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1 Introduction
Letf: [u,v] - Rbea convex mapping with © < v,andletg : [, v] — R be a non-negative,
integrable and symmetric mapping corresponding to /7. Then one has

/(55) [ et [ e

S +I0) / e dx, 1)

which is called a Fejér-type inequality.
If we take g(x) = 1 in (1.1), then inequality (1.1) reduces to the Hermite—Hadamard in-
equality,

f(“;”)sﬁ/uﬂx)dxsfw. 12)

To see more recent results and the related extensions corresponding to (1.1) and (1.2), we
refer the interested reader to [1, 2, 6, 7, 10-12, 19, 21, 23-25, 28, 29, 34] and the references
therein.

Let us recall that Niculescu [26] introduced and considered a class of mappings, called
GA-convex mappings, as follows: A mapping f: Z C R, = (0,00) — R is said to be GA-
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convex on Z if

S <af (W) + (L= 2)f(v) (1.3)

forall u,v €Z and A € [0,1].
Using mappings whose first derivative in absolute value are GA-convex, Latif et al. [22]

proved the following estimation-type result for the right-middle part of Fejér-type in-
equality (1.1).

Theorem 1.1 Let f: 7 C R, = (0,00) — R be a differentiable mapping on I° and j,v €
TI° with p < v satisfying that f' € L'([,v]), and let g : [1,v] — [0,00) be a continuous
positive mapping geometrically symmetric with respect to \/uv, i.e. g(57) = g(x). If |[f'|7 is
GA-convex on [, v] for q > 1, then the following inequality holds:

X

() +f) [V gx) Y f(x)g(x)
‘72 /H = x—/ﬂ ; dx)

-1
_ (nv-Inp)* Mglles (g1 \"5
- 4. g\ 2q-1

% {Ul/z([L(,qu/Z, vq/2) _ Mq/Z] lf,(ﬂ)|q + [2vq/2 _ Hq/2 —L(Mq/Z, Uq/Z):Hf/(v)rI)l/q

+ MI/Z([L(MQ/Z, vq/Z) + 7?2 _ ZMQ/Z] Lf/(’u)|q + [vq/Z _ L(Mq/2y vq/2)] V/(v)|q)1/q}’

(1.4)
where

lglloo = sup glx) <00

x€[u,v]
and
p—0
L(p,0) = ———
Inp—-1Inp

for p,0 >0 with p #o.

More integral inequalities considering GA-convex mappings can be found in [4, 5, 13,
16].

Motivated by the research going on this dynamic field, Shuang et al. [30] presented a
new class of GA-convex mappings, which is named the GA-s-convex mapping. For the
recent results and details, the interested reader is directed to [14, 17] and the references
cited therein.

Definition 1.1 ([30]) A mapping f :Z C R, = (0,00) — R is named GA-s-convex map-
ping on 7 if

S <A (w) + (1= 2)°F ()

holds for all u,v € Z, A € [0,1] and for certain fixed s € (0, 1].
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Fractional calculus, as a very useful tool, shows its significance to implement differenti-
ation and integration of real or complex number orders. This topic has attracted much at-
tention from researchers during the last few decades. Among a lot of the fractional integral
operators that appeared, because of applications in many fields of sciences, the Riemann—
Liouville fractional integral operator and Hadamard fractional integral operator have been
extensively studied.

An important generalization of Hadamard fractional integrals was considered by Igbal
et al. in [15] which is named the Hadamard k-fractional integral operators.

Definition 1.2 Let f € L![a, b], then the left-sided and right-sided Hadamard k-fractional
integrals of order « € R* and k,a € R* are defined as

t -1 d
mg+{f(t)}=ml(a)/ (m(é))k f(z)%, O<a<t=<b)

and

1 [t 1 d
k%g_{f(t)}szt (m(%)) f(r)?r, O<a<t<b)

-k
respectively, where I'y(«) is the k-gamma function defined by I () = fooo % le7 % dr.
Furthermore, Ii(a + k) = a T ().

Some important inequalities pertaining Hadamard k-fractional integrals can be found
in [3, 27, 32].

The following theorem, involving Hadamard-type k-fractional integral operators, is a
direct generalization of Theorem 2.6 established by Kunt et al. in [20].

Theorem 1.2 Letf: [1,v] € R, — R be a GA-convex mapping, a >0 and f € L*[u,v]. If
g [, v] — Risnon-negative, integral and geometrically symmetric corresponding to . /L,
then the following inequality for Hadamard-type k-fractional integral operators holds:

S H - 10} + e {g0))]

< [\ H - {0} + i H e (0]

Sf(u) +f(v)

5 WM {guo} + i H Y {0} (1.5)

It is easy to observe that, for k = 1 in Definition 1.2, we have the definition of the left-
sided and right-sided Hadamard fractional integrals, i.e.

1 t t a-1 d
Z+{f(t)}:m/a(ln<;>> f(T)Tr, (0O<a<t<b)

and

1 [P b d
Hg,{f(t)}:mft (m(%)) f(t)TT, O<a<t<b).
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For more details corresponding to the Hadamard fractional integral inequalities, the
interested reader is directed to Refs. [8, 31, 33] and the references cited therein.

Consider the Hadamard fractional inequality of the Fejér type with respect to GA-
convexity, Kunt [20] obtained the following theorem related to the right-middle part of
inequality (1.1).

Theorem 1.3 Letf : 7 C (0,00) — R be a differentiable mapping on I° satisfying that f €
L', v] where u,v € T with ;n <v and a > 0. If |f'| is GA-convex on [, v] and g : [j1,v] —
R is continuous and geometrically symmetric corresponding to ./j1v, then the following

inequality via fractional integrals holds:

JM [He.g(v) + HEg(w)] - [He () (v) + HE (f) ()]
el 5
s Bl W] A@ o], L6)

where

1

Ae) = /0 (1= 8) = £][(1 = £)a'50 + £ e

and

1

Ag(a) = fi[u_g)“ —&%][£a"FBF + (1-£)a*b" ] dE.
0

Different from [22], our purpose in this paper is to obtain, using the Hadamard k-
fractional integrals, certain estimation-type results for the left-middle part of a Fejér-type
inequality in terms of GA-s-convexity. We also get the upper and lower bounds for the

weighted Hadamard-type inequalities via product of two different mappings.

2 Some preliminary lemmas
In this section, we state the following lemmas, which are useful in the proofs of our main

results.

Lemma 2.1 ForU,V >0, we have
(@)

! WTY) 1y
DU, V)= / by g | ey UAY, o
0 U, U=y,

(ii)

1 VURNU+/V(In V-InU-2)]
w(U,V):= %/ AV d = (InU—-In V)2 , UFV,

0 i, U=V,

(2.2)
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(iii)

1
A/ 1
/ UV dE < YUV +1) +U =YU,V,0), o#£-1,-2. (2.3)
0 (0 +1)(o +2)
Proof The proofs of (i) and (ii) follow from a straightforward computation.

The proof of (iii) is as follows.
Using the inequality of #* < (u#—1)s + 1 for all 0 <s <1 with & > 0, we have

/“ul-*wdt u/ © U V) de

§u/ e[V -1)e+1]de
0

NUV(e +1)+U
" Do+ YUV, 0). (2.4)
This ends the proof. O

Lemma 2.2 Ifw: [a,b] C (0,00) — R is integrable and geometrically symmetric corre-
sponding to /ab with a < b and k,« > 0, then we have

HE o Awb) ) = HY - {wla)) = %[kH"‘W—b-{w(a)} + i H o {wb)]]. (2.5)

Proof Using the geometrically symmetry of w with respect to v/ ab, we have w(%) = w(x),
for all x € [a, b]. If we set x = %, then we have

o 1 Vab 2\ & dx
Ao ol = [ (0(3))"
1 b PA\%' [ab\dt
" k(@) /m(m(?)) W(7)7
1 b PA\F'  dt
" i@ /m(“l(z)) i

=M {w(b)}. O

Lemma 2.3 Letf:7 C R* = (0,00) — R, be a differentiable mapping on I° (the interior
of 1), a,b € T with a < b, and let g : [a,b] — R be a continuous positive mapping geo-
metrically symmetric to /ab. Iff' € L([a, b)), then the following equality for Hadamard
k-fractional integral operators with k,« > 0 holds:

FWab)[iHe o g@)} + k1 g0} ] - [1HE - { ) @) + 1 H e { (D D)]]
1 lnb—l L) %_l dS / i
:krk(a)T“” /0 [ / (m 2) g(s):i|[L(t)f (L) - U@ (U()]de

(2.6)

where L(t) = a'~2b? and U(t) = a2 b5,

Page 5 of 26
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Proof Let
= kal(a) Inb% /01[ /aut) (m 2 ) %lg(s)%]L(t)f/(L(t)) dt (2.7)
and
b= ﬁ% /01[/;@ (1n f;) %lg(s)%]u(t)f/(u(t)) de. (2.8)

Integrating by parts, we have

— L(¢t
L = kF:(oz e hmf [ (ln2> s)%]L(t)f/(L(t))dt
od
krk(a [ ( 2 k g(s)f]d[f(L(t))]
1 O/ \F1 ds )
:/<Fk(oz){|:/a (m;) g(s);}/(L(t))o
— 1 ——1
‘lnb% /0 (1 %) f(L(t))g(L(t))dt}

Vab N %71 ds Vab X %’1 dx
ka(a){f(“/_/ (ln;) g(s)?—/a (1n;) f(x)g(x);}

=f(Vab)iH* - {g(@)} - H o { () (@)} (2.9)

Since g is geometrically symmetric to v/ ab, one has

Lo/ o\NF1 g b P\E ' ds
In= —= In - =,
-/u < ! ﬂ) £ S /L[(t)< ! S) £ S

By this, we have

1 Inb-Ina [I[ fHO/ s\T' s )
_12=_mf/0 [/a <ln;) g(s)?i|l,1(t)f(l,l(t))dt

1 b_l 1 b b a@_q d
i () e Juerwos

=fWab)H . (2(b)} - k1 () ()} (2.10)
Adding (2.9) and (2.10), we get the required identity in (2.6). This ends the proof. O

3 Inequalities involving hypergeometric functions
Our first main result is given by the following theorem. For this purpose, we note that the
gamma function, the beta function and the incomplete beta function are defined by

oo
I'(x) :/ 7 ledy, x>0,
0

r@ry) [

ﬂ(x,y)=—r(x+y) =,

7t -nPtdy, xy>0,

Page 6 of 26
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and
B
ﬁ(cS;x,y):/ 7 l1-nYtdn, xy>0,0<8<1.
0

The integral form of the hypergeometric function is

1 1
oF1(a,b;¢;z) = m / " A=)t A -zn)*dy, ¢>b>0,z| <1
O — 0

For the sake of simplicity, we also denote

Ttk asa,b) = f(Vab)[iH - {g@)} + H o {g(0)}]
- [ M @) + i H () 0)}],

unless otherwise specified.

Theorem 3.1 Letf :Z C R* =(0,00) — R, be a differentiable mapping on Z° (the interior
of L), a,b € I° with a < b, and let g : [a,b] — R be a continuous positive mapping geomet-
rically symmetric to /ab such that f' € L*([a, b)). If |f'|? for g > 1 is GA-s-convex on |a, b,
then the following Hadamard k-fractional inequality with k,« > 0 holds:

|7},g(k,0l;ﬂ,b)|

L (nbonat ”r(w 3)]1_3’(3 (k0 5)|f (@] + Ball, o, 9| (0)])
S k) Tk o o

1-1 L
+ |:T (b,a, %)] ! (Bs(k, o, 9)|f'(@)|” + Balk, o, 8)|f'(B)|") }, (3.1)
where

lgllo = sup glx) < oo,
x€la,b]

Vab - 1
By (k, a,5) = #21:1 (—S, 2y 2; 2 3; —)
z+2 k k 2

a o o 1
+——F-s -+, —-+2=-),

T+l k k 2
Jab -
By (k, o, 8) = aa 2 aa ,
25(F+s+2) 25 +s+1)
vab-b b
Bak,c,5) = o

+ ’
25(F +s+2) 25 +s+1)

vab—-b 1
Ba(k,,5) = ﬂ—2F1 <—S, Sy M » —)

%+2 k k 2

b F o loz 21
+o—Fi|-s, -+ - +2- ),
L U S S

and Y (U,V, o) is defined by (2.3) in Lemma 2.1.
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Proof If we use Lemma 2.3 and Holder’s inequality, then we have

|7},g(k,a;ﬂ,b)|

- 1 Inb-Ina
~ kI (o) 2

a

y /0 1 [ / H (m 2) ;lg(s)%] Ll (L0)] + UOl ()[4

1+% 1
< %ngnmﬂ [tE L@ (L@)| + F U@ (U©)[]de

(Inb - Ina)"*¥ L )l-é( T TONIORN >;
= e Kfo e fo Lol o)l de

1 /1, :
+< / th[(t)dt) ( / tkU(t)Lf/(U(t))th) } (3.2)
0 0

Using (iii) of Lemma 2.1, we have

1 1
/t%L(t)dtzf t‘ialébédtgr(a,b,g) (3.3)
0 0 k
and
1 o 1 a t t o
/tFL[(t)dt:/ t?azhlﬁdtST(b,a,z). (3.4)
0 0

Considering GA-s-convexity of |f'|7, we have

1
/ tRLO|f(L(0))]" de
0

Utilizing the inequality of #’ < (u—1)6 + 1 forall 0 <6 < 1 with u > 0, we have
1 o
/ tRL(e)|f (L(o)|" de
0
- AN 1.1
a)‘q/ tk (1 - 5) a[(a‘flﬂ - 1)t+ 1] dt
+f )| / ‘i( ) a"2b? —1)t+1]de

Va o o 1 a o o 1
=S, -+ 25— +3 - |+ 21|l -8 -+ L +25 -
[f()|[ 1<Sk+2k+32)+g+121<sk+ P 2)}

k

Tt
+|f' @) [ 4 } (3.5)

+s+2) 23(%+s+1)

Page 8 of 26
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Similarly,

1
/0 ttU@f (U©)|"de

flf/(a)lq[ Vab—b b ]

+
25(F+s+2)  25(p+s+1)

- 1
+ V’(b)‘q[ Zb b2F1 (—s, A PR —)

T+2 k k 2

b %1% 2t (3.6)
+— -, —+L—-+2=)| .
N U R

Using (3.3)—(3.6) in (3.2), we get the required inequality in (3.1). This ends the proof. [J

Corollary 3.1 Ifwe take q = 1 in Theorem 3.1, then the following inequality holds:
|7},g(k; ot;a, b)|

1+¢
- (Inb—-1Ina)"*

S Tk lglloo
x [(Bi(k, . 5) + Bs(k, t,9))|f'(@)| + (Ba(k, o, 8) + Ba(k, t,9)) [f'(B)|],

where B;(k,«,s), i = 1,2, 3,4, are defined in Theorem 3.1.

Corollary 3.2 Ifwe take s =1 in Theorem 3.1, then the following inequality holds:
|7]7,g(k> Ol;(l, b)|

1+¢
- (Inb—1Ina)*x

< — ligll
T

1_% 1

x { [T (a, b, %)] (By(k,, V)|f'(@)| + By, a, 1)|f (B)[*) 7
1-1 .

+ [T (b,a, %)] ! (Bs(k,, 1)|f'(@)|” + Balk, o, 1) |f'(b)|") }

where

(4 +4)(Vab-a) (% +3)a
Bilo = e T D r2)

N S L R —
Bf’)(k)arl): m b

2% +3) AL+ 2% +3)

and

) (¢ + 4)(V/ab - b) (% +3)b
Bai(k,,1) = 2E+DE 3 +2(%+1)(%+2)‘

Page 9 of 26
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Corollary 3.3 Ifwetakek =1, = 1ands = 1 in Theorem 3.1, then the following inequality
holds:

b dx b dx

o e

- (Inb —zln a)?
23+;1 .3

x {2420} + @) 1 [(5a2b% + 3a)|f (@) + (3ab? +a)|f(B)|]"

lIglloo

+ (220 4 5)T[(3a20 4 )| @] + (5abb +38) | (B)]7]7).

Theorem 3.2 Letf :7 CR* =(0,00) — R, bea differentiable mappingon1°,a,b € I with
a<b,and let g : [a,b] — R be a continuous positive mapping geometrically symmetric to
Nab such that f' € L([a,b)). If |f'| for q > 1 is GA-s-convex on [a, b), then the following
inequality for Hadamard k-fractional integral operators with k, o > 0 holds:

|7},g(k;a;a; b)|

<(lnb—lna)1+%” | ( kq -k )1%1
=t @ k) o\ a)g -k

. 1
<@ @] + Cog9lf )] + [Cala.s) | @] + Cala. )l @)]] ),
(3.7)
where
1, 4.4 1 2! :
Cilg,) = E(azbz _aq)ZFI (_8’2; ¥ E) ' S"'—1<1 ) 2S+1>,
9,9
a?bz !
Calg,s) = 2(5+2) 20+ 1)(s+2)
9,9
azb? b
Cslg,s) = 2(5+2) 20+ 1)(s+2)
and
1, 4.4 1 2 :
cu%@=50”b2—””E(‘&%&5>+577<1_5H)'

Proof Utilizing Lemma 2.3 and Hoélder’s inequality, we have

|7},g(k; o;a, b)|

1 Inb-Ina
kI (o) 2

1 L(¢) -1 d / ,
i /0 [/a (1“ ) g@f][ww‘ L)+ u@lf (uw)|]de

(Inb—1Ina)"*%

T oMk Mo+ k)

=<

1
el [ T L0l (o) + e U@l (o)

Page 10 of 26
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(lnb—lna)“% Lo, a -
Ll R /(tk)ff dr
0

215 (o + k)
« {( /0 1[L(t)]q[f/(L(t))|th)% R ( /O l[um]qv/(um)|th)%}. (3.8)

Considering GA-s-convexity of |f'|9, and using the inequality of #’ < (u - 1)6 + 1 for all
0 <6 <1 with u > 0, we have

| I[Lu)W(L(t))!th

< lf/(a)lq/ <1— —) al[(a 3b? — 1)t +1]ds
ok f() (6%~ 1)e+1]de
= |f' @] [ CE1%: —aq)zFl(—s 2;3; ;) +%<1—25—1+1>]

al
+lf( )| |:23(s+2) 25(s+1)(s+2):| (3.9)

and

[ oyl woya

<V | [ alb? b1 ]
25(s + 2) 2(s+1)(s+2)

I S I AL 1
+ | (B)] [E(azbz—bq)2F1<—s,2,3,5>+S+—1 -5 ) | (3.10)
Also,
Voo 4 kq -k
(k)T dt = ————. 311
_/0 (£5) (k+a)g—k (3.11)

The inequality (3.7) is proved by using (3.9), (3.10) and (3.11) in inequality (3.8). This ends
the proof. O

Corollary 3.4 Ifwe take k = 1 and g(x) = 1 in Theorem 3.2, then the following inequality
holds:

2 (a+1) ., , o
pw—) _7‘11;)“[ “ @) + 1o | 0)]

Inb-Ina qg-1 -5
<
- 4 (l+a)g-1

x {(Ci(g.9|f'@)]" + Ca(g,9) {f’(b)|q)% +(C3(q.9)|f'@]" + Calg,9) lf’(b)}q)% b

where Ci(q,s),i=1,2,3,4, are defined in Theorem 3.2.

Page 11 of 26
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Corollary 3.5 Ifwetakek =1, = 1ands = 1 in Theorem 3.2, then the following inequality
holds:

b q b d
}/wa_w / @ - f (fg)<x>§’

(lnb Ina)? q-1
<— g ||oo< )
2g-1

4
1 g 4 , ipt a7, i
{([gmlﬂ + — ][f(a)’q+ |:d 5 + %:hf(b)’o
%b% b1, ., 1 44 5 , %
([6 +E][f(a)\q+[§a2b2+ﬁbq}[f(b)]q) }

Theorem 3.3 Let f: 7 C R* = (0,00) — R, be a differentiable mapping on I°, a,b € I°
witha < b,and let g : [a,b] — R be a continuous positive mapping geometrically symmetric
to \/ab such that ' € L'([a, b]). If |f' |9 for q > 1 is GA-s-convex on |a, b], then the following
inequality for Hadamard k-fractional integral operators with k, o > 0 holds:

| Trekot;a,b)|

- (Inb-1na)'*% el ( kq -k )1_%
- 2(%+%)Fk(d+k) « (k+a)g—k

x {[C1(g:9) + C3(q,9)]|f @)|” + [C2(a,5) + Calq, 9)]|f )|}, (3.12)

where C,(q,s), i = 1,2,3,4 are defined in Theorem 3.2.

Proof If we use the inequality u” +v" < 27 (u +v)" for u >0, v >0and r < 1, then we have

(/OI[L(t)]qv,(L(t)) ) dt) " ( fo 1[U O]'|f (u®) |th)l/q

1 1 1/q
521-”‘1< / [LO)|F (L®)|" de + / [u®]|f (uw)|* dt) . (3.13)
0 0
Using inequalities (3.9) and (3.10) in (3.13), we have
1 1/q 1 1/q
( /O [L(t)]q[f’(L(t))|th> +< /0 [Ll(t)]q[f’(u(t))|th>
2[4 + Colg ) @]+ [Calg 9+ Culg 9P B 1w

Applying (3.14) and (3.11) to inequality (3.8) in the proof of Theorem 3.2, we obtain the
required inequality in (3.12). This ends the proof. d
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Corollary 3.6 If we take k = 1 and g(x) = 1 in Theorem 3.2, then the following inequality
holds:

201 M + 1) o
p(m) m[ Y V@) + H o 0]

- Inb-1na qg-1 -4
T ooy \(I+a)g-1

x {[Ci(g,9) + Cs(g,9]|f'@)|" + [Ca(g,9) + Calg, 9] | )|},

where Ci(q,s), i = 1,2,3,4 are defined in Theorem 3.2.

Corollary 3.7 Ifwetakek =1, = 1ands = 1 in Theorem 3.2, then the following inequality
holds:

}/(f ) / - / (fg)(x)—’
(Inb —1na)? 1 -
==l ||oo( q_1>

14 5 $pt
x{(z b +an+—b‘7)[f(a| ( a? 2+—bq+—aq)[f(b)|}

[

12

Theorem 3.4 Letf :7 CR* =(0,00) — R, bea differentiable mappingonI°,a,b € I with
a<b,and let g : [a,b] — R be a continuous positive mapping geometrically symmetric to

Nab such that f' € L'([a,b)). If |f'| is GA-s-convex on [a,b), then for q > 1 the following
Hadamard k-fractional inequality with k,« > 0 holds:

|7},g(k1a;a7b)|

1+4
- (Inb—1Ina) "

< ———I¢ll
Y

4 9

x { (@ (a1,677)) "1 [DY (k, 1, 4,5)|f(@)] + D2 (h 2, 3,9)|f ()]

(D07, at)) 71 [DI (g, )| (@] + DY (ks 0,9) |/ B)]]), (3.15)

where

D (k, e, g,8) =

1 F o 105 21
—sq,—q+1;—q+2;—
%q+121 qkq kq 2

and

1

D 20,4,8)= T N a1
2 (k, e, q, ) P 1 5)g + 1]
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Proof From Lemma 2.3 and the GA-s-convexity of |[f’| on [a, b], we have

|7},g(k,0l;ﬂ,b)|

1

Inb-1Ina
<
~ k(o)

2

1 L(t) -1 d
<, [/a (1“2> g@f]““)b”’(“tnl U (u)]] de

- (Inb—1na)'*%
T 2YE Mo+ K)

1+%
- (Inb—1Ina) "%

PP a -5
= oM M + k) £l fy
1

i@l (1) ] a
+/O a%bl—%[t%(é)stf’w vt (1—%>S[f’(b)|}dt}.

(3.16)
Using Holder’s integral inequality, we have

1
lgllos fo (XL (L®)|+eFu@|f (U@)[]de

1 o o 1 g
= oFil-sq,—q+1;,—q+2; =
2q+1 k k

k 2
1 1
q
"D ————— . 3.17
A )|(2sq[(%+s)q+1]> } 17
Similarly, one has

/la;bl-a [t% <£)S[f/(a)y Lt <1 : f)slf’(b)!] de
0 2 2

naty (LY
= (¢(b7,a™)) {(2Sq[(%+s)q+1]) el

1 ; o 1
+ -sq,—q + 1;
%q+121 qkq

o

1\,
%q+2;§>] [f(b)’}.
proof.

(3.18)
Using (3.17) and (3.18) in (3.16), we obtain the required inequality (3.15). This ends the

O
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Corollary 3.8 Ifwe take k =1, s =1 and g(x) = 1 in Theorem 3.4, then the following in-
equality holds:

27 (@ +1) .
"[(\/E)— m[%m—{f(ﬂ)} +H\/%+ {f(b)}]

Inb—-Ina
<
- 4

q q

[(@ (a7, b77)) 1 [D] (Lo, g, 1)|f (@) + DY (Lot g, D|f )]

D

q q

+ (@ (b71,a77)) 71 [DY (Lo g, | (@)] + DE (Ler g D (B[]

Specially, taking o = 1, we have

1 b dx
"/(@) " Inb-Ina /a f(x)7

Inb-1 R NS g
= = —{(¢(ar,671))" 7 [D] (1,1, V| @] + D} (1, L.g, DIf ®)]]

4 (@b 0 [DE (1, 1Lg 1)|f @] + D (1,1, DIFB)]]).

N
—
Q
N
—
~
~

Theorem 3.5 Letf : 7 CR* =(0,00) — R, bea differentiable mappingon1°,a,b € I with
a<b,andlet g:[a,b] — R be a continuous positive mapping geometrically symmetric to
Nab such that f' € L*([a,b)). If |f'|? for q > 1 is GA-s-convex on [a,b] with p™ + q' = 1,
then the following inequality for Hadamard k-fractional integral operators with k,o > 0

holds:
| Trekot;a,b)|
(Inb—1Ina)'*% el
T
A (@#7)) ekl @l kel ol
+ <T (bp,ap, %))I; (Es(k, o, 9)|f(@)|* + E1(k, o, 9) [}”(b)|q)%Z }, (3.19)
where

1 o o 1
Ei(k o, 8) = ———=2F1 <—s, —+1L—-+2 —>,
a1 KTk T2

1
]E k) ) = o v
2(k.a.s) 25(% +s+1)

and Y (U,V, o) is defined by (2.3) in Lemma 2.1.

Page 15 of 26
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Proof Using Lemma 2.3 again, we have

|Treks 2, b)|

- 1 Inb-Ina
~ kI (x) 2

1 L(z) %—1 ds / /
x fo [ / (ln2> g(s);][L(t)Lf(L(t)ﬂ+u(t)V(U(t))|]dt

1+$ 1
< %nguw [ Lol @e)]« dtuol o) a (320

Now, considering the following weighted version of Holder’s inequality, see [9]:

< ( /1 [f(s)["hs) ds>” ( /1 lg(s)|"hs) ds) ’

forg>1,p~t +q7! = 1,and & is non-negative on I and provided all the other integrals exist
and are finite, we have

‘ / Flg(h(s)ds

/ tEL(e)|f (L()] de

0

(forea) (rumras)
=</0( “1p%) tkdt> (/ If (a"2b%) |qtkdt>. (3.21)

Considering GA-s-convexity of |f'|7, we have
f If (a'~2b%)| "% dt

< |f'a|* / (1——) ¢t de + | (b)) /( )tkdt

1

1 o o
=—F|-s,—+1;,— +2;— ! (r—— K 3.22
TR 1<sk+ t 2>lf(a)] +2S(%+S+1)[f()\ (3.22)

Using inequality (2.3) in Lemma 2.1, we have

1
/ (a'5b2) et de < T(ap,b", ;5) (323)
0 K

Applying (3.22) and (3.23) to (3.21), we have

1
/ tELO|f (L()| dt

0
1
a\\ 7
e P’ , —
5( ( bpk))
1
1

! o a LN g L a)
X<%+12F1(_S’k+1’k+2’2>V(d)| +2S(%+S+1)lf(b)|) . (3.24)
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Similarly,

/lt‘i u@)|f (Uw)|de

0
(o))
! @+ TP RPN g
(mlf(a)’ + %+12F1(_S’Z+1’k+2’2)V(b)| ) . (3.25)

The inequality (3.19) is proved by using (3.24) and (3.25) in (3.20). This ends the proof. [J

Corollary 3.9 Ifwe take k =1, s =1 and g(x) = 1 in Theorem 3.5, then the following in-
equality holds:

2+ 1),, "
P(@)— ﬁ[ “|f(@) +’HM+{f(b)}]‘
Inb—Ina p a+3 q i
ST{(T(‘#”””’“)) [WV a)|”+ Z)V(b)|]

’; q oa+3 q
+(r(phate)) [2(a+2)v( I+ oz+1)(ot+2)v( )|] }

Specially, taking o = 1, we have

MJ‘) ‘/fm

<1nb—lna{( ( bpl)) 1

< b (;VMW+ngW>q
sy (Srr o))

==

where Y (U,V,0) is defined by (2.3) in Lemma 2.1.

4 Inequalities for products of two GA-s-convex functions

Theorem 4.1 Let f,g,w: [a,b] — R*, a,b € (0,00), a < b, be functions satisfying that w
and fgw are in L' ([a, b)). If f is GA-s,-convex on [a, b] for some fixed s; € (0,1], g is GA-s-
convex on [a, b) for somefixed s, € (0,1], and if w is geometrically symmetric about x = \/ab,

then we have

kH(j/a_f {fgW(b)} + i H” - {fgw(a)}
M(a, b)
~ kI (a)(Inb — Ina)s1+s2

b b %—1 b\ S1Hs2 1\ 51752 du
X / <1n —) |:<ln —) + <1n —) i|w(u)—
Jab\ U u a u

N N(a, b)
kI (a)(Inb —Ina)si+s2

b 21 s1 s s2 s1
X / (ln é>k |:<ln9> (ln E) + <lné) (ln E) j|w(u)d—u, (4.1)
Jab\ U u a u a u
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where

Mi(a, b) = f(a)g(a) + f(b)g(b)

and

N(a, b) = f(a)g(b) + f (b)g(a).

Proof Since f is GA-s;-convex and g is GA-sy-convex on [, b], we have

f(a'b'™) <tf(a) + (1 - )" £ (b)
and
g(a'p'™) <t2g(@) + (1 - 1)2g(b)
forall ¢ € [0,1]. f and g are non-negative, so

fa'b')g(a'b'™) < £ f(a)g(a) + (1 - )" 2f (b)g(b)
+ B (1= 02 (@)g(b) + (1 - )" 2f (b)g(a). (42)

Similarly, we also have

(a0 g(a' b)) < (1 - )" 2f (a)g(a) + £1+2f (b)g(b)
+ (L= 2 f(a)g(b) + £ (1 - 1)/ (b)g(a). (4.3)

The sum of (4.2) and (4.3) yields

f(atbl—t)g(atbl—t) +f(a1—tbt)g(al—tbt)
< (£ + (1= 02)[f(a)g(a) + f(b)g(b)]
+ (L‘S1 1-0%+2(1 - t)sl) [f(a)g(b) +f(b)g(a)]. (4.4)

Multiplying both sides of (4.4) by t5\w(atb'"), then integrating the obtained inequality
with respect to ¢ from 0 to %, we have

1 1
/2 tif (@' g (a' b w(at b ) dt + fz U (@b g (a' b ) w(alb ) de
0 0
1

= [f(a)g(a) +f(b)g(b)] /07 g (ts1+s2 +(1- t)sl+52)W(dtbl_t) dt

1

+ [f(a)g(b) + f(b)g(a)] / ’ (N (EL (L - )2 + 221 - ) w(a'b' ) d. (4.5)

0

By the change of variable u = a’b'*, we get

3 k()
t%_l tbl—t tbl—t tbl—t dt= k _ Hot . b ,
[ e et et et de= STt (e
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1

[ e s am gt e
0

1 b b F+s1+52-1 b -1 0\ 5152 du
=—a/ In— +({In— In— w(u)—
(Inb —Ina) k*1%2 J /ap u u a u

and

1

/2 t%‘l(tsl(l 1) +£2(1 - " )w(a'b' ™) dt
0

_ 1

(Inb —Ina) ¥ 5152

b b E+s1-1 u\ %2 b Z+s2-1 u\ % du
X / |:(1n —) <ln—) + <1n —> (ln —) ]w(u)—.
Jab u a u a u

Using the fact that w is geometrically symmetric and by the change of variable u = a' 747,

we get

[t @ e glat et de= [ e b )g(a e b e
0 0

kI (a)
zmk Y Vew(a)}.

Substituting the four equalities above into (4.5), we have the required inequality in (4.1). O

Corollary 4.1 In Theorem 4.1, if we take w(u) = 1, then we have

HE D) + Mo (fe(a))

Inb—Ina)f 1 1
- (In na)k |: . +ﬁ< =8 +S2+1)]M(ﬂ,b)
kT (c) (% + 81 4 Sp)2k TSI+ 2" k

Inb-1lna)k
+%|}3<2 k+51,52+1)+ﬂ< +sz,s1+1):|N(u,b),

Corollary 4.2 In Theorem 4.1, if we take k = 1, « = 1 and w(u) = 1 for all u € [a, D], then

we have

1
lnb “na / flx )g(x)— mM(ﬂ, b) + B(sy + 1,55 + 1)N(a, b).

Furthermore, if we choose s1 = s, = 1, then we have Corollary 3.12 in [18].

Remark 4.1 If we choose w(u) = 1 for all u € [a,b], k =1 and s; =s; = 1 in Theorem 4.1,
then we have Theorem 3.9 in [18].
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Theorem 4.2 Suppose that conditions of Theorem 4.1 hold, then we have the following
inequality:

2127 f(Vab)g(Wab) i1 - {wla)} + k1 {wib)}]
< [ Mo Vew@] + H o {faw (D) }]
1
kF( )[M(a, b)- Ay +N(a,b) - Ay], (4.6)
where

1
(Inb — Ina)sr+s2

ab %—1 51 s s s1
X / <ln K) |:(1n K) (lné> + <ln K) <ln é) :|w(v)ﬂ,
a a a v a v v

a

1 Jab v 1;—1 v S1+82 b S1+82 dv
Ay —— In— In — In — >
T (“a) [(“a) +(nv> }W(V) v

and M(a, b), N(a, b) are defined in Theorem 4.1.

Ay =

Proof Using the GA-s;-convexity of f and GA-s,-convexity of g, we have

f(Wab)g(Vab) = f(Vatb*-tNal- ‘bt)g (Vatb-tvalpt)
E (%) ! Z[f(ﬂtbl_t)g(ﬂtbl_t) +f(al—tbt)g(ﬂl—tbt)]

' (i) [f (b )g(a"b") + £ (a8 )g(a'b') .

Considering the GA-s;-convexity of f and GA-s,-convexity of g again, we have

P aB)g(/ab) = £ (NaB I a 5) g (a5 )
S (%) e [f(ﬂtbl—t)g(atbl—t) +f(ﬂl—tbt)g(al—tbt)]

+ (%) {[£1Q -2 + 21 - 0] [f(@)g(a) + f(b)g(D)]

+ [ts1+52 +(1- t)sﬁsz][f(a)g(h) +f(b)g(a)]}. 4.7)

Multiplying both sides of (4.7) by t5 1 w(al~'h"), and integrating the obtained inequality
with respect to ¢ from 0 to %, we obtain

1

f(~ab)g(~/ab) / ’ tt " w(a'"p") dt

0
1

<(3) [ e el a

1
2

+
S~

t%—lf(al—tbt)g(al—tbt)W(al—tbt) dt}
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1

+(3) {r@e@ roee) [ ea- o e a- o e a

+[f(a)g(b) + £ (b)g(a)] /0 ’ L2 4 (1 - 6172 w(a' D) dt}. (4.8)

Using the change of variable and Lemma 2.2, we have

ka(O{) Ha 7{W(6{)}

1
2 4
(@bt e = — kY
/0 («™F) (Inb—Ina)f " Y
kI (a)

) m[k’}{“ - (wa)}+ KM {w(®)}],

1

/7 t%‘lf(al_tbt)g(al_tbt)W(al_tb’) dt = kli(e)
0

-« HO( — )
(lnb—lna)%k ¢ ew(a)}

1
/ T (1 - P w(a ) de
0

1 VAN A A A dv
=g / (111 —) <ln —) w(v)—,
(Inb —Ina)x*152 J, a 12 v

1

/2 L2 (1 - ) w(a'b") dt
0

1 Vab N EETl o pyst dv
) 5 / (ln _> <ln _> W(V)—,
(Inb —Ina)c*1*2 J, a v v

and

1

[ e e ) a
0

1 Jab " %—1 v $1+82 b $1+82 dv
) ) )
(Inb —Ina)x*1*2 J, a a v v

Note that w is geometrically symmetric about v/ ab, we also have

1

/ T (a b g (a' b w(a ) de
0

= /2 t%‘lf(atbl‘t)g(atbl‘t)w(atbl_t) dt

0
ka(Ol)
= ————— K H* — faw(b) .
(1nb—1na)Fk Vab {fg }
Substituting the six equalities above into (4.8), we have the required inequality in (4.6).

This ends the proof. O
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Corollary 4.3 [n Theorem 4.2, if we take w(v) = 1, then we have

i f(~/_)g(\/_)
1 . )
= m{’ﬂmf {fe(@)} + M {feb)}}

* k];(o()”:'g(; k tSLSt 1) +,8< - +82,81 + 1):|M(a,b)
: - 1) |N(a,b)
st (b ) s}

Corollary 4.4 In Theorem 4.2, if we take k = 1, o = 1 and w(v) = 1, then we have

2142711/ ab)g(v/ab)

b dx 1
T — 1,5, + 1)M(a,b) + ————N(a, b).
Slnb_lna/Qf(x)g(x)x +B(s1+ 1,5+ 1)M(a b)+sl+sz+1N(a b)

Furthermore, if we choose s1 = s, = 1, then we have Corollary 3.16 in [18].

Remark 4.2 1f we choose w(v) =1 for all v € [a,b], k =1 and s; = s, = 1 in Theorem 4.2,
then we have Theorem 3.13 in [18].

5 Applications to special means

For positive numbers p > 0 and v > 0 with i # v, let us define

w+v V-
A b = —’ L b = 7) G b =
(e, v) 5 (e, v) v gt (m,v) = /v
and
pl_, p+l 1
i P?’ ,0,
LP(M’U) = L(/'L, V)’ p=
10 \5is _
E(;:—p.) ) p_

with p € R, respectively.
Now let f(x) = x” for x > 0, r € R with r #0. It is easy to check that |f"(x)|7 = |r|7x2"~D is
GA-convex on [a,b] for g > 1 and r # 1, where a, b > 0.

Consider the function

2
gx) = (\/%—@) , x€labl,0<a<b.

Clearly, g(x) is geometrically symmetric about x = v/ ab.
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Theorem 5.1 Let 0 <a<b,re R\ {-2,0,1,2} and q > 1. Then the following inequality
holds:

2[Gla,b)] *L(a?, b?) - 2[Gla, b)]
L(aHz’ br+2) 2 r=2 pr-2 ropr
—W—[G(d,b)] L(&l ,b )+2L((l ,b)
- (Inb-1na)lr| (b-a)?
T o2i.3  [GaD)]?

x {ab[A(a,263)] 1 [3A(ab 20D, pE+a0-D) 4 A (5410-Dp}, b pa0-)]7
+ b3[A(2a3,03)] T [3A (a2 07D, pEHarDY 4 4(g10-Dp3, 545 p1rD) ],

(5.1)
Proof Applying Corollary 3.3 to the functions
fx)=«", Vx>0,reR\({-2,0,1,2}

and

2
glx) = <\/L_b_@> , Xx€la,bl,0<a<b,
a

we derive the required result.

d

Corollary 5.1 Suppose all assumptions of Theorem 5.1 are satisfied and if r = —1, then the
following inequality holds:

2[G(a, b)] °L(a? b%) - 2[G(a,b)] "

- [Ga, ) L(ab7) + L(a,b7Y)|
- (Inb-1na) (b-a)?
32+7 .3 [Gla,b)]?

x {ab[A(a?,26%)]77[34 (a2, 5372) + A(5a~b}, 4t b721) |1
+ b3[A(2a3,0%)] T [3A (a2, 5320) + A(a 2B}, 503 b20) 1),

Corollary 5.2 Under the assumptions of Theorem 5.1 with q = 1, the following inequality
holds:

2[Gla,b)] L(a b?) - 2[G(a,b)]"
L( r+2’br+2) o L
- [g(a—b)]Z — [Gla,b)’L(@™2, b™2) + 2L(a", b')
- (Inb-1na)|r| (b-a)?
= 48 [Ga@bP

x {3A(a’,b7) + 8A(a’ b2, a2 b?) + A(ab™, & 'b)}.
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Especially for r = —1, we get

2[G(a, b)] °L(a? b%) - 2[Gla,b)] "
~[Ga, D) ’L(ab73) + L(a™, 67|

- (Inb-1na) (b-a)?
- 48 [G(a, b)]?

X {3A(a’1,b’1) + 8A(a%b’%,a’%b%) +A(ab’2,zz’2b)}.

Theorem 5.2 Let 0 <a< b, r e R\ {-2,0,1,2} and q > 1. Then the following inequality
holds:

2[Gla,b)] °L(a? b?) - 2[G(a,b)]"

L(ﬂ”z, br+2)

[G(a, b)]zL (a’_z, b’_z) +2L (a’, b’)

[G(a,b)]?
- (Inb—-Ina)lr| (b-a)®* [ g-1 -
- 4 [G(a,b)]?\2g -1
1 1
X { <2aq("%)A(—ag, §b3> + bq(r_1)|: G(a?,b7) + —aq])
1 1 1,45 1
q
+ (@D ZG (a9, b7) + — b7 | + 261D A( Zat, 2 p? . (5.2)
6 12 3 12
Proof Using Corollary 3.5 for the functions f(x) =", x >0, r € R\ {-2,0,1,2} and g(x) =
(\/% - @)2, x € [a,b] with 0 < a < b, we obtain the required result. a

Corollary 5.3 Suppose the assumptions of Theorem 5.2 are fulfilled and if r = —1, then the
following inequality holds:

2[G(a, b)] °L(a? b%) - 2[G(a,b)] "
- [Ga,p)’L(ab7) + L(a,b7Y)|

_(nb-lna) (b-ap (gq-1 -4
- 4 [G(a,b)]? (261 - 1)

5 1 1 1 a
x4 (2a314( 2 at, ~b3 ) + b ~G(a?,b7) + —a’
12 3 6 12
1
1 1 1 5 a
+(a —G(aq,bq) ¢ —b7|+2b7214 Zai, 2 pi ! .
6 12 3 12

Theorem 5.3 Let 0<a< b, r € R\ {-2,0,1,2} and q > 1. Then the following inequality
holds:

Q=

’2[@(% b)] *L(a%b%) - 2[G(a,b)]

L(ar+2, br+2)

G " 6@h (@) s 2L 1)
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<(lnb—lnz/z)|r| (b-a)? [(q-1 -
- o1+5) [G(a,b)]2\2g -1

) ropar -8 Sra-by L L (r-1) (r-1) H
X EA(aq,bq)+A(aq 2b2,a2 b7 2)+€A(aq b%,ab?" V)| . (5.3)

Proof Using Corollary 3.7 for the functions f(x) =x”", x>0, r € R\ {-2,0,1,2} and g(x) =
(- Ly

N , % € [a,b] with 0 < a < b, we deduce the required result. O

Corollary 5.4 Suppose the assumptions of Theorem 5.3 are satisfied and if r = -1, then the
following inequality holds:

12[G(a,b)] °L(a* b%) - 2[G(a,b)]

~[Gla, ) ’L(ab73) + L(a, 67|

<(lnb—lna) b-a)? (q-1 -7
- 2(1+%) [G(a,b)])2\2g-1

1/q
< [Zatan s ala it als i) - o nans ) |

6 Conclusion

Utilizing mappings whose first-order derivatives absolute values are GA-s-convex, we es-
tablish some new Hadamard k-fractional inequalities of Fejér type associated with geo-
metrically symmetric mappings. For the weighted inequalities via products of two differ-
ent mappings, we also present their upper and lower bounds, which generalize parts of
the results given by Iscan and Kunt [18]. With these techniques and the ideas developed
in this paper, we hope to motivate the interested reader to further explore this fascinating
field of fractional integral inequalities.
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