu1,u2
– mνu1,u2

) + · · · + (Mνuν ,y – mνuν ,y )
]

= m∗
ν(x, u1) + m∗

ν(u1, u2) + · · · + m∗
ν(uν , y).

Thus, (X, m∗
ν) is a ν-generalized metric space. �

Example 3.3 Let (X, mν) be an Mν-metric space. Define a function m∗∗
ν : X × X → R+ by

(for all x, y ∈ X)

m∗∗
ν (x, y) = mν(x, y) – mνx,y . (3.2)

Then m∗∗
ν is a ν-generalized metric and the pair (X, m∗∗

ν ) is ν-generalized metric space.

Proof By similar arguments as in Example 3.2, one can easily show that m∗∗
ν is a ν-

generalized metric. �

With a view to discuss topology corresponding to new Mν-metric, let (X, mν) be an Mν-
metric space. Then, for all x ∈ X and ε > 0, the open ball with center x and radius ε is
defined by

Bmν (x, ε) =
{

y ∈ X : mν(x, y) < mνx,y + ε
}

.

Observe that x ∈ Bmν (x, ε) for each ε > 0. Indeed, we have

mν(x, x) – mνx,x = mν(x, x) – mν(x, x) = 0 < ε.

Similarly, for all x ∈ X and ε > 0, the closed ball with center x and radius ε is defined by

Bmν [x, ε] =
{

y ∈ X : mν(x, y) ≤ mνx,y + ε
}

.

Lemma 3.1 Let (X, mν) be an Mν-metric space. Then the collection of all open balls on X ,

Umν =
{

Bmν (x, ε) : x ∈ X, ε > 0
}

,

forms a basis on X.

Proof Let u0 ∈ Bmν (x, ε). Then by the definition of Bmν (x, ε), we have

mν(x, u0) < mνx,u0
+ ε.
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Let δ = ε + mνx,u0
– mν(x, u0) > 0. We claim that

Bmν (u0, δ) ⊆ Bmν (x, ε).

Let u1 ∈ Bmν (u0, δ). Then by the definition, we have

mν(u1, u0) < mνu1,u0
+ δ.

Again let δ1 = δ + mνu1,u0
– mν(u1, u0). Inductively, let uν ∈ Bmν (uν–1, δν–1), for any finite

ν ≥ 2. Then

mν(uν , uν–1) < mνuν ,uν–1
+ δν–1.

Let us choose δν > 0 such that

δν = δν–1 + mνuν ,uν–1
– mν(uν , uν–1).

Now, from condition (4mν ), we have

(
mν(x, uν) – mνx,uν

) ≤ (
mν(x, u0) – mνx,u0

)
+

(
mν(u0, u1) – mνu0,u1

)

+ · · · +
(
mν(uν–1, uν) – mνuν–1,uν

)

< (ε – δ) + (δ – δ1) + (δ1 – δ2)

+ · · · + (δν–2 – δν–1) + (δν–1 – δν)

< (ε – δν).

Hence, Bmν (u0, δ) ⊆ Bmν (x, ε). Therefore, Umν forms a basis on X. �

Definition 3.2 Let (X, mν) be an Mν-metric space and τmν a topology generated by the
open balls Bmν (x, ε). Then the pair (X, τmν ) is called an Mν-space.

Proposition 3.1 An Mν-space is a T0-space.

Proof Let (X, τmν ) be an Mν-metric space and x, y ∈ X are two distinct points. Then from
condition (2mν), we have

mνx,y ≤ mν(x, y) ⇒ min
{

mν(x, x), mν(y, y)
} ≤ mν(x, y),

that is,

mν(x, x) ≤ mν(x, y) or mν(y, y) ≤ mν(x, y).

Firstly, assume that mν(x, x) = mν(y, y). Then we have

mνx,y = mν(x, x) = mν(y, y) < mν(x, y),
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yielding

mν(x, y) – mνx,y = mν(x, y) – mν(x, x) > 0.

If we choose ε > 0 such that mν(x, y) – mν(x, x) = ε, then mν(x, y) = mνx,y + ε, so that y /∈
Bmν (x, ε).

Next, assume that mν(x, x) < mν(y, y). Then

mνx,y = mν(x, x) < mν(x, y),

implying

mν(x, y) – mνx,y = mν(x, y) – mν(x, x) > 0.

Again, if we choose ε > 0 such that mν(x, y) – mν(x, x) = ε, then

mν(x, y) = mνx,y + ε

so that y /∈ Bmν (x, ε).
Similarly, for mν(x, x) > mν(y, y), one can easily show that x ∈ Bmν (x, ε) and y /∈ Bmν (x, ε).
Therefore, for any two distinct points in x, y ∈ X, there is a ball containing one and not

containing the other point. Hence, (X, mν) is a T0-space. �

In an Mν-metric space, the concepts of basic topological notions, namely of mν-Cauchy
sequence, mν-convergent sequence, and mν-complete Mν-metric space can be easily
adopted as follows.

Definition 3.3 A sequence {xn} in (X, mν) is said to be mν-convergent to x ∈ X if and only
if

lim
n→∞

(
mν(xn, x) – mνxn ,x

)
= 0.

Definition 3.4 A sequence {xn} in (X, mν) is said to be mν-convergent uniquely to x ∈ X
if and only if limn→∞(mν(xn, x) – mνxn ,x ) = 0 holds and limn→∞(mν(xn, y) – mνxn ,y ) = 0 does
not hold for y ∈ X \ {x}.

Definition 3.5 A sequence {xn} in (X, mν) is said to be mν-Cauchy if and only if

lim
n,m→∞

(
mν(xn, xm) – mνxn ,xm

)
and lim

n,m→∞(Mνxn ,xm – mνxn ,xm )

exist and are finite.

Definition 3.6 An Mν-metric space (X, mν) is said to be mν-complete if every mν-Cauchy
sequence in X is mν-convergent to a point x ∈ X such that

lim
n→∞

(
mν(xn, x) – mνxn ,x

)
= 0 and lim

n→∞(Mνxn ,x – mνxn ,x ) = 0.
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Definition 3.7 A self-mapping f on (X, mν) is said to be sequentially mν-continuous if
and only if the fact that {xn} mν-converges to x implies that {fxn} mν-converges to fx.

Definition 3.8 A sequence {xn} in (X, mν) is said to be mν-κ-Cauchy if and only if

lim
n→∞

(
mν(xn, xn+1+jκ ) – mνxn ,xn+1+jκ

)
and lim

n→∞(Mνxn ,xn+1+jκ
– mνxn ,xn+1+jκ

)

exist and are finite with κ ∈N and j ∈N0.

Definition 3.9 An Mν-metric space (X, mν) is said to be an mν-κ-complete if every mν-
κ-Cauchy in X is mν-convergent to a point x ∈ X such that

lim
n→∞

(
mν(xn, x) – mνxn ,x

)
= 0 and lim

n→∞(Mνxn ,x – mνxn ,x ) = 0.

Remark 3.1 We prefer to write “mν-Cauchy” instead of “mν-1-Cauchy” and “mν-
complete” instead of “mν-1-complete”.

Lemma 3.2 Let (X, mν) be an Mν-metric space. Then, we have
(i) A sequence {xn} in (X, mν) is mν-Cauchy in (X, mν) if and only if {xn} in (X, mν) is

mν-Cauchy in (X, m∗
ν) (resp. (X, m∗∗

ν )).
(ii) (X, mν) is mν-complete if and only if (X, m∗

ν) (resp. (X, m∗∗
ν )) is mν-complete.

Moreover,

lim
n→∞ m∗

ν(xn, x) = 0 ⇐⇒ lim
n→∞

(
mν(xn, x) – mνxn ,x

)
= 0 = lim

n→∞(Mνxn ,x – mνxn ,x ).

Proof By using Examples 3.2 and 3.3, one can easily prove this lemma. �

Proposition 3.2 Let (X, mν) be an Mν-metric space and κ ,λ ∈ N such that κ divides λ.
Then

(i) Every mν-κ-Cauchy sequence is mν-λ-Cauchy.
(ii) If X is mν-κ-complete, then X is mν-λ-complete.

Proof (i) Let {xn} be an mν-κ-Cauchy sequence in X. By the definition of an mν-κ-Cauchy
sequence, we have that

lim
n→∞

(
mν(xn, xn+1+jκ ) – mνxn ,xn+1+jκ

)
and lim

n→∞(Mνxn ,xn+1+jκ
– mνxn ,xn+1+jκ

)

exist and are finite with j ∈ N0. Since, κ ,λ ∈ N are such that κ divides λ, one can find a
j ∈ N0 such that λ = jκ . Thus,

lim
n→∞

(
mν(xn, xn+1+jλ) – mνxn ,xn+1+jλ

)
and lim

n→∞(Mνxn ,xn+1+jλ
– mνxn ,xn+1+jλ

)

exist and are finite with j ∈ N0. Therefore, {xn} is an mν-λ-Cauchy.
(ii) Let (X, mν) be mν-κ-complete. Then every mν-κ-Cauchy sequence is also mν-λ-

Cauchy which is mν-convergent to some point in X. Hence, (X, mν) is mν-λ-complete. �

Now, we prove the following lemma which is used in our subsequent discussion:
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Lemma 3.3 Let (X, mν) be an Mν-metric space. Let {xn} be a sequence in X such that all
xns are distinct and

∑∞
n=1(mν(xn, xn+1) – mνxn ,xn+1

) < ∞. Then {xn} is mν-ν-Cauchy.

Proof Fix ε > 0, then there exists N ∈ N such that
∑∞

i=N (mν(xi, xi+1) – mνxi ,xi+1
) < ε. Fix

n ∈N with n ≥ N . We will show that

(
mν(xn, xn+1+jν) – mνxn ,xn+1+jν

) ≤
n+jν∑

i=n

(
mν(xi, xi+1) – mνxi ,xi+1

)
. (3.3)

For j = 0, (3.3) trivially holds. Now, from (4mν), we have (for some j ∈ N)

(
mν(xn, xn+1+(j+1)ν) – mνxn ,xn+1+(j+1)ν

) ≤ (
mν(xn, xn+1+jν) – mνxn ,xn+1+jν

)

+
n+(j+1)ν∑

i=n+1+jν

(
mν(xi, xi+1) – mνxi ,xi+1

)

≤
n+(j+1)ν∑

i=n

(
mν(xi, xi+1) – mνxi ,xi+1

)
.

Then (3.5) holds for k = k + 1. Thus, by mathematical induction, (3.3) holds for any j ∈N0.
Hence,

(
mν(xn, xn+1+jν) – mνxn ,xn+1+jν

) ≤
n+jν∑

i=n

(
mν(xi, xi+1) – mνxi ,xi+1

)

≤
∞∑

i=N

(
mν(xi, xi+1) – mνxi ,xi+1

)
< ε.

Also, by condition (2mν) and recalling our notation, we have

(Mνxn ,xn+1+jν
– mνxn ,xn+1+jν

) ≤ (
mν(xn, xn+1+jν) – mνxn ,xn+1+jν

)
< ε.

Therefore, {xn} is an mν-ν-Cauchy sequence. �

Proposition 3.3 Let (X, mν) be an Mν-metric space where ν is odd. Let {xn} be an mν-ν-
Cauchy sequence such that all xn are distinct. Then {xn} is an mν-Cauchy sequence.

Proof We first note that if ν = 1, then from Remark 3.1 the conclusion clearly holds. Now,
we assume that ν ≥ 3. Fix ε > 0, then there exists N ∈N such that

(
mν(xn, xn+1+jν) – mνxn ,xn+1+jν

)
< ε, for n ≥ N and j ∈ N0. (3.4)

Next, we fix j ∈N0 with n ≥ N . Now, we first show that

(
mν(xn, xn+1+jν+2k) – mνxn ,xn+1+jν+2k

)
< (kν + 1)ε, for k = 0, 1, . . . , (ν – 1)/2. (3.5)
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If k = 0, then (3.5) trivially holds by (3.4). So, let 0 < k ≤ (ν – 1)/2. Now using (4mν ), we
have

(
mν(xn, xn+1+jν+2(k+1)) – mνxn ,xn+1+jν+2(k+1)

)

≤ (
mν(xn, xn+1+jν+2k) – mνxn ,xn+1+jν+2k

)

+
(
mν(xn+1+jν+2k , xn+2+(j+1)ν+2k) – mνxn+1+jν+2k ,xn+2+(j+1)ν+2k

)

+
n+1+(j+1)ν+2k∑

i=n+1+jν+2(k+1)

(
mν(xi, xi+1) – mνxi ,xi+1

)

≤ (kν + 1)ε + ε + (ν – 1)ε

=
(
(k + 1)ν + 1

)
ε.

Then, (3.5) holds for k = k + 1. Thus, by mathematical induction, (3.5) holds for every k,
which implies

(
mν(xn, xn+1+jν+2k) – mνxn ,xn+1+jν+2k

)
<

(
ν2

2
–

ν

2
+ 1

)
,

for j ∈ N0, k = 0, 1, . . . , (ν – 1)/2 with n ≥ N . Therefore, we have

(
mν(xn, xn+1+jν+2k+1) – mνxn ,xn+1+jν+2k+1

)

≤ (
mν(xn, xn+1+jν+2k) – mνxn ,xn+1+jν+2k

)

+
(
mν(xn+1+jν+2k , xn+2+jν+2k+ν–1) – mνxn+1+jν+2k ,xn+2(jν+2k+ν–1

)

+
n+(j+1)ν+2k∑

i=n+2+jν+2k

(
mν(xi, xi+1) – mνxi ,xi+1

)

≤ 2
(

ν2

2
–

ν

2
+ 1

)
ε + (ν – 1)ε

=
(
ν2 + 1

)
ε

for j ∈N0, k = 0, 1, . . . , (ν – 3)/2 with n ≥ N . Also, by condition (2mν) and our notation, we
have

(Mνxn ,xn+1+jν+2k
– mνxn ,xn+1+jν+2k

) ≤ (
mν(xn, xn+1+jν+2k)–νxn ,xn+1+jν+2k

)
< ε.

Therefore, {xn} is an mν-Cauchy sequence. �

Proposition 3.4 Let (X, mν) be an Mν-metric space where ν is even. Let {xn} be an mν-ν-
Cauchy sequence such that all xn are distinct. Then {xn} is an mν-2-Cauchy sequence.

Proof Fix ε > 0, then there exists N ∈N such that

(
mν(xn, xn+1+jν) – mνxn ,xn+1+jν

)
< ε, for n ≥ N and j ∈ N0. (3.6)



Asim et al. Journal of Inequalities and Applications        (2019) 2019:280 Page 12 of 19

Next, we fix j ∈ N0 with n ≥ N . Then by mathematical induction as in the proof of Propo-
sition 3.3, one can show

(
mν(xn, xn+1+jν+2k) – mνxn ,xn+1+jν+2k

)
< (kν + 1)ε, for k = 0, 1, . . . ,ν/2 – 1. (3.7)

Therefore, we have

(
mν(xn, xn+1+2j) – mνxn ,xn+1+2j

)
<

(
ν2

2
– ν + 1

)
ε, for any j ∈N0.

Furthermore, by using condition (2mν) and our notation, we obtain

(Mνxn ,xn+1+2j
– mνxn ,xn+1+2j

) ≤ (
mν(xn, xn+1+2j) – mνxn ,xn+1+2j

)
<

(
ν2

2
– ν + 1

)
ε

for any j ∈N0. So that {xn} is mν-2-Cauchy. �

Remark 3.2 Observe that every mν-Cauchy sequence is mν-2-Cauchy but the converse is
not true in general. For converse part, we prove the following lemma.

Lemma 3.4 Let (X, mν) be an Mν-metric space. Let {xn} be an mν-2-Cauchy sequence in
X such that all xns are distinct and

lim
n→∞

(
mν(xn, xn+2) – mνxn ,xn+2

)
= 0.

Then {xn} is an mν-Cauchy sequence.

Proof Since {xn} is an mν-2-Cauchy, for every ε > 0, there exists N ∈N such that

(
mν(xn, xn+1+2j) – mνxn ,xn+1+2j

)
< ε and

(
mν(xn, xn+2) – mνxn ,xn+2

)
< ε

for any j ∈N0 with n ≥ N . Fix j ∈N0 and for n ≥ N . Then for ν = 1, we have

(
mν(xn, xn+2+2j) – mνxn ,xn+2+2j

) ≤ (
mν(xn, xn+1+2j) – mνxn ,xn+1+2j

)

+
(
mν(xn+1+2j, xn+2+2j) – mνxn+1+2j ,xn+2+2j

)

< ε.

Now, we take the case ν ≥ 2, and then have

(
mν(xn, xn+2+2j) – mνxn ,xn+2+2j

) ≤ (
mν(xn, xn+1+2j) – mνxn ,xn+1+2j

)

+
(
mν(xn+1+2j, xn+2j+2ν) – mνxn+1+2j ,xn+2j+2ν

)

+
n+2(ν–1)+2j∑

i=n+2+2j

(
mν(xi, xi+2) – mνxi ,xi+2

)

< (ν + 1)ε.
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By using condition (2mν) and our notation, we obtain

(Mνxn ,xn+2+2j
– mνxn ,xn+2+2j

) ≤ (
mν(xn, xn+2+2j) – mνxn ,xn+2+2j

)
< (ν + 1)ε.

Therefore, {xn} is an mν-Cauchy sequence. �

Next, we present the following lemma required in the sequel.

Lemma 3.5 Let (X, mν) be an Mν-metric space and f : X → X a self-mapping on X such
that

mν(fx, fy) ≤ λmν(x, y) (3.8)

for some λ ∈ [0, 1). Consider the sequence {xn} defined by xn+1 = fxn. If xn → x as n → ∞,
then fxn → fx as n → ∞.

Proof Assume that mν(fxn, fx) = 0, then mνfxn ,fx ≤ mν(fxn, fx) = 0, so that mν(fxn, fx) –
mνfxn ,fx → 0 as n → ∞ and fxn → fx as n → ∞.

On the other hand, assume that mν(fxn, fx) > 0. By (3.8) we have mν(fxn, fx) ≤ λmν(xn, x).
Here, we distinguish two cases as follows:

Firstly, assume that mν(x, x) ≤ mν(xn, xn). Then, by using (3.8), we have

mν(xn, xn) = mν(fxn–1, fxn–1) ≤ λmν(xn–1, xn–1) ≤ · · · ≤ λn–1mν(x0, x0).

By taking limit as n → ∞, we get

lim
n→∞ mν(xn, xn) = 0 �⇒ mν(x, x) = 0.

Since mν(fx, fx) < mν(x, x) = 0, we obtain that mν(fx, fx) = λmν(x, x) = 0 (for λ ∈ [0, 1)).
Then, by the definition of mν-convergence of a sequence xn, which converges to x, we
have

lim
n→∞

(
mν(xn, x) – mνxn ,x

)
= 0.

Since, mνxn ,x = min{mν(xn, xn), mν(x, x)} and hence mνxn ,x → 0 as n → ∞ so that mν(xn,
x) → 0, n → ∞. Hence, we obtain mν(fxn, fx) < mv(xn, x) → 0. Therefore, mν(fxn, fx) –
mνfxn ,fx → 0 so that fxn → fx.

Secondly, assume that mν(x, x) ≥ mν(xn, xn). Similarly, one can show that

lim
n→∞ mν(xn, xn) = 0 �⇒ mνxn ,x → 0.

Hence, mν(xn, x) → 0. Since mν(fxn, fx) < mν(xn, x) → 0, we have mν(fxn, fx) – mνfxn ,fx → 0
so that fxn → fx. This finishes the proof. �

Now, we are equipped to prove our main result as follows:

Theorem 3.1 Let (X, mν) be an Mν-metric space and f : X → X. Assume that the following
conditions are satisfied:
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(i) there exists λ ∈ [0, 1) such that (for all x, y ∈ X)

mν(fx, fy) ≤ λmν(x, y) (3.9)

(ii) (X, mν) is mν-complete.
Then f has a unique fixed point x ∈ X such that mν(x, x) = 0.

Proof Let x0 ∈ X. Construct an iterative sequence {xn} by:

x1 = fx0, x2 = f 2x0, x3 = f 3x0, . . . , xn = f nx0, . . . .

Now, we assert that limn→∞ mν(xn, xn+1) = 0. On setting x = xn and y = xn+1 in (3.9), we
have

mν(xn, xn+1) = mν(fxn–1, fxn)

≤ λmν(xn–1, xn)

≤ λnmν(x0, x1),

which, letting n → ∞, gives rise to

lim
n→∞ mν(xn, xn+1) = 0.

Now, by taking x = xn and y = xn+2 in (3.9), we obtain

mν(xn, xn+2) = mν(fxn–1, fxn+1)

≤ λmν(xn–1, xn+1)

≤ λn–1mν(x0, x2),

and, taking limit as n → ∞, we have

lim
n→∞ mν(xn, xn+2) = 0.

Similarly, from condition (3.9), we get

mν(xn, xn) = mν(fxn–1, fxn–1) ≤ λmν(xn–1, xn–1) ≤ · · · ≤ λn–1mν(x0, x0).

By taking limit as n → ∞, we get

lim
n→∞ mν(xn, xn) = 0. (3.10)

Also, we have

∞∑

n=1

mν(xn, xn+1) ≤
∞∑

n=1

λnmν(x0, x1) < ∞ (3.11)



Asim et al. Journal of Inequalities and Applications        (2019) 2019:280 Page 15 of 19

and

∞∑

n=1

mν(xn, xn) ≤
∞∑

n=1

λnmν(x0, x0) < ∞. (3.12)

Therefore, from equations (3.11), (3.12) and by recalling our notation, we obtain

∞∑

n=1

(
mν(xn, xn+1) – mνxn ,xn+1

)
< ∞.

Firstly, we show that xn �= xm for any n �= m. Let on the contrary xn = xm for some n > m,
then we have xn+1 = fxn = fxm = xm+1. Then from (3.9), we get

mν(xm, xm+1) = mν(xn, xn+1) < mν(xn–1, xn) < · · · < mν(xm, xm+1),

a contradiction. Thus, in what follows, we can assume that xn �= xm for all n �= m.
Now, we assert that {xn} is an mν-Cauchy sequence in (X, mν). By Lemma 3.3, {xn} is

an mν-ν-Cauchy sequence. By Propositions 3.3 and 3.4, {xn} is an mν-Cauchy sequence.
Thus, we have

lim
n,m→∞

(
mν(xn, xm) – mνxn ,xm

)
= 0 and lim

n,m→∞(Mνxn ,xm –mνxn ,xm
) = 0.

Since X is mν-complete, there exists x ∈ X such that xn → x. Now, we show that fx = x. By
Lemma 3.5 we have

lim
n→∞

(
mν(xn, x) – mνxn ,x

)
= 0

= lim
n→∞

(
mν(xn+1, x) – mνxn+1,x

)

= lim
n→∞

(
mν(fxn, x) – mνfxn ,x

)

= lim
n→∞

(
mν(fx, x) – mνfx,x

)

so that mν(fx, x) = mνx,fx . Since mνx,fx = min{mν(x, x), mν(fx, fx)}, therefore mνx,fx = mν(x, x)
or mνx,fx = mν(fx, fx) which amounts to saying that fx = x.

Now, we show the uniqueness of the fixed point x. Suppose on the contrary that f has
two fixed points x, y ∈ X, that is, fx = x and fy = y. Thus

mν(x, y) = mν(fx, fy) ≤ λmν(x, y) < mν(x, y),

which implies that mν(x, y) = 0 and hence, x = y. Finally, we show that if x is a fixed point,
then mν(x, x) = 0. Assume that x is a fixed point of f . Observe that

mν(x, x) = mν(fx, fx) ≤ λmν(x, x) < mν(x, x),

yielding mν(x, x) = 0. This completes the proof. �

Now, we present an example which demonstrates the utility of our newly proved result:
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Example 3.4 Consider X = [0, 1] and an Mν-metric mν : X × X →R+ defined by

mν(x, y) =
x + y

2
, for all x, y ∈ X.

Then (X, mν) is an mν-complete Mν-metric space. Define a self-mapping f on X by

fx =
3x
5

, for all x ∈ X.

Observe that, for all x, y ∈ X, we obtain

mν(fx, fy) =
fx + fy

2
=

3x
5 + 3y

5
2

≤ 3
5

(
x + y

2

)
=

3
5

mν(x, y).

Thus, all conditions of Theorem 3.1 are satisfied and f has a unique fixed point (namely
x = 0).

Observe that, by putting mν in (3.1) (or alternately in (3.2)) with ν = 1, one can deduce
a metric and henceforth the classical Banach contraction principle.

The following corollary is due to Asadi et al. [5].

Corollary 3.1 Let (X, m) be an M-metric space and f : X → X. Assume that the following
conditions are satisfied:

(i) there exists λ ∈ [0, 1) such that (for all x, y ∈ X)

m(fx, fy) ≤ λm(x, y)

(ii) (X, m) is m-complete.
Then f has a unique fixed point x such that m(x, x) = 0.

Proof By choosing ν = 1 in Theorem 3.1, the above result is immediate. �

The following corollary is due to Özgür et al. [25].

Corollary 3.2 Let (X, mr) be a rectangular Mr-metric space and f : X → X. Assume that
the following conditions are satisfied:

(i) there exists λ ∈ [0, 1) such that (for all x, y ∈ X)

mr(fx, fy) ≤ λmr(x, y)

(ii) (X, mr) is mr-complete.
Then f has a unique fixed point x such that mr(x, x) = 0.

Proof The above result is immediate from Theorem 3.1 by choosing ν = 2. �

Corollary 3.3 Theorem 3.1 remains a genuinely sharpened version of Theorem 2.1 due to
A. Branciari [12].
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4 An application to an integral equation
In this section, we endeavor to apply Theorem 3.1 to investigate the existence and unique-
ness of solution of the Fredholm integral equation.

Let X = C([0, 1],R) be the set of continuous real-valued functions defined on [0, 1]. Now,
we consider the following Fredholm type integral equation:

x(t) =
∫ 1

0
G

(
t, s, x(t)

)
ds, for t, s ∈ [0, 1], (4.1)

where G ∈ C([0, 1],R). Define mν : X × X →R
+ as in Example 3.1, that is,

mν

(
x(t), y(t)

)
= sup

t∈[a,b]

( |x(t)| + |y(t)|
2

)
, for all x, y ∈ X.

Then (X, mν) is an mν-complete Mν-metric space.
Now, we are equipped to state and prove our result as follows:

Theorem 4.1 Assume that (for all x, y ∈ C([0, 1],R))

∣
∣G

(
t, s, x(t)

)
+ G

(
t, s, y(t)

)∣∣ ≤ λ
∣
∣x(t) + y(t)

∣
∣, for all t, s ∈ [0, 1], (4.2)

where λ ∈ [0, 1). Then the integral equation (4.1) has a unique solution.

Proof Define f : X → X by

fx(t) =
∫ 1

0
G

(
t, s, x(t)

)
ds, for all t, s ∈ [0, 1].

Observe that existence of a fixed point of the operator f is equivalent to the existence of a
solution of the integral equation (4.1). Now, for all x, y ∈ X, we have

mν(fx, fy) =
∣∣
∣∣
fx(t) + fy(t)

2

∣∣
∣∣ =

∣∣
∣∣

∫ 1

0

(
G(t, s, x(t)) + G(t, s, y(t))

2

)
ds

∣∣
∣∣

≤
∫ 1

0

∣
∣∣
∣
G(t, s, x(t)) + G(t, s, y(t))

2

∣
∣∣
∣ds

≤ λ

∫ 1

0

∣∣
∣∣
x(t) + y(t)

2

∣∣
∣∣ds

≤ λ

∫ 1

0

( |x(t)| + |y(t)|
2

)
ds

≤ λ sup
t∈[a,b]

( |x(t)| + |y(t)|
2

)∫ 1

0
ds

≤ λmν(x, y).

Thus, condition (3.9) is satisfied. Therefore, all conditions of Theorem 3.1 are satisfied.
Hence, operator f has a unique fixed point, which means that the Fredholm integral equa-
tion (4.1) has a unique solution. This completes the proof. �
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