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Abstract
In this paper, we are concerned with the split equality common fixed point problem.
It is a significant generalization of the split feasibility problem, which can be used in
various disciplines, such as medicine, military and biology, etc. We propose an
alternating iteration algorithm for solving the split equality common fixed point
problem with L-Lipschitz and quasi-pseudo-contractive mappings and prove that the
sequence generated by the algorithm converges weakly to the solution of this
problem. Finally, some numerical results are shown to confirm the feasibility and
efficiency of the proposed algorithm.
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1 Introduction
Throughout this paper, we always assume that H1, H2 and H3 are real Hilbert spaces with
inner product 〈·, ·〉 and induced norm ‖ · ‖. Let C and Q be nonempty closed and convex
subsets of H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator and I
denote the identity operator. The split feasibility problem (SFP) is to find

x ∈ C such that Ax ∈ Q, (1.1)

which is first introduced by Censor and Elfving [8] in finite-dimensional Hilbert spaces for
modeling inverse problems. The applications of the split feasibility problem are very com-
prehensive such as CT in medicine, intelligence antennas and the electronic warning sys-
tems in militarily, the development of fast image processing technology, etc. [5, 7, 9, 34].

To solve the problem (1.1), Byrne [4] proposed the CQ algorithm which generates a
sequence {xn} by

xn+1 = PC
(
xn – ξA∗(Axn – PQAxn)

)
, (1.2)
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and proved the sequence generated by (1.2) converges to the solution of (1.1), where A∗

is the adjoint operator of A, ξ ∈ (0, 2/L) and L denotes the largest eigenvalue of the ma-
trix AT A. Furthermore, many authors studied the problem (1.1) and proposed some al-
gorithms for solving it, please see [3, 6, 22, 25, 26, 32, 33, 35] and the references therein.
Particular cases of the CQ algorithm are the Landweber and projected Landweber meth-
ods for obtaining exact or approximate solutions of the linear equations Ax = b.

In [18, 19, 24, 30, 31, 34], a lot of algorithms were proposed for solving a multiple-sets
split feasibility problem (MSFP), which is to find

x ∈
p⋂

i=1

Ci such that Ax ∈
r⋂

j=1

Qj, (1.3)

where p, r ≥ 1 are integers, {Ci}p
i=1 and {Qj}r

j=1 are nonempty closed convex subsets of H1

and H2, respectively. When p = r = 1, then MSFP (1.3) is known as SFP (1.1).
Since every closed convex subset of a Hilbert space is the fixed point set of its associating

projection, the problem (1.1) and (1.3) are all special cases of the so-called multiple-set
split common fixed point problem (MSCFP) which is to find

x ∈
p⋂

i=1

Fix(Si) such that Ax ∈
r⋂

j=1

Fix(Tj), (1.4)

where p, r ≥ 1 are integers, {Si}p
i=1 : H1 → H1 and {Tj}r

j=1 : H2 → H2 are nonlinear operators
and Fix(Si) and Fix(Tj) are the sets of fixed points of Si and Tj, respectively. In particular,
if p = r = 1, then MSCFP (1.4) reduces to the split common fixed point problem (SCFP)
[11, 20, 27, 29] to find

x ∈ Fix(S) such that Ax ∈ Fix(T), (1.5)

where S : H1 → H1 and T : H2 → H2 are nonlinear operators.
It is easy to see from [10, 15] that the above problems are the special cases of the follow-

ing problem:

find a point x∗ ∈ X that solves IP1

and such that

the point y∗ = Ax∗ ∈ Y solves IP2,

where IP1 and IP2 are inverse problems, which is called the split inverse problem (SIP).
Furthermore, we find that the equilibrium problem (EP) and the split variational in-

equality problem (SVI) are also special cases of SIP from [10, 11, 15, 21].
As the further extension of the split feasibility problem, Moudafi [22, 23] introduced the

split equality feasibility problem (SEFP) to find

x ∈ C, y ∈ Q such that Ax = By, (1.6)
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where A : H1 → H3 and B : H2 → H3 are two bounded linear operators. Obviously, if B = I
and H3 = H2, then (1.6) reduces to (1.1), which can be extended to be the split common
fixed point problem (SCFPP); see [11] and the references therein. This kind of split equality
feasibility problem (1.6) allows for asymmetric and partial relations between the variables
x and y.

To solve the split equality feasibility problem (1.6), Moudafi [23] proposed the following
alternating CQ algorithm:

⎧
⎨

⎩
xn+1 = PC(xn – γnA∗(Axn – Byn)),

yn+1 = PQ(yn + γnB∗(Axn+1 – Byn)).
(1.7)

Under suitable conditions, he proved the weak convergence of the sequence {(xn, yn)} to a
solution of (1.6) in Hilbert spaces. About the study of algorithms and theories for solving
(1.6), the reader can also see [14, 17] and the references therein.

In [23], Moudafi studied the split equality common fixed point problem (SECFP), which
is to find

x ∈ Fix(S), y ∈ Fix(T) such that Ax = By, (1.8)

and proposed the following iterative algorithm:
⎧
⎨

⎩
xn+1 = S(xn – λnA∗(Axn – Byn)),

yn+1 = T(yn + βnB∗(Axn+1 – Byn)).
(1.9)

He proved the weak convergence of the sequences generated by scheme (1.9) under the
condition that S and T are firmly quasi-nonexpansive mappings. The study of the problem
(1.9) not only has theory interesting, but also has practical background. In [1, 2], Attouch
et al. propose the inertial Nash equilibration processes, which is the link with decision sci-
ences and game theory. The problem can be modeled as the following convex optimization
problem:

min
{

f (x) + g(y) + μQ(x, y), x ∈ X, y ∈ Y
}

, (1.10)

where X, Y are real Hilbert spaces, f : X → R ∪ {+∞}, g : Y → R ∪ {+∞} are closed con-
vex proper functions acting, respectively, on the spaces X and Y , Q : X × Y → R+ is a
nonnegative quadratic form which couples the two variables x and y, and μ is a positive
parameter. Let f (x) = ‖x – z‖2, g(y) = ‖y – v‖2, and Q(x, y) = ‖Ax – By‖2, where z ∈ fix(S),
v ∈ fix(T) and S, T are operators. Then the optimization solution of the problem (1.10) is
the solution of (1.8).

Furthermore, Chang, Wang and Qin [13] modified the iterative scheme (1.9) and pro-
vided a unified framework for solving this problem without using the projection. The
framework is as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = xn – γnA∗(Axn – Byn),

xn+1 = αnxn + (1 – αn)[(1 – ξ )I + ξS((1 – η)I + ηS)]un,

vn = yn + γnB∗(Axn – Byn),

yn+1 = αnyn + (1 – αn)[(1 – ξ )I + ξT((1 – η)I + ηT)]vn,

(1.11)
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where S: H1 → H1 and T : H2 → H2 are two L-Lipschitz and quasi-pseudo-contractive
mappings with L ≥ 1, Fix(T) �= ∅. They proved that the sequence {(xn, yn)} generated by
the above modification (1.11) converges weakly to a solution of problem (1.8).

In this paper, we propose an alternating iterative algorithm which modifies the iterative
scheme (1.11). In the process of calculating vn, we use xn+1 instead of xn. And we modify
the directions A∗(Axn – Byn) and B∗(Byn – Axn), which can make full use of the current
information of the iterative points. Details please see Theorem 3.1 in Sect. 3. Furthermore,
we prove that the sequence generated by the algorithm weakly converges to a solution
of the split equality common fixed point problem (1.8). Numerical results show that the
feasibility and efficiency of this algorithm by comparing the algorithm proposed in this
paper with the algorithm in [13].

2 Preliminaries
In this section, we recall some concepts, definitions and conclusions, which are prepared
for proving our main results. We write xn ⇀ x and xn → x to indicate that the sequence
{xn} converges weakly and strongly to x, respectively.

Definition 2.1 ([28]) A mapping T : C → C is called
(i) quasi-nonexpansive, if Fix(T) �= ∅ and

∥∥Tx – x∗∥∥ ≤ ∥∥x – x∗∥∥, for all x ∈ C and x∗ ∈ Fix(T); (2.1)

(ii) quasi-pseudo-contractive, if Fix(T) �= ∅ and

∥
∥Tx – x∗∥∥2 ≤ ∥

∥x – x∗∥∥2 + ‖Tx – x‖2, for all x ∈ C and x∗ ∈ Fix(T). (2.2)

A mapping PC is said to be metric projection of H1 onto C if for every point x ∈ H1, there
exists a unique nearest point in C denoted by PCx such that

‖x – PCx‖ ≤ ‖x – y‖, for all y ∈ C. (2.3)

The corresponding property of the mapping PC can be seen from [16]. Furthermore, the
demiclosedness principle plays an important role in our arguments.

A mapping T : H → H is called demiclosed at the origin if for any sequence {xn} which
weakly converges to x, and the sequence {Txn} strongly converges to 0, then Tx = 0.

To establish the main results, we need the following technical lemmas.

Lemma 2.1 ([12]) Let H be a real Hilbert space, then the following conclusions hold:

‖x – y‖2 = ‖x‖2 + ‖y‖2 – 2〈x, y〉, ∀x, y ∈ H , (2.4)
∥∥αx + (1 – α)y

∥∥2 = α‖x‖2 + (1 – α)‖y‖2

– α(1 – α)‖x – y‖, ∀x, y ∈ H ,α ∈ [0, 1]. (2.5)

Lemma 2.2 Let H be a real Hilbert space and T : H → H be a L-Lipschitz mapping with
L ≥ 1.
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Denote

K := (1 – ξ )I + ξT
(
(1 – η)I + ηT

)
. (2.6)

If 0 < ξ < η < 1
1+

√
1+L2 , then the following conclusions hold:

(i) Fix(T) = Fix(T((1 – η)I + ηT)) = Fix(K).
(ii) If T is demiclosed at 0, then K is also demiclosed at 0.

(iii) In addition, if T : H → H is quasi-pseudo-contractive, then the mapping K is
quasi-nonexpansive, that is,

∥
∥Kx – u∗∥∥ ≤ ∥

∥x – u∗∥∥, ∀x ∈ H and u∗ ∈ Fix(T) = Fix(K). (2.7)

3 Main results
In this section, we assume that

(i) H1, H2 and H3 are real Hilbert spaces. A : H1 → H3 and B : H2 → H3 are two
bounded linear operators, A∗ and B∗ are their adjoint operators, respectively.

(ii) S : H1 → H1 and T : H2 → H2 are all L-Lipschitz and quasi-pseudo-contractive
mapping with L ≥ 1, 0 < ξn < ηn < 1

1+
√

1+L2 , ∀n ≥ 1, Fix(S) �= ∅, and Fix(T) �= ∅.
Our objective is to solve the split equality common fixed point problem to find

x∗ ∈ Fix(S), y∗ ∈ Fix(T) such that Ax∗ = By∗. (3.1)

Theorem 3.1 Let H1, H2, H3 and A, B, S, T are assumed as above. Assume that {αn}
is a non-increasing sequence which satisfies 0 < β ≤ αn ≤ θ < 1, where β and θ are real
numbers. For arbitrary x0 ∈ H1, y0 ∈ H2, let {xn}, {yn}, {un} and {vn} be generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = xn – γn[(xn – Kxn) + A∗(Axn – Byn)],

xn+1 = αnxn + (1 – αn)Kun,

vn = yn – γn[(yn – Gyn) – B∗(Axn+1 – Byn)],

yn+1 = αnyn + (1 – αn)Gvn,

(3.2)

where

K := (1 – ξn)I + ξnS
(
(1 – ηn)I + ηnS

)
,

G := (1 – ξn)I + ξnT
(
(1 – ηn)I + ηnT

)
.

Assume S and T are demiclosed at 0, and {γn} is a non-decreasing sequence which satisfies

γn ∈
(

ε,
1

1 + c
– ε

)
, c = max

{‖A‖2,‖B‖2},

where ε is small enough. Then the sequence {(xn, yn)} generated by the algorithm weakly
converges to the solution of (3.1).
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Proof Choose p ∈ Fix(S), q ∈ Fix(T) and Ap = Bq. By the algorithm of Theorem 3.1, we
have

‖un – p‖2

=
∥∥xn – γn

[
(xn – Kxn) + A∗(Axn – Byn)

]
– p

∥∥2

= ‖xn – p‖2 + γ 2
n
∥
∥(xn – Kxn) + A∗(Axn – Byn)

∥
∥2

– 2γn
〈
xn – p, (xn – Kxn) + A∗(Axn – Byn)

〉

≤ ‖xn – p‖2 + γ 2
n
(
1 + ‖A‖2)‖xn – Kxn‖2 + γ 2

n

(
1 +

1
‖A‖2

)∥
∥A∗(Axn – Byn)

∥
∥2

– 2γn〈xn – p, xn – Kxn〉 – 2γn
〈
xn – p, A∗(Axn – Byn)

〉
. (3.3)

We have

–2〈xn – p, xn – Kxn〉
= –2‖xn – p‖2 – 2〈xn – p, p – Kxn〉
= –2‖xn – p‖2 + ‖xn – p‖2 + ‖Kxn – p‖2 – ‖Kxn – xn‖2

≤ –‖Kxn – xn‖2, (3.4)

–2〈Axn – Ap, Axn – Byn〉 = ‖Byn – Ap‖2 – ‖Axn – Ap‖2 – ‖Axn – Byn‖2. (3.5)

Combining (3.4) and (3.5), then (3.3) can be written as

‖un – p‖2

≤ ‖xn – p‖2 + γ 2
n
(
1 + ‖A‖2)‖xn – Kxn‖2 + γ 2

n
(
1 + ‖A‖2)‖Axn – Byn‖2

– γn‖Kxn – xn‖2 + γn‖Byn – Ap‖2 – γn‖Axn – Ap‖2

– γn‖Axn – Byn‖2. (3.6)

Similarly, we can obtain

‖vn – q‖2

≤ ‖yn – q‖2 + γ 2
n
(
1 + ‖B‖2)‖yn – Gyn‖2 + γ 2

n
(
1 + ‖B‖2)‖Axn+1 – Byn‖2

– γn‖Gyn – yn‖2 + γn‖Axn+1 – Bq‖2 – γn‖Byn – Bq‖2

– γn‖Axn+1 – Byn‖2. (3.7)

Adding (3.6) and (3.7), by Ap = Bq, we have

‖un – p‖2 + ‖vn – q‖2

≤ ‖xn – p‖2 + ‖yn – q‖2 – γn‖Axn – Ap‖2 + γn‖Axn+1 – Ap‖2

– γn
(
1 – γn

(
1 + ‖A‖2))‖Kxn – xn‖2

– γn
(
1 – γn

(
1 + ‖A‖2))‖Axn – Byn‖2
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– γn
(
1 – γn

(
1 + ‖B‖2))‖Gyn – yn‖2

– γn
(
1 – γn

(
1 + ‖B‖2))‖Axn+1 – Byn‖2. (3.8)

By K and G being quasi-nonexpansive and Eq. (2.5), we can write

‖xn+1 – p‖2

=
∥
∥αnxn + (1 – αn)Kun – p

∥
∥2

=
∥
∥αn(xn – p) + (1 – αn)(Kun – p)

∥
∥2

= αn‖xn – p‖2 + (1 – αn)‖Kun – p‖2 – αn(1 – αn)‖Kun – xn‖2

≤ αn‖xn – p‖2 + (1 – αn)‖un – p‖2 – αn(1 – αn)‖Kun – xn‖2. (3.9)

Similarly, we can obtain

‖yn+1 – q‖2

=
∥∥αnyn + (1 – αn)Gvn – q

∥∥2

≤ αn‖yn – q‖2 + (1 – αn)‖vn – q‖2 – αn(1 – αn)‖Gvn – yn‖2. (3.10)

Adding (3.9) and (3.10), combining (3.8), we have

‖xn+1 – p‖2 + ‖yn+1 – q‖2

≤ αn
[‖xn – p‖2 + ‖yn – q‖2] + (1 – αn)

[‖un – p‖2 + ‖vn – q‖2]

– αn(1 – αn)
[‖Kun – xn‖2 + ‖Gvn – yn‖2]

≤ ‖xn – p‖2 + ‖yn – q‖2 – (1 – αn)γn‖Axn – Ap‖2

+ (1 – αn)γn‖Axn+1 – Ap‖2

– (1 – αn)γn
(
1 – γn

(
1 + ‖A‖2))‖Kxn – xn‖2

– (1 – αn)γn
(
1 – γn

(
1 + ‖A‖2))‖Axn – Byn‖2

– (1 – αn)γn
(
1 – γn

(
1 + ‖B‖2))‖Gyn – yn‖2

– (1 – αn)γn
(
1 – γn

(
1 + ‖B‖2))‖Axn+1 – Byn‖2

– αn(1 – αn)
[‖Kun – xn‖2 + ‖Gvn – yn‖2]. (3.11)

Letting

Γn(p, q) = ‖xn – p‖2 + ‖yn – q‖2 – (1 – αn)γn‖Axn – Ap‖2.

From (3.11), {αn} and {γn} being non-increasing, we can get the following inequality:

Γn+1(p, q) ≤ Γn(p, q) – αn(1 – αn)
[‖Kun – xn‖2 + ‖Gvn – yn‖2]

– (1 – αn)γn
(
1 – γn

(
1 + ‖A‖2))‖Kxn – xn‖2
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– (1 – αn)γn
(
1 – γn

(
1 + ‖A‖2))‖Axn – Byn‖2

– (1 – αn)γn
(
1 – γn

(
1 + ‖B‖2))‖Gyn – yn‖2

– (1 – αn)γn
(
1 – γn

(
1 + ‖B‖2))‖Axn+1 – Byn‖2. (3.12)

From (3.12) and γn ∈ (ε, 1
1+c – ε), c = max{‖A‖2,‖B‖2}, we have

Γn+1(p, q) ≤ Γn(p, q)

and

Γn(p, q) ≥ [
1 – (1 – αn)γn‖A‖2]‖xn – p‖2 + ‖yn – q‖2 ≥ 0.

Therefore, the sequence {Γn(p, q)} is a non-increasing sequence and lower bounded by 0.
As a result, {Γn(p, q)} converges to some finite limit. Suppose that is Γ (x∗, y∗). Hence, we
know that the sequences {xn} and {yn} are bounded. Letting n → ∞ and taking the limit
in the two sides of (3.12), we obtain

‖Kun – xn‖ → 0; ‖Kxn – xn‖ → 0; ‖Axn – Byn‖ → 0;

‖Gvn – yn‖ → 0; ‖Gyn – yn‖ → 0; ‖Axn+1 – Byn‖ → 0.
(3.13)

Now, let us prove that {xn} and {yn} are asymptotically regular, from (3.13), we can obtain

lim
n→∞‖xn+1 – xn‖ = lim

n→∞
∥
∥αnxn + (1 – αn)Kun – xn

∥
∥

= lim
n→∞

∥
∥–(1 – αn)xn + (1 – αn)Kun

∥
∥

= lim
n→∞(1 – αn)‖Kun – xn‖ = 0.

Similarly, we have

lim
n→∞‖yn+1 – yn‖ = 0.

From (3.13), we have

lim
n→∞‖un – xn‖ = lim

n→∞γn
∥∥(xn – Kxn) + A∗(Axn – Byn)

∥∥

≤ lim
n→∞

[
γn‖xn – Kxn‖ + γn

∥∥A∗(Axn – Byn)
∥∥]

≤ lim
n→∞

[‖xn – Kxn‖ + γn‖A‖‖Axn – Byn‖
]

= 0. (3.14)

Similarly, we can obtain

lim
n→∞‖vn – yn‖ = 0. (3.15)

Combining (3.13), (3.14) and (3.15), we can get

lim
n→∞‖Kun – un‖ = lim

n→∞
[‖Kun – xn‖ + ‖xn – un‖

]
= 0,

lim
n→∞‖Gvn – vn‖ = lim

n→∞
[‖Gvn – yn‖ + ‖yn – vn‖

]
= 0.

(3.16)
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Since {xn} and {yn} are bounded sequences, there exist weakly convergent subsequences,
say {xnj} ⊂ {xn} and {ynj} ⊂ {yn} such that xnj ⇀ x∗ and ynj ⇀ y∗. The Opial property guar-
antees that the weakly subsequential limit of {(xn, yn)} is unique. So we have xn ⇀ x∗ and
yn ⇀ y∗.

On the other hand, from (3.14) and (3.15), we can obtain un ⇀ x∗ and vn ⇀ y∗. Since K
and G are demiclosed at 0 and by (3.16), we have Kx∗ = x∗ and Gy∗ = y∗, which imply that
x∗ ∈ Fix(K) and y∗ ∈ Fix(G), that is, x∗ ∈ Fix(S) and y∗ ∈ Fix(T) from Lemma 2.2(i).

Furthermore, since Axn – Byn ⇀ Ax∗ – By∗, by using the weakly lower-continuity of the
squared norm, we have

∥
∥Ax∗ – By∗∥∥2 = lim inf

n→∞ ‖Axn – Byn‖2 ≤ lim
n→∞‖Axn – Byn‖2 = 0. (3.17)

consequently, Ax∗ = By∗. The proof is completed. �

4 Numerical examples
In this section, we give an example to show some insight into the behavior of the algorithm
presented in this paper. The whole codes are written in Matlab 7.0. All the numerical re-
sults are carried out on a personal Lenovo Thinkpad computer with Intel(R) Core(TM)
i7-6500U CPU 2.50 GHz and RAM 8.00 GB.

Example 4.1 Let H1 = H2 = H3 = R5. S(x) = 1
5 sin x, T(x) = 1

10 sin x. A ∈ R5×5, B ∈ R5×5 are
as follows:

A =

⎛

⎜⎜⎜
⎜⎜
⎜
⎝

0.6674 0.4429 0.1642 0.0410 0.1124
0.9138 0.8919 0.1286 0.1953 0.9165
0.5186 0.0535 0.4354 0.6849 0.2078
0.6941 0.7589 0.9198 0.0316 0.0625
0.3730 0.9534 0.1759 0.3807 0.2593

⎞

⎟⎟⎟
⎟⎟
⎟
⎠

,

B =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

0.4654 0.2709 0.1099 0.3647 0.0556
0.8159 0.4763 0.0070 0.4048 0.3070
0.3713 0.6759 0.6937 0.9897 0.7612
0.1701 0.5584 0.5488 0.5779 0.1563
0.2222 0.1778 0.9335 0.6102 0.8083

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

.

The problem is to find x∗ ∈ Fix(S), y∗ ∈ Fix(T) such that Ax∗ = By∗.

In the experiments, we take αn = 1
3 + 1

2n , ξn = (1 – ( 1
2 )n)∗ 1

1+
√

1+L2 , ηn = (1 – ( 2
3 )n)∗ 1

1+
√

1+L2 ,
where L is not higher than the minimum value of the Lipschitzian constants of S and T .
In this example, we set L =

√
5. Set γn = min{ 1

1+λA
, 1

1+λB
}/1.01. The stopping criterion is

‖Axn – Byn‖ ≤ 10–6.
In the following tables and figures, we denote the non-alternating iteration algorithm in

[13] and the alternating iteration algorithm in this paper for solving split equality common
fixed point problem by “NAIA” and “AIA”, respectively. And we set “k”, “s”, “x∗” and “y∗” to
express the number of iteration, CPU time in seconds and the final solution, respectively.
Init. denotes the initial points. The numerical results can be seen from Tables 1 and 2.

Furthermore, for testing the stationary property of iterative number, we carry out 500
experiments for different initial points which are presented randomly, such as
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Table 1 The numerical results of Example 4.1

Init. x0 = (0.8263, 0.7819, 0.4906, 0.1597, 0.5815)T

y0 = (0.4197, 0.3410, 0.2918, 0.4596, 0.3053)T

NAIA k = 65, s = 0.1250
x∗ = (0.3636, 0.7099, 0.8712, 0.5159, 0.4564)T ∗ 10–5

y∗ = (0.4151, 0.6644, 0.8149, 0.5041, 0.4949)T ∗ 10–5

AIA k = 58, s = 0.1121
x∗ = (0.1219, –0.1458, 0.0677, 0.0801, 0.1676)T ∗ 10–5

y∗ = (0.1093, 0.0727, –0.0224, 0.0301, –0.0147)T ∗ 10–5

Table 2 The numerical results of Example 4.1

Init. x0 = (3.0492, 4.3746, 2.7310, 5.8945, 2.7787)T

y0 = (8.0905, 6.3501, 3.7049, 7.1736, 3.5388)T

NAIA k = 77, s = 0.1426
x∗ = (0.0423, 0.0058, 0.0288, 0.1143, 0.0084)T ∗ 10–4

y∗ = (0.4186, 0.3893, 0.2041, 0.3560, 0.2168)T ∗ 10–5

AIA k = 70, s = 0.1315
x∗ = (0.0091, –0.0117, 0.0375, 0.2795, 0.0268)T ∗ 10–5

y∗ = (0.4038, 0.2972, 0.2596, 0.3781, 0.5171)T ∗ 10–6

Figure 1 The iterative number of NAIA and AIA for the initial point of Case 1

Figure 2 The iterative number of NAIA and AIA for the initial point of Case 2

Case 1. x0 = rand(5, 1), y0 = rand(5, 1);
Case 2. x0 = rand(5, 1) ∗ 10, y0 = rand(5, 1) ∗ 10;
Case 3. x0 = rand(5, 1) ∗ 100, y0 = rand(5, 1) ∗ 100;
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Figure 3 The iterative number of NAIA and AIA for the initial point of Case 3

Figure 4 The iterative number of NAIA and AIA for the initial point of Case 4

Case 4. x0 = rand(5, 1) ∗ 1000, y0 = rand(5, 1) ∗ 1000,
separately in Example 4.1, the results can be found in Figs. 1–4.

From Tables 1 and 2 and Figs. 1–4, we can see that the iterative number and CPU
time of the alternating iteration algorithm in this paper are smaller than that of the non-
alternating iteration algorithm in [13].

5 Conclusions
In this paper, we study the split equality common fixed point problem and propose an al-
ternating iteration algorithm for solving this problem. We prove the weak convergence of
the iteration sequence generated by the alternating iteration algorithm. At the same time,
we solve a numerical example using the non-alternating iteration algorithm presented in
[13] and the alternating iteration algorithm proposed in this paper. From the numerical re-
sults, we can see that the alternating iteration algorithm is superior to the non-alternating
iteration algorithm with respect to the iterative number and CPU time for the example.
Certainly, more examples are needed for validation.
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