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The ACQA is related to PC and PQ. If PC or PQ does not have an analytical expression,
it might be difficult to implement. Then Moudafi [2] presented the relaxed alternating
CQ-algorithm (RACQA) to solve this problem:

�
�

�
xk+1 = PCk (xk – � A� (Axk – Byk)),

yk+1 = PQk (yk + � B� (Axk+1 – Byk)).

The above algorithm also converges weakly to a solution of the SEP (1.1). Afterwards, for
getting a strong convergence result, Shi et al. [3] proposed the following algorithm:

�
�

�
xk+1 = PC[(1 – � k)(xk – � A� (Axk – Byk))],

yk+1 = PQ[(1 – � k)(yk + � B� (Axk – Byk))].

For more information with respect to the algorithms of solving the split equality prob-
lem; see [4, 5] and the references therein. But all these papers did not consider the conver-
gence rate of the algorithms.

In this paper, we think about the multiple-sets split equality problem (MSSEP), which
generalizes the split equality problem. It can be characterized mathematically as

finding x �
t�

i=1

Ci and y �
r�

j=1

Qj such that Ax = By, (1.2)

where r and t are two positive integers, {Ci}t
i=1 and {Qj}r

j=1 are closed, convex and nonempty
sets in Hilbert spaces H1 and H2, respectively, H3 is also a Hilbert space, and two operators
A : H1 � H3 and B : H2 � H3 are bounded and linear. Obviously, when t = r = 1, the
MSSEP (1.2) becomes the SEP (1.1). Without loss of generality, set t > r and take Qr+1 =
Qr+2 = · · · = Qt = H2. Set Si = Ci × Qi � H = H1 × H2, i = 1, 2, . . . , t, S =

� t
i=1 Si, G = [A, –B] :

H � H3 and G� be the adjoint operator of G. Then the MSSEP (1.2) can be restated as

finding w = (x, y) � S such that Gw = 0. (1.3)

To solve the multiple-sets split equality problem, Tian et al. [6] gave the following algo-
rithm and obtained a weak convergence result:

�
��������

��������

xk+1 = xk + � 1,k
� t

i=1 � i� PCi xk –xk � 2

�
� t

i=1 � i(PCi xk –xk )� 2

� t
i=1 � i(PCi xk – xk)

– � 2,k � Axk –Byk � 2

� A� (Axk–Byk )� 2 A� (Axk – Byk),

yk+1 = yk + � 1,k
� t

i=1 � i� PQi yk –yk � 2

�
� t

i=1 � i(PQi yk –yk )� 2

� t
i=1 � i(PQi yk – yk)

+ � 2,k � Axk –Byk � 2

� B� (Axk –Byk )� 2 B� (Axk – Byk).

(1.4)

The step size of the algorithm is split self-adaptive, namely, it does not need any infor-
mation about the relevant operators, which can save much time for our calculation. The
main purpose of this paper is to investigate the sublinear and linear convergence rate of
algorithm (1.4).
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The rest of this paper is organized as follows. In Sect. 2, we recall some definitions and
lemmas which are useful for our convergence analysis later. We also introduce a concept
of bounded Hölder regularity property for the MSSEP and provide some conditions to
guarantee this property. In Sect. 3, under a bounded Hölder regularity assumption, we
study the sublinear and linear convergence of algorithm (1.4) and conclude its convergence
rate. In Sect. 4, we perform some numerical experiments and clarify the effectiveness of
our results.

2 Preliminaries
Set H be a real Hilbert space which has inner product �· , ·� and norm � · � . For a point w � H
and a set S � H , we denote the classical metric projection of w onto S and the distance of
w from S by using PS(w) and dS(w), respectively, and they are defined by

PS(w) := arg min
	
� w – v� : v � S



and dS(w) := inf

	
� w – v� : v � S



.

Bauschke et al. [7] listed several basic properties of the projection operator. These prop-
erties are as follows.

Lemma 2.1 ([7]) Let S be a closed, convex and nonempty subset of H , then for any x, y � H
and z � S,

(i) �x – PSx, z – PSx� 	 0;
(ii) � PSx – PSy� 2 	 � PSx – PSy, x – y� ;

(iii) � PSx – z� 2 	 � x – z� 2 – � PSx – x� 2.

Set operator G : H � H3 be bounded and linear. We utilize ker G = {x � H : Gx = 0} to
denote the kernel of G. The orthogonal complement of ker G is represented by (ker G)
 =
{y � H : �x, y� = 0, � x � ker G}. As is well known, ker G and (ker G)
 are both closed sub-
spaces of H . Throughout this paper, we denote the solution set of the MSSEP (1.3) by using
� , which is defined by

� := S � ker G = {w � S : Gw = 0}.

We assume that the MSSEP is consistent, then � is a closed, convex and nonempty set.
Next, we shift our attention to the bounded Hölder regularity property for a collection

of closed and convex subsets of a Hilbert space.

Definition 2.2 ([8]) Let {Si}i� I be a collection of closed convex subsets in a Hilbert space
H and S =

�
i� I Si 
= � . The collection {Si}i� I has a bounded Hölder regular intersection if

for each bounded set K , there exist an exponent � � (0, 1] and a scalar � > 0 such that

dS(w) 	 �
�
max

	
dSi (w) : i � I


� � , � w � K .

Furthermore, if the exponent � is independent of the set K , we say the collection {Si}i� I is
bounded Hölder regular with uniform exponent � .

It is obvious that any collection including only a set has a bounded Hölder regular in-
tersection whose uniform exponent � is equal to 1. The above definition with � = 1 is the
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bounded linear regularity property, which was introduced in [9]. Then we provide a sig-
nificant notion of bounded Hölder regularity property for the MSSEP (1.3) on the basis of
Definition 2.2.

Definition 2.3 The MSSEP is said to satisfy the bounded Hölder regularity property if for
each bounded set K , there exist an exponent � � (0, 1] and a scalar � > 0 such that

d� (w) 	 �
�
max

	
dS(w), � Gw�


� � , � w � K . (2.1)

Furthermore, if the exponent � is independent of the set K , we say the MSSEP is bounded
Hölder regular with uniform exponent � .

It is worth noting that when � = 1, the MSSEP satisfies the bounded linear regularity
property [10].

Lemma 2.4 ([11]) Let G : H � H3 be a bounded linear operator. Then G is injective and
has closed range if and only if G is bounded below, i.e., there exists a positive constant �

such that � Gw� � � � w� for all w � H .

The following lemma gives some conditions which make the bounded Hölder regularity
property for the MSSEP (1.3) hold.

Lemma 2.5 {S, ker G} has a bounded Hölder regular intersection and the range of G is
closed, then the MSSEP (1.3) satisfies the bounded Hölder regularity property.

Proof. {S, ker G} has a bounded Hölder regular intersection, so for any bounded set K ,
there exist an exponent � � (0, 1] and a scalar � > 0 such that

d� (w) = dS� ker G(w) 	 �
�
max

	
dS(w), dker G(w)


� � , � w � K . (2.2)

Since G restricted to (ker G)
 is injective and its range is closed, by Lemma 2.4, we know
that there exists v > 0 such that

� Gw1� � v� w1� , for all w1 � (ker G)
 .

Hence,

dker G(w) 	
1
v

� Gw� , for all w � H . (2.3)

Combining (2.2) and (2.3), we have

d� (w) 	 �



max

�
dS(w),

1
v

� Gw�
�� �

, � w � K .

Then the proof is split into two cases:
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Case 1: when 1
v < 1, we have

d� (w) 	 �
�
max

	
dS(w), � Gw�


� � , for all w � K .

Case 2: when 1
v � 1, we have

d� (w) 	
�
v�

max
	

dS(w), � Gw�

 � , for all w � K .

The proof is finished.

Lemma 2.6 ([10]) Let {S, ker G} be boundedly linearly regular and G has closed range.
Then the MSSEP (1.3) satisfies the bounded linear regularity property.

In order to complete the convergence rate analysis of algorithm (1.4), the following def-
inition and lemmas are also essential tools.

Definition 2.7 ([7]) Let C be a nonempty subset of H , and {xk} be a sequence in H . {xk}
is called Fejér monotone with respect to C, if

� xk+1 – z� 	 � xk – z� , � z � C.

Clearly, a Fejér monotone sequence {xk} is bounded and limk�� � xk – z� exists.

Lemma 2.8 ([8]) Let C be a closed, convex and nonempty set of a Hilbert space H , and s be
a positive integer. Suppose that the sequence {wk} is Fejér monotone with respect to C and
satisfies

d2
C(w(k+1)s) 	 d2

C(wks) – � d2�
C (wks), � k � N,

for some � > 0 and � � 1. Then wk � w� for some w� � C and there exist constants
M1, M2 � 0 and r � [0, 1) such that

�
� wk – w�

�
� 	

�
�

�
M1k– 1

2(� –1) , � > 1,

M2rk , � = 1.

Furthermore, the constants may be chosen to be

�
���

���

M1 := 2 max{(2s)
1

2(� –1) [(� – 1)� ]– 1
2(� –1) , (2s)

1
2(� –1) dC(w0)},

M2 := 2 max{( 4s� 1 – � )–2sdC(w0),
�

dC(w0)},

r := 4s� 1 – � ,

and � necessarily lies in (0, 1] whenever � = 1.

Lemma 2.9 ([12]) Let p > 0 and {� k}k	 N and {� k}k	 N be two sequences of nonnegative num-
bers such that

� k+1 	 � k
�
1 – � k � p

k
�
, � k � N.
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Then

� k 	

�

� –p
0 + p

k–1�

i=0

� i

� – 1
p

, � k � N,

where the convention that 1
0 = +� is adopted.

Finally, we end this section by reviewing algorithm (1.4) in detail.

Algorithm 2.10 ([6]) For an arbitrary initial point w0 = (x0, y0) � H , the sequence {wk} is
generated by

wk+1 = wk +
� 1,k

� t
i=1 � i� PSi wk – wk � 2

�
� t

i=1 � i(PSi wk – wk)� 2

t�

i=1

� i(PSi wk – wk) –
� 2,k � Gwk � 2

� G� Gwk � 2 G� Gwk ,

or component-wise

�
��������

��������

xk+1 = xk + � 1,k
� t

i=1 � i� PCi xk –xk � 2

�
� t

i=1 � i(PCi xk –xk )� 2

� t
i=1 � i(PCi xk – xk)

– � 2,k � Axk –Byk � 2

� A� (Axk–Byk )� 2 A� (Axk – Byk),

yk+1 = yk + � 1,k
� t

i=1 � i� PQi yk –yk � 2

�
� t

i=1 � i(PQi yk –yk )� 2

� t
i=1 � i(PQi yk – yk)

+ � 2,k � Axk –Byk � 2

� B� (Axk –Byk )� 2 B� (Axk – Byk),

where 0 < � 1 	 � 1,k 	 � 1 < 1, 0 < � 2 	 � 2,k 	 � 2 < 1 and {� i}t
i=1 > 0.

3 Main results
In this section, we conclude the sublinear and linear convergence rate of Algorithm 2.10
under a bounded Hölder regularity assumption. Now, we give the most important theorem
in this paper and prove it.

Theorem 3.1 The MSSEP (1.3) satisfies the bounded Hölder regularity property, the se-
quence {wk} is defined by Algorithm 2.10, and {Si}t

i=1 has a bounded Hölder regular inter-
section, then {wk} converges to a solution w� of the MSSEP (1.3) at least with a sublinear
rate O(k–
) for some 
 > 0.

In particular, if the MSSEP satisfies the bounded Hölder regularity property with uniform
exponent q � (0, 1] and {Si}t

i=1 has a bounded Hölder regular intersection with uniform
exponent p � (0, 1], then there exist constants M1, M2, F � 0 and r � [0, 1) such that when
k � F ,

�
� wk – w�

�
� 	

�
�

�
M1k– 1

2(� –1) , � > 1,

M2rk , � = 1,

where � = 1
pq .

Proof Set � k := � 1,k
� t

i=1 � i� PSi wk –wk � 2

�
� t

i=1 � i(PSi wk –wk )� 2 and � k := � 2,k � Gwk � 2

� G� Gwk � 2 . For the first assertion, we will
firstly prove that the sequence {wk} is Fejér monotone with respect to � .
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Since � 
= � , take w̄ � � , then Gw̄ = 0, and

� wk+1 – w̄� 2

=

�
�
�
�
�

wk + � k

t�

i=1

� i(PSi wk – wk) – � kG� Gwk – w̄

�
�
�
�
�

2

= � wk – w̄� 2 + � 2
k

�
�
�
�
�

t�

i=1

� i(PSi wk – wk)

�
�
�
�
�

2

+ � 2
k

�
� G� Gwk

�
� 2

– 2

�

� k

t�

i=1

� i(PSi wk – wk), � kG� Gwk

�

+ 2� k

�

wk – w̄,
t�

i=1

� i(PSi wk – wk)

�

– 2� k
�
wk – w̄, G� Gwk

�

	 � wk – w̄� 2 + 2� 2
k

�
�
�
�
�

t�

i=1

� i(PSi wk – wk)

�
�
�
�
�

2

+ 2� 2
k

�
� G� Gwk

�
� 2

+ 2� k

�

wk – w̄,
t�

i=1

� i(PSi wk – wk)

�

– 2� k
�
wk – w̄, G� Gwk

�
. (3.1)

We get the following formulas by using the properties of the projection operator and the
definition of the adjoint operator:

�

wk – w̄,
t�

i=1

� i(PSi wk – wk)

�

=
t�

i=1

� i�wk – w̄, PSi wk – wk �

=
t�

i=1

� i
�
�wk – PSi wk , PSi wk – wk � + �PSi wk – w̄, PSi wk – wk �

�

=
t�

i=1

� i
�
–� PSi wk – wk � 2 + �PSi wk – w̄, PSi wk – wk �

�

=
t�

i=1

� i
�
–� PSi wk – wk � 2 + �PSi wk – w̄, PSi wk – w̄�

�
+ �PSi wk – w̄, w̄ – wk �

	
t�

i=1

� i
�
–� PSi wk – wk � 2 +

�
� PSi wk – w̄� 2 – � PSi wk – w̄� 2��

= –
t�

i=1

� i� PSi wk – wk � 2 (3.2)

and

�
wk – w̄, G� Gwk

�
= �Gwk – Gw̄, Gwk � = � Gwk � 2. (3.3)
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Substituting (3.2) and (3.3) into (3.1), we get

� wk+1 – w̄� 2

	 � wk – w̄� 2 + 2� 2
k

�
�
�
�
�

t�

i=1

� i(PSi wk – wk)

�
�
�
�
�

2

+ 2� 2
k

�
� G� Gwk

�
� 2

– 2� k

t�

i=1

� i� PSi wk – wk � 2 – 2� k � Gwk � 2

= � wk – w̄� 2 – 2� k



1 – � k

�
� t

i=1 � i(PSi wk – wk)� 2
� t

i=1 � i� PSi wk – wk � 2

� t�

i=1

� i� PSi wk – wk � 2

– 2� k



1 – � k

� G� Gwk � 2

� Gwk � 2

�
� Gwk � 2. (3.4)

According to the assumptions of {� 1,k} and {� 2,k}, it follows from (3.4) that

� wk+1 – w̄� 	 � wk – w̄� .

That is, the sequence {wk} is Fejér monotone with respect to � . Hence, {wk} is bounded
and limk�� � wk – w̄� exists.

For getting a better conclusion, we need to prove that d� (wk) < 1 when k is enough large.
Assume that the following inequality with � > 0 and � � 1 is true:

d2
� (wk+1) 	 d2

� (wk) – � d2�
� (wk), � k � N. (3.5)

And assume that w0 /� � and set � k := d2
� (wk) and j := � – 1 � 0, then the inequality (3.5)

reduces to

� k+1 	 � k
�
1 – �� j

k
�
. (3.6)

Then the proof is split into two cases based on the value of � :
Case 1: when � > 1, we know that 1

� –1 > 0 and by Lemma 2.9, we have

� k 	
�
� –j

0 + (� – 1)� k
� – 1

� –1 	
�
(� – 1)� k

� – 1
� –1 , � k � N,

that is,

d� (wk) 	
�
(� – 1)� k

� – 1
2(� –1) .

So we can find a positive integer T1 such that d� (wk) < 1 when k � T1.
Case 2: when � = 1, by (3.6), we have

� k+1 	 � k(1 – � ),

where � � (0, 1]. Then

d� (wk) =
�

� k 	
�

� 0(
�

1 – � )k .
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So we can find a positive integer T2 such that d� (wk) < 1 when k � T2.
Set T := max{T1, T2}, we have d� (wk) < 1 when k � T .
Next, we will prove that the sequence {wk} satisfies the inequality (3.5) for some � > 0

and � � 1.
Since w̄ is arbitrary in � , we have

d2
� (wk+1)

	 d2
� (wk) – 2� k



1 – � k

�
� t

i=1 � i(PSi wk – wk)� 2
� t

i=1 � i� PSi wk – wk � 2

� t�

i=1

� id2
Si

(wk)

– 2� k



1 – � k

� G� Gwk � 2

� Gwk � 2

�
� Gwk � 2. (3.7)

On the one hand, by the assumptions of {� 1,k} and {� 2,k}, we get

lim
k��

inf

�
� k



1 – � k

�
� t

i=1 � i(PSi wk – wk)� 2
� t

i=1 � i� PSi wk – wk � 2

��
> 0,

and

lim
k��

inf

�
� k



1 – � k

� G� Gwk � 2

� Gwk � 2

��
> 0.

Hence, we can find two positive integers N and M such that

a1 := inf
k� N

�
� k



1 – � k

�
� t

i=1 � i(PSi wk – wk)� 2
� t

i=1 � i� PSi wk – wk � 2

��
> 0

and

a2 := inf
k� M

�
� k



1 – � k

� G� Gwk � 2

� Gwk � 2

��
> 0.

Set L := max{N , M}, then the inequality (3.7) reduces to

d2
� (wk+1) 	 d2

� (wk) – 2a1

t�

i=1

� id2
Si

(wk) – 2a2� Gwk � 2, for all k � L. (3.8)

On the other hand, set K be a bounded set such that {wk : k � N} � K , since {Si}t
i=1 has a

bounded Hölder regular intersection, there exist an exponent p � (0, 1] and a scalar µ > 0
such that

dS(wk) 	 µ
�
max

	
dSi (wk), i = 1, 2, . . . , t


� p, � wk � K ,

that is,



1
µ

dS(wk)
� 1

p
	 max

	
dSi (wk), i = 1, 2, . . . , t



, � wk � K . (3.9)
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And since the MSSEP satisfies the bounded Hölder regularity property, there exist an ex-
ponent q � (0, 1] and a scalar � > 0 such that

d� (wk) 	 �
�
max

	
dS(wk), � Gwk �


� q, � wk � K ,

that is,



1
�

d� (wk)
� 1

q
	 max

	
dS(wk), � Gwk �



, � wk � K . (3.10)

Substituting (3.9) and (3.10) into (3.8), we get

d2
� (wk+1) 	 d2

� (wk) – 2a1�
�
max

	
dSi (wk), i � { 1, 2, . . . , t}


� 2 – 2a2� Gwk � 2

	 d2
� (wk) – 2a1�µ – 2

p d
2
p
S (wk) – 2a2� Gwk � 2

	 d2
� (wk) – 2


�
d

2
p
S (wk) + � Gwk � 2�

, for all k � L,

where � = min{� i, i = 1, 2, . . . , t}, 
 = min{a1�µ – 2
p , a2}. Then the proof is split into two

cases:
Case 1: when max{dS(wk), � Gwk �} = dS(wk), we have

d2
� (wk+1) 	 d2

� (wk) – 2
 d
2
p
S (wk) 	 d2

� (wk) – 2




1
�

� 2
pq �

d� (wk)
� 2

pq , for all k � L.

So the inequality (3.5) is true with � = 2
 ( 1
� )

2
pq and � = 1

pq .
Case 2: when max{dS(wk), � Gwk �} = � Gwk � , we have

d2
� (wk+1) 	 d2

� (wk) – 2
 � Gwk � 2 	 d2
� (wk) – 2




1
�

� 2
q �

d� (wk)
� 2

q , for all k � L.

So the inequality (3.5) is true with � = 2
 ( 1
� )

2
q and � = 1

q . Set F := max{L, T}. When k � F ,
we have

d2
� (wk+1) 	 d2

� (wk) – 2




1
�

� 2
q �

d� (wk)
� 2

pq .

In conclusion, we get the inequality (3.5) where � = 1
pq and

� =

�
�

�
2
 ( 1

� )
2

pq , max{dS(wk), � Gwk �} = dS(wk),

2
 ( 1
� )

2
q , max{dS(wk), � Gwk �} = � Gwk � .

By Lemma 2.8, we see that the first assertion is true.
For the second assertion, the proof is the same as the above proof. And we notice that

p and q is independent of K . Then the second assertion can be obtained. The proof is
finished. �
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The SEP is a special case of the MSSEP. When t = 1, Algorithm 2.10 reduces to an it-
erative algorithm for solving the SEP (1.1) [6]. Thus Theorem 3.1 becomes the following
form.

Corollary 3.2 The SEP (1.1) satisfies the bounded Hölder regularity property and the se-
quence {wk} is defined by

wk+1 = wk + � 1,k(PSwk – wk) –
� 2,k � Gwk � 2

� G� Gwk � 2 G� Gwk , (3.11)

or component-wise
�
�

�

xk+1 = xk + � 1,k(PCxk – xk) – � 2,k � Axk –Byk � 2

� A� (Axk –Byk )� 2 A� (Axk – Byk),

yk+1 = yk + � 1,k(PQyk – yk) + � 2,k � Axk –Byk � 2

� B� (Axk –Byk )� 2 B� (Axk – Byk),

where 0 < � 1 	 � 1,k 	 � 1 < 1, 0 < � 2 	 � 2,k 	 � 2 < 1, then {wk} converges to a solution w� of
the SEP (1.1) at least with a sublinear rate O(k–
) for some 
 > 0.

In particular, if the SEP satisfies the bounded Hölder regularity property with uniform
exponent q � (0, 1], then there exist constants M1, M2 � 0 and r � [0, 1) such that

�
� wk – w�

�
� 	

�
�

�
M1k– 1

2(� –1) , � > 1,

M2rk , � = 1,

where � = 1
q .

Its proof is similar to the proof of Theorem 3.1.

4 Numerical experiments
Set H1 = R, H2 = R2 and H3 = R3. We consider the SEP which has two subsets C = {x � H1 :
� x� 	 15} and Q = {x � H2 : � x� 	 15}. The two operators A : H1 � H3 and B : H2 � H3

are defined by

A(x) = (x, 0, 0) and B(y, z) = (y, z, 0), for all x, y, z � R,

respectively. Set S = C × Q � H3 and G = [A, –B] : H3 � H3. G is defined by

G(x, y, z) = (x – y, –z, 0), for all (x, y, z) � R3.

Then ker G = {(x, x, 0), x � R} 
= � , the range of G is closed and the solution set of this SEP
is � = S � ker G = {(x, x, 0), x � C}. It is easy to know that the SEP satisfies the bounded
linear regularity property by Lemma 2.6, namely, it satisfies the bounded Hölder regularity
property.

Take w0 = (x0, y0, z0) � S. In consideration of algorithm (3.11), we have

�
�����

�����

xk+1 = xk – � 2,k [(xk–yk )2+z2
k ]

[2(xk–yk )2+z2
k ] (xk – yk),

yk+1 = yk – � 2,k [(xk –yk )2+z2
k ]

[2(xk–yk )2+z2
k ] (–xk + yk),

zk+1 = zk – � 2,k [(xk–yk )2+z2
k ]

[2(xk–yk )2+z2
k ] zk .
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Figure 1 Error = 10–5, w1 = (6, 10, 2), w = (8, 8, 0)

Figure 2 Error = 10–10, w1 = (6, 10, 2), w = (8, 8, 0)

In this algorithm, we take � 2,k = 0.3, 0.5, respectively. Then we get some numerical ex-
periments which were run on a personal Dell computer with Intel(R)Core(TM)i5-4210U
CPU 1.70 GHz and RAM 4.00 GB. And we wrote all the programs in Wolfram Mathemat-
ica (version 9.0).

We take the initial value w0 = (6, 10, 2). Set the error to be 10–5, 10–10, respectively. Note
that we denote the number of iterations and the logarithm of the error by using the x-
coordinate and the y-coordinate of the figures, respectively.
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