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Abstract
In this note we study the rough singular integral

TΩ f (x) = p.v.
∫
Rn

f (x – y)
Ω (y/|y|)

|y|n dy,

where n ≥ 2 and Ω is a function in L log L(Sn–1) with vanishing integral. We prove that
TΩ is bounded on the mixed radial-angular spaces Lp|x|L

p̃
θ (R

n), on the vector-valued

mixed radial-angular spaces Lp|x|L
p̃
θ (R

n,�p̃) and on the vector-valued function spaces
Lp(Rn,�p̃) if 1 < p̃ ≤ p < p̃n/(n – 1) or p̃n/(p̃ + n – 1) < p ≤ p̃ <∞. The same conclusions
hold for the well-known Riesz transforms and directional Hilbert transforms. It should
be pointed out that our proof is based on the Calderón–Zygmund’s rotation method.
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1 Introduction
Singular integral theory was initiated in the seminal work of Calderón and Zygmund [1]
and since then has been an active area of research. A celebrated work was due to Calderón
and Zygmund [2] who first studied the rough singular integral

TΩ f (x) = p.v.
∫
Rn

f (x – y)
Ω(y/|y|)

|y|n dy, (1.1)

where Ω is a function in L log L(Sn–1) with vanishing integral,
∫

Sn–1
Ω(y) dσ (y) = 0, (1.2)

where Sn–1 denotes the unit sphere in R
n (n ≥ 2) equipped with the normalized Lebesgue

measure dσ . By introducing the “method of rotations”, Calderón and Zygmund [2] showed
that TΩ is bounded on the Lebesgue spaces Lp(Rn) for 1 < p < ∞. Here the function class
L log L(Sn–1) denotes the set of all functions Ω : Sn–1 →R which satisfy

‖Ω‖L log L(Sn–1) :=
∫

Sn–1

∣∣Ω(θ )
∣∣ log

(
2 +

∣∣Ω(θ )
∣∣)dσ (θ ) < ∞.
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The same conclusion was obtained independently by Coifman and Weiss [3] and Con-
nett [4] under the less restrictive condition that Ω lies in the Hardy space H1(Sn–1). The
weak type (1, 1) bounds of TΩ were proved by many authors under the condition that
Ω ∈ L log L(Sn–1) (see [5, 6]). For other developments on this topic we can consult [7–15],
among others.

It is well known that the mixed radial-angular space Lp
|x|L

p̃
θ (Rn) is merely a formal exten-

sion of the Lebesgue space Lp, but over the last several years it has been successfully used
in studying Strichartz estimates and dispersive equations (see [16–28]). Recall that the
mixed radial-angular spaces Lp

|x|L
p̃
θ (Rn), 1 ≤ p, p̃ ≤ ∞, consist of all functions u satisfying

‖u‖Lp
|x|L

p̃
θ (Rn) < ∞, where

‖u‖Lp
|x|L

p̃
θ (Rn) :=

(∫ ∞

0

∥∥u(ρ·)∥∥p
Lp̃(Sn–1)ρ

n–1 dρ

)1/p

and

‖u‖L∞|x|LP̃
θ (Rn) := sup

ρ>0

∥∥u(ρ·)∥∥Lp̃(Sn–1).

It is clear that the spaces Lp
|x|L

p̃
θ (Rn) have the following easy properties.

(i) If p = p̃ and 1 ≤ p ≤ ∞, then

‖u‖Lp
|x|L

p̃
θ (Rn) = ‖u‖Lp(Rn). (1.3)

(ii) If u is a radial function on R
n and 1 ≤ p, p̃ ≤ ∞, then

‖u‖Lp
|x|L

p̃
θ (Rn) � ‖u‖Lp(Rn).

(iii) If 1 ≤ p̃1 ≤ p̃2 ≤ ∞ and 1 ≤ p ≤ ∞, then

‖u‖
Lp
|x|L

p̃1
θ (Rn)

≤ Cn,p,p̃1,p̃2‖u‖
Lp
|x|L

p̃2
θ (Rn)

.

Here the notation A � B means that there are two positive constants C, C′ such that A ≤
CB and B ≤ C′A.

Recently the mixed radial-angular spaces also played an active role in singular integral
theory. A good start in this direction was due to Córdoba [29] who proved that TΩ is
bounded on Lp

|x|L2
θ (Rn) for all 1 < p < ∞, provided that Ω ∈ C1(Sn–1). Later on, D’Ancona

and Lucà [30] used the same argument in [29, Theorem 2.1] to extend the above result to
the following.

Theorem A ([30]) Let Ω ∈ C1(Sn–1) satisfy (1.2) and 1 < p, p̃ < ∞. Then

‖TΩ f ‖Lp
|x|L

p̃
θ (Rn) ≤ CΩ ,p,p̃‖f ‖Lp

|x|L
p̃
θ (Rn).

Very recently, Cacciafesta and Lucà [31] extended Theorem A to the weighted setting
(see [31, Theorem 1.1]). It should be pointed out that

C1(Sn–1)
� L log L

(
Sn–1)

� H1(Sn–1)
� L1(Sn–1). (1.4)
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The main focus of the current note is to consider the Lp
|x|L

p̃
θ (Rn) boundedness of TΩ

without assuming that Ω is in C1(Sn–1) with mean value zero. Actually, we want to improve
Theorem A to Ω ∈ L log L(Sn–1). To be more precisely, our main result can be formulated
as follows.

Theorem 1.1 Let Ω ∈ L log L(Sn–1) and satisfy (1.2). If 1 < p̃ ≤ p < p̃n/(n – 1) or p̃n/(p̃ +
n – 1) < p ≤ p̃ < ∞, then the following are valid:

‖TΩ‖Lp
|x|L

p̃
θ (Rn) ≤ Cp,p̃,Ω‖f ‖Lp

|x|L
p̃
θ (Rn); (1.5)

∥∥∥∥
(∑

j∈Z
|TΩ fj|p̃

)1/p̃∥∥∥∥
Lp
|x|L

p̃
θ (Rn)

≤ Cp,p̃,Ω

∥∥∥∥
(∑

j∈Z
|fj|p̃

)1/p̃∥∥∥∥
Lp
|x|L

p̃
θ (Rn)

; (1.6)

∥∥∥∥
(∑

j∈Z
|TΩ fj|p̃

)1/p̃∥∥∥∥
Lp(Rn)

≤ Cp,p̃,Ω

∥∥∥∥
(∑

j∈Z
|fj|p̃

)1/p̃∥∥∥∥
Lp(Rn)

. (1.7)

We would like to remark that Theorem 1.1 is based on the Calderón–Zygmund rotation
method. In order to prove Theorem 1.1, let us introduce the direction Hilbert transforms
and Riesz transforms. For a w ∈R

n, we define the directional Hilbert transform Hw in the
direction w as

Hwf (x) =
1
π

p.v.
∫ ∞

–∞
f (x – tw)

dt
t

, (1.8)

where f ∈ S(Rn) (the Schwartz class on R
n). For 1 ≤ j ≤ n, the jth Riesz transform is given

by

Rjf (x) =
Γ ( n+1

2 )

π
n+1

2
p.v.

∫
Rn

f (x – y)
yj

|y|n dy, (1.9)

where f ∈ S(Rn).
Recently, Córdoba [29] proved the following.

Theorem B ([29]) Let w ∈ Sn–1. Then Hw is bounded on Lp
|x|L2

θ (Rn) if and only if
2n/(n + 1) < p < 2n/(n – 1).

In this paper we shall extend Theorem B to the following.

Theorem 1.2 Let w ∈ Sn–1. Then Hw defined as (1.8) is bounded on Lp
|x|L

p̃
θ (Rn) if and only

if 1 < p̃ ≤ p < p̃n/(n – 1) or p̃n/(p̃ + n – 1) < p ≤ p̃ < ∞. Moreover, the following are valid:

‖Hwf ‖Lp
|x|L

p̃
θ (Rn) ≤ Cp,p̃‖f ‖Lp

|x|L
p̃
θ (Rn); (1.10)

∥∥∥∥
(∑

j∈Z
|Hwfj|p̃

)1/p̃∥∥∥∥
Lp
|x|L

p̃
θ (Rn)

≤ Cp,p̃

∥∥∥∥
(∑

j∈Z
|fj|p̃

)1/p̃∥∥∥∥
Lp
|x|L

p̃
θ (Rn)

, (1.11)

∥∥∥∥
(∑

j∈Z
|Hwfj|p̃

)1/p̃∥∥∥∥
Lp(Rn)

≤ Cp,p̃

∥∥∥∥
(∑

j∈Z
|fj|p̃

)1/p̃∥∥∥∥
Lp(Rn)

. (1.12)

The above constants Cp,p̃ are independent of w.
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Theorem 1.2 together with the rotation method yields the following.

Theorem 1.3 Let Ω be odd and integrable over Sn–1. If 1 < p̃ ≤ p < p̃n/(n – 1) or p̃n/(p̃ +
n – 1) < p ≤ p̃ < ∞, then the following are valid:

‖TΩ‖Lp
|x|L

p̃
θ (Rn) ≤ Cp,p̃‖Ω‖L1(Sn–1)‖f ‖Lp

|x|L
p̃
θ (Rn); (1.13)

∥∥∥∥
(∑

j∈Z
|TΩ fj|p̃

)1/p̃∥∥∥∥
Lp
|x|L

p̃
θ (Rn)

≤ Cp,p̃‖Ω‖L1(Sn–1)

∥∥∥∥
(∑

j∈Z
|fj|p̃

)1/p̃∥∥∥∥
Lp
|x|L

p̃
θ (Rn)

, (1.14)

∥∥∥∥
(∑

j∈Z
|TΩ fj|p̃

)1/p̃∥∥∥∥
Lp(Rn)

≤ Cp,p̃‖Ω‖L1(Sn–1)

∥∥∥∥
(∑

j∈Z
|fj|p̃

)1/p̃∥∥∥∥
Lp(Rn)

. (1.15)

Here the above constants Cp,p̃ > 0 are independent of Ω . The same conclusions hold for the
Riesz transforms Rj for all 1 ≤ j ≤ n.

Remark 1.1 When p̃ = 2, the part result of Theorem 1.2 implies Theorem A. On the
other hand, Córdoba [29] proved the following, Meyer’s lemma: Given a countable family
of directions {θj}j∈Z in R

n and set Hjf = Hθj f . Then the following inequality holds:

∥∥∥∥
(∑

j∈Z
|Hjfj|2

)1/2∥∥∥∥
Lp
|x|L2

θ (Rn)
≤ Cp

∥∥∥∥
(∑

j∈Z
|fj|2

)1/2∥∥∥∥
Lp
|x|L2

θ (Rn)
(1.16)

for 2n/(n + 1) < p < 2n/(n – 1). By using the arguments as in deriving (1.11) and (1.12), we
find that if 1 < p̃ ≤ p < p̃n/(n – 1) or p̃n/(p̃ + n – 1) < p ≤ p̃ < ∞, the following inequalities
hold:

∥∥∥∥
(∑

j∈Z
|Hjfj|p̃

)1/p̃∥∥∥∥
Lp
|x|L

p̃
θ (Rn)

≤ Cp,p̃

∥∥∥∥
(∑

j∈Z
|fj|p̃

)1/p̃∥∥∥∥
Lp
|x|L

p̃
θ (Rn)

,

∥∥∥∥
(∑

j∈Z
|Hjfj|p̃

)1/p̃∥∥∥∥
Lp(Rn)

≤ Cp,p̃

∥∥∥∥
(∑

j∈Z
|fj|p̃

)1/p̃∥∥∥∥
Lp(Rn)

.

(1.17)

It is clear that (1.17) yields (1.16) when p̃ = 2.
Throughout the paper, we use Cα,β ,... to denote positive constants that depend on the

parameters α,β , . . . .

2 Proofs of main results
Let us begin with the proof of Theorem 1.2.

Proof of Theorem 1.2 We only prove (1.10) since (1.11) and (1.12) are analogous. We shall
adopt the method of deriving the proof in [30, Theorem 2.6] to prove (1.8). Let 1 < p̃ <
p < p̃n/(n – 1) and t = p/(p – p̃). It is obvious that t > n. Fix a number s in the interval
(1, t/n). Denote by X the set of all g ∈ S(R) with

∫ ∞
0 gt(r)rn–1 dr ≤ 1. By polar coordinates,
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we have

‖Hw‖p̃

Lp
|x|L

p̃
θ (Rn)

=
(∫ ∞

0

(∫
Sn–1

∣∣Hwf (rθ )
∣∣p̃ dσ (θ )

)p/p̃

rn–1 dr
)p̃/p

= sup
g∈X

∫ ∞

0

∫
Sn–1

∣∣Hwf (rθ )
∣∣p̃g(r)rn–1 dσ (θ ) dr

= sup
g∈X

∫
Rn

∣∣Hwf (x)
∣∣p̃g

(|x|)dx. (2.1)

Fix g ∈ X and set h(x) = g(|x|). It is well known that
∫
Rn

∣∣Hwf (x)
∣∣p̃g

(|x|)dx ≤ Cp̃,s

∫
Rn

∣∣f (x)
∣∣p̃(Mwhs(x)

)1/s dx

≤ Cp̃,s

∫
Rn

∣∣f (x)
∣∣p̃(Uhs(x)

)1/s dx (2.2)

for all p ∈ (1,∞) and s ∈ (1,∞). HereMw denotes the one-dimensional Hardy–Littlewood
maximal function in the direction of w and U is the universal Kakeya maximal function
defined by

U f (x) = sup
a,b>0

w∈Sn–1

1
a + b

∫ b

–a

∣∣f (x + tw)
∣∣dt.

It was shown in [32] (also see [29]) that if f is a radial function, then

‖U f ‖Lv(Rn) ≤ Cv‖f ‖Lv(Rn), for v > n. (2.3)

Notice that t/s > n and hs is a radial function. It follows from (2.2)–(2.3) that
∫
Rn

∣∣Hwf (x)
∣∣p̃g

(|x|)dx

≤ Cp̃,s

∫ ∞

0

∫
Sn–1

∣∣f (rθ )
∣∣p̃ dσ (θ )

(
Uhs(r)

)1/srn–1 dr

≤ Cp̃,s

∫ ∞

0

(∫
Sn–1

∣∣f (rθ )
∣∣p̃ dσ (θ )

)p/p̃

rn–1 dρ)p̃/p
(∫ ∞

0

(
Uhs(r)

)t/srn–1 dr
)1/t

≤ Cp̃,s‖f ‖p̃

Lp
|x|L

p̃
θ (Rn)

∥∥(
Uhs)1/s∥∥

Lt (Rn)

≤ Cp,p̃,s‖f ‖p̃

Lp
|x|L

p̃
θ (Rn)

,

which together with (2.1) implies that (1.8) holds for 1 < p̃ < p < p̃n/(n – 1). By the duality
we get the case p̃n/(p̃ + n – 1) < p < p̃ < ∞. The trivial case 1 < p = p̃ < ∞ follows easily
from the Lp bounds for Hw and (1.3).

To prove the “only if” part we take f = χB(0,1), where B(0, 1) is the unit cube inR
n. Without

loss of generality we only consider the case w = (0, 0, . . . , 0, 1) because of the rotational
symmetry. One can easily check that

∣∣Hwf (x1, x2, . . . , xn–1, xn)
∣∣ ≥ C

1
|xn| ,
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whenever |xi| ≤ 1
2 , i = 1, 2, . . . , n – 1 and |xn| ≥ 2. An elementary computation yields

∫ ∞

0

(∫
Sn–1

∣∣Hwf (rθ )
∣∣p̃ dσ (θ )

)p/p̃

rn–1 dr

≥ C
∫ ∞

2

(
r–p̃r–(n–1))p/p̃rn–1 dr ≥ C

∫ ∞

2
r(n–1)(1–p/p̃)–p dr,

which together with the Lp
|x|L

p̃
θ (Rn) boundedness for Hw yields p̃n/(p̃ + n – 1) < p ≤ p̃ < ∞.

The case 1 < p̃ ≤ p < p̃n/(n – 1) follows by duality. �

Proof of Theorem 1.3 We shall prove (1.13) and (1.14)–(1.15) are analogous. By the method
of rotations, it was shown in [33] that

TΩ f (x) =
π

2

∫
Sn–1

Ω(w)Hwf (x) dσ (w). (2.4)

By (2.4) and Minkowski’s inequalities, one has

‖TΩ f ‖Lp
|x|L

p̃
θ (Rn)

=
(∫ ∞

0

(∫
Sn–1

∣∣TΩ f (rθ )
∣∣p̃ dσ (θ )

)p/p̃

rn–1 dr
)1/p

=
π

2

(∫ ∞

0

(∫
Sn–1

∣∣∣∣
∫

Sn–1
Ω(w)Hwf (rθ ) dσ (w)

∣∣∣∣
p̃

dσ (θ )
)p/p̃

rn–1 dr
)1/p

≤ π

2

(∫ ∞

0

(∫
Sn–1

∣∣Ω(w)
∣∣
(∫

Sn–1

∣∣Hwf (rθ )
∣∣p̃ dσ (θ )

)1/p̃

dσ (w)
)p

rn–1 dr
)1/p

≤ π

2

∫
Sn–1

∣∣Ω(w)
∣∣
(∫ ∞

0

(∫
Sn–1

∣∣Hwf (rθ )
∣∣p̃ dσ (θ )

)p/p̃

rn–1 dr
)1/p

dσ (w)

≤ Cp,p̃‖Ω‖L1(Sn–1)‖f ‖Lp
|x|L

p̃
θ (Rn)

if 1 < p̃ ≤ p < p̃n/(n – 1) or p̃n/(p̃ + n – 1) < p ≤ p̃ < ∞. This finishes the proof of Theo-
rem 1.3. �

Proof of Theorem 1.1 We first prove that the conclusions of Theorem 1.1 hold for TΩ if
Ω is an even function and Ω ∈ L log L(Sn–1) satisfies (1.2). By [33, Proposition 4.1.16], we
obtain

TΩ = –
n∑

j=1

RjRjTΩ , (2.5)

where Rj is the jth Riesz transform defined by (1.9). Let Tj = RjTΩ . Fix 1 ≤ j ≤ n. By the
idea in Grafakos’s book [33, pp. 274–278], we see that there exists an odd integrable kernel
Ωj such that

Tj = TΩj . (2.6)
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We get from (2.5) and (2.6)

TΩ = –
n∑

j=1

RjTΩj . (2.7)

Then (1.5)–(1.7) follow easily from Theorem 1.3 and (2.7).
Let Ω be given as in Theorem 1.1. We can simply write Ω = Ωe + Ωo, where Ωe(x) =

Ω(x)+Ω(–x)
2 and Ωo(x) = Ω(x)–Ω(–x)

2 . Then TΩ can be written as TΩ = TΩe + TΩo . One can eas-
ily check that Ωe is even and Ωe ∈ L log L(Sn–1) satisfies (1.2). Ωo is odd and Ωo ∈ L1(Sn–1).
Applying the proved claim for TΩ with even kernel Ω and Theorem 1.3, we get (1.5)–
(1.7). �
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