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Abstract

In this paper, we introduce a new viscosity-type iteration process for approximating a
common solution of a finite family of split variational inclusion problem and fixed
point problem. We prove that the proposed algorithm converges strongly to a
common solution of a finite family of split variational inclusion problems and fixed
point problem for a finite family of type-one demicontractive mappings between a
Hilbert space and a Banach space. Furthermore, we applied our results to study a
finite family of split convex minimization problems, and also considered a numerical
experiment of our results to further illustrate its applicability. Our results extend and
improve the results of Byrne et al. (J. Nonlinear Convex Anal. 13:759-775, 2012), Kazmi
and Rizvi (Optim. Lett. 8(3):1113-1124, 2014), Moudafi (J. Optim. Theory Appl.
150:275-283, 2011), Shehu and Ogbuisi (Rev. R. Acad. Cienc. Exactas Fis. Nat,, Ser. A
Mat. 110(2):503-518, 2016), Takahashi and Yao (Fixed Point Theory Appl. 2015:87,
2015), Chidume and Ezeora (Fixed Point Theory Appl. 2014:111, 2014), and a host of
other important results in this direction.
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1 Introduction

Let H be a real Hilbert space, M : H — 2 be any multivalued mapping and N : H — H

be a single-valued mapping. The variational inclusion problem (VIP) is the problem of

finding x* € H such that
0€M(x*) + N(x*). (1.1)

One of the most popular and effective methods for solving the VIP (1.1) is the following

forward—backward splitting method which includes the proximal point method and the
gradient method (see [11, 26]): For any fixed x; € H and A > O:

o1 = [+ AM)YT = AN)x,, n>1.
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If N =0in (1.1), then the VIP reduces to the following null point problem (NPP):
Find x* € H such that 0 € Mx*. (1.2)

When M is monotone, problems (1.1) and (1.2) are known to be the most important prob-
lems in monotone operator theory, nonlinear and convex analysis, due to the role they
play in optimization, variational inequalities, semi group theory and evolution equations,
among others. Moreover, many mathematical problems such as optimization problems,
equilibrium problems, variational inequality problems, saddle point problems, etc., can be
modeled as (1.2) or more generally, (1.1) (see [8, 15, 23, 29, 37]). Thus, VIPs and NPPs are
of central importance in nonlinear and convex analysis. As a result of this, many authors
have studied VIPs and NPPs in both Hilbert and Banach spaces (see [1, 2, 10, 11, 26, 28]
and the references therein).

The study of VIPs and NPPs has been extended to the study of split variational inclusion
problem (SVIP) and split common null point problem (SCNPP), respectively. The devel-
opment of these split-type problems can be traced to the split feasibility problem (SFP),
introduced by Censor and Elfving [9] as follows: Find

x* € C such that y* = Ax* € Q, (1.3)

where C and Q are nonempty closed and convex subsets of R” and R, respectively, and
A is an m x n real matrix. The SFP is well known to have wide applications in many fields
such as phase retrieval, medical image reconstruction, signal processing, radiation therapy
treatment planning, among others (see [7, 9] and the references therein). The SFP was also

studied by Byrne [6] using the following CQ-iterative algorithm:
%pi1 =Pc(l - yA*(I - Po)A)x,, neN, (1.4)
where y € (0, %) with A being the spectral radius of the operator A*A. Byrne [6] proved

that the sequence generated by Algorithm (1.4) converges weakly to a solution of (1.3).
In 2012, Byrne et al. [8] extended the NPP (1.2) to the following SCNPP: Find x* € H;

such that

0 € M (x"), (1.5)
and

y* = Ax* € H, such that 0 € M,(y"), (1.6)

where H; and H, are two real Hilbert spaces, M; and M, are two multivalued maximal
monotone mappings and A is a bounded linear operator from H; to Hj. Byrne et al. [8]
proposed the following algorithm to solve problem (1.5)—(1.6): For a given x; € H;, the
sequence {x,} is given by

KXn+l =]i\41 (xn + )/A*( i\’fz —I)Axn), A >0,
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where ]iwl is the resolvent of M; defined by ]iwl := (I + AM;)7L. Furthermore, they obtained
both weak and strong convergence of the proposed algorithm. Motivated by the work of
Byrne et al. [8], Kazmi and Rizvi [25] introduced the following iterative algorithm for ap-
proximating a solution of SCNPP (1.5)—(1.6) which is also a fixed point of a nonexpansive
mapping S in real Hilbert spaces: For a given x; € Hj, let the sequences {u,} and {x,} be
generated by

tn =J3 (@ + YA UL = DA,), w7
Xntl = anf(xn) + (1 - Oln)SI/ln, n= 1,

where f is a contraction mapping on H;. Using (1.7), they proved that both {u,} and {x,,}
converge strongly to z € F(S) N I", where I is the solution set of SCNPP (1.5)—(1.6).

In 2011, Moudafi [29] introduced and studied the following type of split problem, called
the split variational inclusion problem (SVIP), which naturally extends the SCNPP and the
VIP (1.1): Find

x* € H; such that 0 € M; (x*) +N; (x*), (1.8)
and such that y* = Ax* € H; solves
0 € My(y*) + Na(y*), (1.9)

where M; : Hy — 211 and M, : H, — 22 are multivalued mappings, A is a bounded linear
operator from H; to Hy, Ny : Hy — H; and N, : Hy, — H, are single-valued operators.
Note that if (1.8) and (1.9) are considered separately, then (1.8) is a VIP with its solution
set (M; + N1)71(0) and (1.9) is another VIP with its solution set (M, + N5)™1(0). In [29],
Moudafi proved that x* € (M; + N1)1(0) if and only if x* = ]iwl (I = AN7)(x*), VA > 0. It
was also shown in [29] that, if N; is an «-inverse strongly monotone mapping and M;
is a maximal monotone mapping, then ]iwl (I — Af) is averaged with 0 < A < 2«. Hence,
]/]\V[l (I — Af) is a nonexpansive mapping with 0 < A < 2a. Also, Moudafi [29] proposed the
following iterative algorithm and obtained its weak convergence to a solution of problem
(1.8)—(1.9): For x; € H, the sequence {x,} is generated by

%1 = Sy = AN (% + YA* ()2 (L= AN,) 1) Ax,), neN, (1.10)

where y € (0, %) with L being the spectral radius of the operator A*A. Based on the work
of Moudafi [29], Kazmi and Rizvi [25], Shehu and Ogbuisi [35] proposed the following
iterative algorithm for approximating a solution of SVIP (1.8)—(1.9), which is also a fixed
point of a nonexpansive mapping S: For x; € Hj, let the sequence {x,} be generated by

Wy = (1 - an)xm
Y =3 = AND) Wy + y AR (= AN) — DAw,,), (1.11)
X1 =(1 - ﬂn)}’n + ,anym Vn>1.

As observed by Moudafi, the SVIP can be viewed as an important generalization of the split
fixed point problem, split variational inequality problem and the SFP (see [32, 40—42]).
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Furthermore, SVIPs are generally known to be very useful in the study of wide classes of
problems, especially problems arising from mechanics, optimization, nonlinear program-
ming, economics, finance, applied sciences, among others. For more results on SVIP see
[15, 22—24, 34] and the references therein.

Recently, Takahashi and Yao [38] studied the SCNPP in a more general setting, that is,
when A is a bounded linear operator from a Hilbert space to a Banach space. In fact, they
established the following result.

Theorem 1.1 Let H be a real Hilbert space and E be a uniformly convex and uniformly
smooth Banach space. Let My : H — 2" and M, : E — 2" be two multivalued maximal
monotone mappings such that 2 := MY (0)NA™1(M;1(0)) # V. Let A : H — E be a bounded
linear operator such that A # 0 and A* : E* — H be the adjoint of the operator A. Let x; € H
be arbitrary and the sequence {x,} be defined iteratively by

Zn =])j:1 (xn - )"nA*]E(Axn - Tﬁ/izAxn))r
.yl'l = QpXy + (1 _an)zm
Cu={zeH:|ly,—zll < llxx —zll}, (1.12)

Qu={zeH:(x,—z,x1 —x,) >0},

Xn+l = PCnﬁanlr n= 1,

where {a,} is a sequence in [0,1], {A,,} and {j1,,} are sequences in (0, 00) such that 0 < «,, <
a<1,0<b<u,and 0<c<x,|A|*><d <2 for some a,b,c,d € R. Then {x,} converges
strongly to a point zy € §2, where zp = Pox,.

On the other hand, the approximation of fixed points of multivalued mappings with re-
spect to Hausdorff metric has been an area of great research interest due to its numerous
applications in diverse areas such as game theory, mathematical economics, non-smooth
differential equations and others. Thus, it has continued to attract the interest of numerous
researchers (see, for example [4, 19, 30]). Recently, Chidume and Ezeora [13] introduced
and studied a Krasnoselskii-type algorithm, and proved its strong convergence to a com-
mon fixed point of a finite family of multivalued strictly pseudocontractive mappings in a
real Hilbert space. More precisely, they proved the following result.

Theorem 1.2 Let C be a nonempty, closed and convex subset of a real Hilbert space H and
Si: C — CB(C) be a finite family of multivalued 0;-strictly pseudocontractive mappings,
0,€(0,1),i=1,2,...,m such that (., F(S;) # 0. Assume that, for p € (.-, F(S:), Sip = {p}
and S;, i =1,2,...,m is hemicompact and continuous. Let {x,} be a sequence defined for
x0 € C, by

1 2 m
Kppl = QX + ALY, + 02V + - + Uyl s (1.13)

where yL € Sixy, n>1and o; € (0,1), i =0,1,...,m such that Ziyzloti =1 with 0 :=
max{0;,i=1,...,m}. Then the sequence {x,} converges strongly to an element of (", F(S;).

In the course of proving Theorem 1.2, Chidume and Ezeora [13] considered the follow-
ing lemma (see also [14]).
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Lemma 1.3 Let H be a real Hilbert space and {x;,i = 1,2,...,m} C H. For a; € (0,1), i =
1,2,...,msuch that y | «; = 1, the following identity holds:

m 2 m m

2 2
E ax; =E ol © - E aiatj [l — ;|7 (1.14)
i=1 i-1 ij=Liz

We now make the following observations about Lemma 1.3 and Algorithm (1.12).

Remark 1.4 Lemma 1.3 was established under the assumption that ) ", &; = 1, and since
then many authors have used this assumption for the study of finite family of nonlinear
problems (see [11, 36, 37] and the references therein). However, we observe that in a more
general case where {o} is not necessarily a constant sequence, it may be difficult to con-
struct such sequences {ail}, i=1,2,3,...,m whose sum is 1 for some large m. Therefore,
it is of practical computational importance to consider the following question.

Question Can we obtain a similar result without this assumption?
Our interest, among others, is to answer this question in the affirmative.

Remark 1.5
(i) The choice of the stepsize, 0 < ¢ < A,||A||> < d < 2 used in Theorem 1.1 and some
other corresponding results, requires the computation of the norm of A which in
general is a very difficult task to accomplish as shown in the following result.

Theorem 1.6 ([16, Theorem 2.3]) Let p € [1,00) be a rational number except for p = 1,2.
Unless P = NP, there is no algorithm which computes the p-norm of a matrix with entries
in {-1,0,1} to relative error with running time polynomial in the dimensions.

(i) Algorithm (1.12) requires at each step of the iteration process, the computation of
two subsets C,, and Q,,, the computation of their intersection C,, N Q, and the
computation of the projection of the initial starting point onto this intersection;
thus, leading to an increase in the computational cost of the iteration. Hence,
algorithms that do not involve the construction of C, and Q, are more interesting
and of practical computational importance since they are easy to compute than
those that involve these constructions. The desire to search for these algorithms,
impels, urges and motivates us to undertake this research. The work of Kazmi and
Rizvi [25], Moudafi [29], Shehu and Ogbuisi [35], Takahashi and Yao [38], Chidume
and Ezeora [13] provides similar stimulus.

Our purposes in this paper are highlighted in the following approach: First, to study an
extension of the SCNPP (1.5)—(1.6) to the following finite family of split problem: Find
x* € (i, F(S¥) such that

0eM(x*) + N/ (%), j=12,...,] (1.15)

and

y*=A'x* € Esuchthat 0€ Q(y*), i=1,2,...,1, (1.16)
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where H is a real Hilbert space, E is uniformly convex and uniformly smooth real Banach
space, S¥: H — P(H), k = 1,2,...,K is a finite family of type-one demicontractive map-
pings, M/ : H — 2", j=1,2,...,J and M* : E — 2F", i = 1,2,...,1 are two finite families
of multivalued maximal monotone mappings, N’ : H — H is a finite family of a-inverse
strongly monotone mappings and A’ (for each i = 1,2,...,1) are bounded linear operators
from H to E. Second, we propose a new viscosity-type iteration process that does not in-
volve the construction of either C,, or Q,, (or both). Also, the choice of the stepsize adopted
for our computation does not require prior knowledge of the operator norm. Furthermore,
our control sequences do not require the imposition that their sum equals unity. Third,
using our proposed algorithm, we state and prove strong convergence theorem for approx-
imating a solution of problem (1.15)—(1.16). Fourth, we apply our results to study a finite
family of split convex minimization problems, and finally consider a numerical experi-
ment of our results to further illustrate their applicability. Our results extend and improve
the results of Byrne et al. [8], Kazmi and Rizvi [25], Moudafi [29], Shehu and Ogbuisi [35],
Takahashi and Yao [38], Chidume and Ezeora [13], and a host of other important results

in this direction.

2 Preliminaries
In this section, we recall some useful definitions and results that are needed in the proof
of the main results. Also, we shall denote the real Hilbert space by H, weak and strong
convergence by — and —, respectively.

Let (X, d) be a metric space, 2* be the family of all nonempty subsets of X and CB(X) be
the family of all nonempty, closed and bounded subsets of X. Let  denote the Hausdorff
metric induced by the metric d, that is, for all A, B € CB(X),

H(A,B) = max{supd(a, B), sup d(b,A)}, (2.1)
acA beB
where d(a, B) := inf,cp d(a, b).
A subset K of X is called proximinal if for each x € X, there exists k € K such that

[l = k|| :inf{llx—y” :yeK} =d(x,K). (2.2)

It is well known that every closed convex subset of a uniformly convex Banach space
is proximinal. We shall denote the family of all proximinal subsets of X by P(X), for a
nonempty set X.

Let S: H — 2 be a multivalued mapping, a point x € H is called a fixed point of S if
x € Sx. If Sx = {x}, then « is called a strict fixed point of S. Throughout this paper, we shall
denote the set of fixed points of S by F(S).

A multivalued mapping S is said to be nonexpansive, if

H(Sx,Sy) < llx-yl Vx,y€H, (2.3)
and quasi-nonexpansive, if F(S) # @ and for all p € F(S),

H(Sx,Sp) < llx-pl. (2.4)
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Clearly, every nonexpansive mapping with nonempty fixed point set is quasi-nonexpan-
sive.

S is called 0-strictly pseudocontractive in the sense of Isiogugu [17], if there exists 6 €
[0,1) such that Vx,y € H and u € Sx there exists v € Sy satisfying || u — v|| < H(Sx, Sy) and

2
’

H(Sx,Sy) < llx = ylI> +0||x —u— (y—v)

and demicontractive in the sense of Isiogugu and Osilike [19], if F(S) # ¥ and for all p €
F(S), x € H there exists 0 € [0, 1) such that

H?(Sx,Sp) < Ilx - plI* + 6d*(x, Sx). (2.5)
Every nonexpansive mapping is O-strictly pseudocontractive mapping and every quasi-
nonexpansive mapping is a demicontractive mapping with 6 = 0.

The multivalued mapping S is said to be of type-one in the sense of Isiogugu et al. [21]
(see also [20]), if given any pair x,y € H, then

llee — v|| < H(Sx,Sy), forall u € Psx,v € Pgy,

where Psx := {u € Sx: ||u — x| = d(x, Sx)}.

A single-valued mapping f : H — H is called contraction, if there exists p € (0,1) such
that

e =fyll < pllx =yl Vx,y € H.
If p = 1, then f is called nonexpansive. Furthermore, if f, : H — H is a uniformly conver-

gent sequence of contractions, then there exists a sequence of real numbers p, € (0,1)
such that

i@ =) < pullx=yll, Vx,ye Handn> 1.

A mapping f : H — H is said to be
(i) Lipschitz, if there exists a constant L > 0 such that

Ifx -yl <Llix-yl, Vxy€H,

(ii) monotone, if
(fx—fy,x—y) >0, Vx,yeH,

(ili) «-inverse strongly monotone, if there exists a constant « > 0 such that
(fx—fr,x—y) >alfx-fHl>, VxyeH.

If « = 1, then f is called firmly nonexpansive. Moreover, if f is a-inverse strongly mono-
tone, then it is é—Lipschitz continuous.
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Let E be a real Banach space with dim E > 2, then the modulus of convexity of E denoted
by 8 : [0,2] — [0, 1] is defined by

. X+
be(e) = mf{l - H Ty“ el = Iyl = Le = ||x—y||}.

We say that E is uniformly convex if §g(€) > 0, for any € € (0, 2] and p-uniformly convex, if
there exists ¢, > 0 such that 6¢(¢) > c,€” for any € € (0, 2].
The modulus of smoothness of E denoted by pg(t) : [0, 00) — [0, 00) is defined by

I+ zyll + llx — =yl
2

pe(T) = { —1: lxll = fiyll = 1}.

If lim,Hoo(pET(T)) = 0, then we say that E is uniformly smooth. Also, if there exists ¢, > 0 such
that pg(7) < ¢;77 for any 7 > 0, then we say that E is g-uniformly smooth. It is generally
known that p-uniformly convex Banach spaces are uniformly convex while g-uniformly
smooth Banach spaces are uniformly smooth. Moreover, E is uniformly smoooth if and
only if its dual space E* is unformly convex. Examples of uniformly smooth Banach spaces
includes Hilbert spaces, L, (or /,) spaces, 1 < p < 00, and the Sobolev spaces W}, 1 < p < 00
(see [12]). Also, it is well known (see [43]) that

.| p-uniformly convex, if p > 2,
Ly,(l,) or W72 is
2-uniformly convex, if 1 < p < 2.

The normalized duality mapping Jz : E — 2F" is defined by

]E(x) = {x* e E*: (x,x*) = ||x||2) ”x” = Hx*

}, Vx € E.

If E is a Hilbert space, then Jr = I, where [ is the identity mapping. Also, if E is a real
uniformly smooth and uniformly convex Banach space, then Jr and J ! : E* — E are single
valued. Moreover, Jg/ ' = Ip+ and J "V = I (see [12]).

A multivalued mapping M : E — 2F" is called monotone, if

(x—y, u* — V*> >0 Vx,y€DM),u* € M(x),v € M(y),

where D(M) is the domain of M. M is called maximal monotone if the graph G(M) of M
defined by

GM) =: {(x,u*) €eEXE :u* GM(x)}

is not properly contained in the graph of any other monotone mapping. It is known that if
M is a maximal monotone operator, then R(I + AJ'M) = E, where R(I + »J~*M) is the range
of (I + AJ"IM) (see [33]). Also, if E is uniformly convex and smooth, then M is maximal
monotone if and only if R(J + AM) = E* for A > 0 (see [5]). Hence, R(I + AJ'M) = E.

For a maximal monotone mapping M, the metric resolvent TM : R(I + AJ"'M) = E —
D(M) of M is defined by TMx = (I + AJ M) x, VA > 0, x € E. It is known that TM is single
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valued and nonexpansive. Moreover, 0 € Mx if and only if x = T/ (see [31]). Furthermore,
TM satisfies the following property (see [3, p. 4]):

(TMx—q,](x—T"x)) >0 VxeE,qeF(T). (2.6)

If E is areal Hilbert space, then the metric resolvent TM of M is simply called the resolvent
of M and it is defined by

TM(x) = (I + xM)x, xeH,%>0. (2.7)

For the rest of this paper, we shall denote the metric resolvent of M by 7 and the resolvent
of M by JM for all A > 0.

Definition 2.1 A multivalued mapping S: H — P(H) is said to be demiclosed at the ori-
gin, if for any sequence {x,} C H with x, — x and d(x,, Sx,) — 0, n — 00, we have x € Sx.

Lemma 2.2 ([44]) Let C be a nonempty, closed and convex subset of a real uniformly
smooth Banach space E and S : C — C be a nonexpansive mapping. If x, — x € C and
[l = Sx,, || = O, then x = Sx.

Lemma 2.3 ([12]) Let H be a real Hilbert space, then, for all x,y € H and o € (0,1), the
following hold.:
(@) 2(xp) = x> + Iy1” = llx = y11* = e+ p12 =l = Iy 11,
(ii) [lox + (1 —a)yll® = eeflxl|® + (1 = )Iyll* — (1 — ) [l = ¥,
(i) [l +y1I* < lxll* + 2(p,% + ).

Lemma 2.4 ([39]) Let {a,} be a sequence of non-negative real numbers such that
Ans1 < (1 - tn)an + tnan + Sm n= 0,

where
D {ta} C 10,11, 3020t = 00,
(ii) limsupo, <0,
(ili) 8, >0, > 28y < 0.
Then a,, — 0 as n — o0.

Lemma 2.5 ([27]) Let {I,} be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequence {20 of {I,} such that

<y Vj=0.
Also consider the sequence of integers {T(n)},>,, defined by
t(n) =max{k <n| I} <1}

Then {I,}u>n, is a nondecreasing sequence such that t(n) — oo, as n — 0, and for all
n > ny, the following two estimates hold:

F‘L’(}'l) < Ft(n)+l; Fn < F‘L’(}’l)+1‘
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Lemma 2.6 ([23] (see also [22])) Let H be a real Hilbert space. Let M : H — 2" be a mono-
tone mapping and N : H — H be any nonlinear mapping. Suppose that z = JM(I - \N)x and
=] - uN)x, for 0 < A < u, then

lz=x| <2|lw-x| VxeH.

Let K be a nonempty closed and convex subset of a real Hilbert space H. Suppose that
{T:}¥,, N > 2, is a countable finite family of mappings 7; : K — K, in [18] the authors

consider the horizontal iteration process generated from an arbitrary x; for the finite fam-

ily of mappings {T‘}N |» using a finite family of the control sequences {{a/}>° 1} v, as fol-
lows.
For N =2,

Kot = 0l + (1= @) [02Tax + (1 — 02) Ty
For N =3,

St = 0ty + (1— ) [@2Tomy + (1 — 02)[@3 Tom + (1 - 02) T, ] .
For an arbitrary but finite N > 2,

Xn+l = oc,llxn ( )[Ol Tlx,,

(1 o )[ Tox, (1 —0{3)[- . [(xNTN_lx,, +(1- aN)TNx,,] - ]]]

i—

1 N
-ozx,,+§ o 1_[1 a’ ,1x,,+1_[1 a’ Tnx,, n>1.
j=1

J=1

The proofs of the following lemmas (Lemmas 2.7 and 2.10) are given in [18]. However, we

reproduce the proofs here for avoidance of doubt.

Lemma 2.7 Let {o;}Y, be a countable subset of the set of real numbers R, where N > 2 is

an arbitrary integer. Then the following holds:

N i1
a1+Za,H (1-q +H(1 o) = (2.8)
1

i
i=2 j=

Proof For N =2,

—

i—

2
0[1+E o;

2
(l—oc,-)+1_[(1—a,) ar +op(l—ap) + (1 —a)(1 —ay)
i=2 j=1

~.
I
—_

=o1+(1—o)[oz+ (1-a)]

=O[1+(1—Ol1)=1.
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We assume it is true for N and prove for N + 1.

N+1 i-1 N+1

0{1+Za,]_[1 o)) + l_[l o)
i=2 j=1 j=1
N N+1
= +Za,1_[(1 Q) + 0N+ l_[(l—aj)+ 1_[(1—05,)
i=2 j=1 j=1 j=1
N il N
=01+ Zai l_[(l —aj) + l_[(l - aj)[ana + (1 -ann)]
=2 j=1 j=1

N il N
= + Zail_[(l —a)) + l—[(l - )
=2 j=1 J=1
=1. a

Remark 2.8 Lemma 2.7 holds if {¢; }N , is replaced with {«; }l o> and N > 2 is replaced with
N>1.

Lemma 2.9 Let {c;}¥, be a countable subset of the set of real numbers R, where k is a fixed
non-negative integer and N € N is any integer with k + 1 < N. Then the following holds:

N i-1 N
ae+ Y | [Ja-e)+[Ja-e)=1. (2.9)
i=k+1  j=k j=k

Proof For k =0and k = 1, the proofs follow from Remark 2.8 and Lemma 2.7, respectively.
We assume it is true for k and N. Now for k and N + 1,

N+1 i-1 N+1
Olk+20l,1_[1 o)) + Hl o))
i=k+1  j=k j=k
N+1
=y + Z o; H(l o) + 0N+ 1_[(1 o) + ]—[ (1-a)
i=k+1  j=k
=0y + Z Q; H(l o) + 1_[ (1- Ol/)[OlN+1 +(1 —OlN+1)]
i=k+1  j=k j=k
N
—ak+ZalH(1 ;) + l_[l aj)
i=k+1  j=k j=k
i-1 N
—ak+Za,1_[1 a/)+l_[(1—otj)=1. -
i=k j=k j=k

Lemma 2.10 Lett, u and v be arbitrary elements of a real Hilbert space H.Letk be a fixed
non-negative integer and N € N be such that k +1 < N. Let {v;}\:! € H and {ai}f\ik c[0,1]
be a countable finite subset of H and R, respectively. Define

i=k

Y=ot + Z a,l_[(l aj)Vio1 +l_[(1 aj)v.

i=k+1  j=k

Page 11 of 33
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Then
N i-1 N
ly—ul® = elle—ul®+ > e [ JA - e)vica —ull*+ [ JA - )llv—ul®
i=k+1  j=k j=k
N i-1 N
—ar| Y[ [A-eplit—vil* + [ [ - el = vI?
i=k+1  j=k j=k

N-1
- (1) |: Z o 1_[(1 — o) | vic1 — [@ia1vi + win] ||2

i=k+1 =k

N
+aN1"[(1—a,)||v—vN_1||2},

=k
where wy = Zﬁkn o; ]_[;:,1(1 — o)V + ]_[;\:[k(l -, k=1,2,...,N-land wy = (1 -ay)v.

Proof Observe that, for k < N — 1, wx = (1 — ag)[@k+1Vk + Wks1]. Consequently, we obtain
from Lemma 2.3(ii)

N i-1 N 2
ly—ul® = Jlaxt+ > e [ [A =i + [[(A =)y —u] ,
i=kel =k =k

= ot + wi — ul|®
= ot + (1 = ) ka1 vic + Wi ] = M||2
= oellt =l + (1 — o) otk Vic + Wi — el
— (1 - ) £ = lasave + wi ]|
= ouellt = ull® + (1 — o) [tk v — el + (1 = kar) lltksaViss + Wiewo — ul?
— g1 (1 = ten) | Vi = [0k Vice1 + W] Hz]
— (1 — ) 1t = vill? + (1 = @) || £ = [ksavins + wiaal |
— a1 (1= i) |k = [@ksavinn + wial ]
= ollt — ull® + (1 — a)eties |vic — ull®
+ (1= o) (1 = g [ QhsaViess + Wieyo — el
— (1 — o1 (1 = oan) | vi = [@isavien + Wi ||2
— (1 = o)t 1 = viell* — (1 = ) (1 = etiean) [ £ = [traVisr + W] ||2
+ (1 = a)agen (1= ) Ve = [@esavies + weol |
= oellt — ul® + (1 — )k lve — l)* — (1 = a)etges 18— viel|®
+ (1 - ) (1 = axen)llksavien + Wisa — ull?
— (1 = o) (1 = ty1) || £ = [ks2Vieat + Wia2] Hz
— o1 (1 = o) (1 = g1 ) (1 = o) || Vie = [tksaViss + Wia2] ||2

2 2 2
= oyellt —ull” + (1 — o)oen lve — ull” — o (1 — ot ot £ — viell
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— o1 (1= o) (1 = eties1) (1 = o) || Vie = [@tks2Vies1 + Wics2] ||2
+ (1= o) (1 = ) [ QhsaViess + Wieyr — el
— 01 = o) (1 = g1 || £ = [ks2Viea1 + Wia2] HZ
= |t = ull® + (1 - g llve — ul® = a1 — a)arxa 1 = vi1?
— o1 (1= o) (1 = eties1) (1 = o) || Vie = [@tks2Vies1 + Wics2] ||2
+ (1= ) (1 = agr) | @rsavis + (1 — apoo) [@hsavien + wiasl —
— (1= )1 = aps1) | rsavier + (1 — k) [@ka3Visn + Wiis] — t”2
= oellt — ul® + (1 — o)) [lvie — el — o (1 — o)t 16— vie|?
+ (1= ) (1 = s ) lies | Vi — ull®
+ (1= ) (1 = ka1 (1 = tpesn) |t Viewn + Wiz — |
= (1= o)1 = atgesr)thsa (1 = 0ps2) | Vi1 = [kssVisz + Wias] ||2
— (1 = o) (1 = oty )tz [[Viess — £l
— o (1 = ) (1 = ot )(1 = tgern) ll ka3 Vs + Wi — £
+ (1 = o) (1 = tges1)otisa (1 = e[| Vi — OkaaViesz + Wil
— o1 (1= o) (1 = ties1) (1 = o) || Vie = [@tks2Vies1 + Wics2] ||2
= oellt — ull® + (1 — a)eka lvi — ull* — (1 = ot)etgea |12 — v
+ (1= ) (1 = s 1) lies || Vi — ull®
+ (1= o) (1 = a1 (1 = o) @t Viesa + Wiz — |
— (1 — ) (1 = o) ks | visr — £
— (1 = ) (1 = op)(1 = tges2) | ks 3 Va2 + Wi — £
— g1 (1= ) (1 = ) (1 = ) | vk = [@asavion + Wil |

2
- (1 - Olk)z(l - ak+l)ak+2(1 - Olk+2) ||Vk+1 - [(X](+3Vk+2 + Wk+3] H

k+2 i-1
=allt—ul®+ > o [ [ - e vicy — ull?
i=k+1  j=k
k2 -1
—ak[z o [ [a-eplie- vi1||2]
i=k+l  j=k
k+2 i
2
—(I—ap)[ Z Q; 1_[(1 — o)) |vic1 = [y + wina]||
i=k+1  j=k
k+2
2
+ 1_[(1 - Ol/') || [Olk+3Vk+2 + Wk+3] - bt||
j=k
k+2

—ag l_[(l — o)) £ = [otksVisn + Wias] H2
j=k

Page 13 0f 33
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= ol —ul? +Za,1"[(1 o))[vi1 — ul)? +H(1 o)lv—ul®

i=k+1  j=k
—ak[z a,]_[(l )t = viall* + H(l )l - v||2]
i=k+1  j=k
N-1 i )
- (1—o) |: Z o | |(1- Olj)HVi—l = [@ivi + wia] ||
i=k+1 j=k
N
N 1_[(1 —a)llv-vnall |-
Jj=k -

3 Main results

Lemma 3.1 Let H be a real Hilbert space and E be a real uniformly convex and uniformly
smooth Banach space. Letj=1,2,...,],i=1,2,...,1,k=1,2,...,K, for some ],1,K € N. For
each i, j, k, let A" : H — E be a bounded linear operator and (A")* : E* — H be the adjoint
of Al, let M/ : H — 2M be a multivalued maximal monotone mapping, N : H — H be an
o/ -inverse strongly monotone mapping, Sk H — P(H), k=1,2,...,K, be a finite family of
multivalued type-one demicontractive mappings with coefficient 6% € [0,1), and Q' : E —
25" be a multivalued maximal monotone mapping such that 1 : ﬂle F(SHn ﬂjj»zl(Mj +
NYH0) N, (A) Q) 1(0)) # 0. Let the stepsize v} be chosen such that, for some €' >

. QL 2
2||A‘xn—T#iA’x,,H

0, ¥, € (¢, P a— €', ile?;A"x,, # Alx,; otherwise y\ = y' (y' being any
I(A%)*]E (A xn_Tui Alxy) |l

nonnegative real number). Let f,, : H — H be a sequence of p,-contractive mappings with
0< p < py < p < 1such that {f,(x)} is uniformly convergent for any x € D, where D is any
bounded subset of H. For arbitrary x; € H, define the sequence {x,} iterative by

W =x, — y (A Je(A'x, — TQ,iAix,,) i=1,2,...,1,

Wa = st + iy M [Ty (U= nfwiyt + [T (1 - nn)w’,

y, =]QZ’(1—ALN1)W,4, i=1,2,...,],

Tn=abwa+ YL b T -l +TTL, (- ety
U= Choey + 3 4, L ]_[t L (1= ¢huk- 1+]_[t L1 =huk,
Xna1 = Bafu(@n) + (1= BL)[Brxn + (1= B1) vty + (1= v)y,)],

(3.1)

where u € Pgxy, = {u € Skx, : ||u’; — %yl = d(x,, S*x,)), k=1,2,...,K, u>0,v e (0,1),
0<M< )J <20/, (B2, (B2, {a{,}ﬁil, {(ni}22, and {¢X1%°, are real sequences in (0,1)
such that §n >05Vn>1,k=12,... K.

Then the sequence {x,} is bounded.

Proof Letq € T, then, for each i = 1,2,...,1, we obtain from (3.1) and (2.6)
i i i\ * i i 2
[~ al* = o - v (A7) Te(Alns — T A%, - g

. ok . i 2
= =l + () (A%) Je (Al - TE Al |

~ 2y, — g, (A7) Te(Alx, — TS Alx,))
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. . i 2
= Il = gqll” + v | (A) T (A%n = T Al |
~2y,{Alx, — Alg, T (A%, — TS A'x,))
. . i 2
= =l + 32 | (4) e (A, - T A%, |
~2y,(Alx, — TS Ay, Je (Al — TS Alz,))
2y, (T Al ~ TS Alg Jp (Alx, ~ TS Al,))
. i 2
< lltn =gl + 7, | (A") Te(Aen = TS Al |
~2y,(Aln, — TS Al Je (Al — TS A',))
2 2 (AN T Al Q i \I* i Q& iy |12
= |lxn — qll® + v,y | (A7) Te (A%, - T i A'xn) | =2yu||A%, - T A |
. i 2 . . i 2
= lln = ql* = vl 2] A%y = TEA x| = | (A7) (Al = TS A, | ]
< llxn —ql*. (32)

From (3.1), (3.2), Lemma 2.7 and Lemma 2.10 (that is, setting k = 1 in Lemma 2.10), we
obtain

1, -al” = ||]i‘,f’ (1= XN )w, _]i\’f (- .N)q|

<lwn—ql? (3.3)

i-1 1
nnxn+Znn]_[1 n)wit+ [ [ -n)wh - q
=2 t=1 t=1

2

I i-1 I
< mllxn—al®+ Y n [T =) Wi =al” + [T =) 1wl -’
i=2 t=1 t=1

i-1 I
—nn[znnnl )l - f-1||2+n<1—nz>||xn—u4||2}
t=1 t=1

1 i1 1
< myllxa—ql® + Y nf [T = ni) e = gl + [ T(1 = ni) e - q11?
i=2 t=1 t=1

i-1

—nn[Zn H \xn—w’IH +1‘[ 1-1%) %, - M/H
t=1

t=

I i-1
< ll%s —qll* - n,, {Zn [T - i) on - wirt|? +]_[1 n%) 1% - wI”]
=2 t=1 t=1

< [lxn —qll>. (3.4)
Let m, = vu,, + (1 — v)y,. Then, by (3.3), (3.4), Lemmas 2.7 and 2.10, we obtain

I, = gl < v, = ql* + (1 =v)lly, - ql®

j-1 J
a wn+Za H (1-af ]_[(l—ai)a'i—q
=2 t=1

t=1

2
< vluy—ql® +(1-v)
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j-1
< vy —ql®+(1- v)[a 1w, — qll? +Za [Ta-ed)lyit -4l
j=2 t=1

j-1 J
el [zml o) 1||2+n<1—a;>||wn—;4||ﬂ
t=1 t=1

j-1
< vllu, - ql* +(1—v)[a lwn — q||2+2a [T -ab)lw,—ql

= t=1

J
+1_[(1—ozf,)||wy,—q||2:|
j-1 J
v S0 e T -l F

j=2 t=1

= V| = ql* + A=), - qI?

To-dlw'F +H1 o) o - a/n}

Il
S}
v

rJ j-1
vt S T ) -
L j=2 t=1
! 2
10 =) -] } 5
t=1

Since S* is of type-one demicontractive for each k = 1,2,..., K, we obtain from (3.1), and
Lemmas 2.7 and 2.10

K
lln = ql® < ¢l - q||2+Z;,f]‘[ — )|kt - g’ +]‘[ —¢t)|uk —q|

K k-1
i paty (Il y (R
t=1

t=1
K k-1
1 2 2 (k-1 k-1
< orlan—ql* + e [T - ¢y HA (S 2, S )
k=2 t=1

K

+ 1_[(1 - {,’i)?—[z (SKx,,,SKq)

t=1
K k-1 5
:M[zgnl ) o — | +n1—zn||xn Kn]
= t=1
K k-1

< thllen—al® + Yl [T - g9 [ — gl + 0" |, 7]

k=2 t=1
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K

+ [T = i)l -l + 6 s = 0| ]

t=1

K k-1
;H[chnl ) o — | +H1—cn||xn K||2]
k=2 t=1
K - )
= llxa —qll* - Z@,f]‘[l o) (g = 0% oen — 7|

K
-T10- — %) Jon — e | (3.6)

t=1

Substituting (3.6) into (3.5), we obtain

K k-1
I =l = vl =gl = (e, =) 3 g TT( - e~ w |’
j=2 t=1
al 2
—o(er =) T = &) e — |+ (L= ) s — 12
t=1
7 } 1 , J 2_
L j=2 z=1 =1 i

2
=< Ilxn — 4l

7 j-1
—(l—v)ozrll Z(xnl a ||w,, y’ || +1_[1 ol ||wn y’”
Lj=2 =1

K k-1
-6 Zafﬂl I E
j=2 t=1
K
o) [T - 22) o - X
t=1
< llxn —ql*. (3.7)

From (3.1) and (3.7), we obtain

I%ne1 = qll = | By (fun) —q) + (1= By) [ Brxen + (1= B))mn — g ||
< Bilfsn) =gl + (1= BY)B2lxn — gl + (1= BY) (L= B2) llm, —qll
< B - £@ | + @ —a) + (1= B2) s = glI-

By the uniform convergence of {f,(x)} on any bounded subset D of H, and since {gq} is
bounded, there exists M > 0 such that ||f,(g) — q|| <M, Vn > 1. Hence, we have

%01 = qll < Bhonll%n —qll + By |[fal@) —a| + (1= B}) lxn — 4l
< BLollx, — qll + BH|ful@) — | + (1= B2) 1% — gl
= (BL5 + (1= BY))lIxn — qll + BL|ful@) 4|

Page 17 of 33
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(1-BL(1=5))llxs —qll + BL|fu(@) - 4|
)Ilfn(q) Al
1-p

(1= By (1=p))l%s —qll + B,(1 = 5

M
<maxj %, —gll, ——=
1-p

M
< maxj |lx1 —gll, ——¢.
1-p

Therefore, {x,} is bounded. 0

Theorem 3.2 Let H be a real Hilbert space and E be a real uniformly convex and uniformly
smooth Banach space. Letj=1,2,...,],i=1,2,...,I,k=1,2,...,K, forsome ],I,K € N. For
each i, j, k, let Al:H — E be a bounded linear operator and (AD* : E* — H be the adjoint
of Al let MV : H — 2" be a multivalued maximal monotone mapping, N : H — H be an
o/ -inverse strongly monotone mapping, S¥ : H — P(H), k = 1,2,...,K be a finite family of
multivalued type-one demicontractive mappings with coefficient 6% € [0,1) such that (I —
§¥) is demiclosed at zero, and Q' : E — 25 be a multivalued maximal monotone mapping
such that T : (e F(SO N, (M +N/) 1 (0) N1, (A) 1 (Q)1(0)) # 0. Let the stepsize v,

i 2
. L .
. , o 20Alx-TY Alxy
be chosen such that, for some €' > 0, y! € (€, =

- 7 —€), if T Aix, # Alx,;
AT (Al =T Al | H

otherwise y! = y' (y' being any nonnegative real number). Let f, : H — H be a sequence of
pn-contractive mappings with 0 < p < p, < p < 1 such that {f,(x)} is uniformly convergent
forany x € D, where D is any bounded subset of H. For arbitrary x, € H, define the sequence
{x,} iterative by (3.1), where it > 0, v € (0,1),0 < ¥ < A, < 2o/, (B2, B2, (1122, and
{¢ky22, are real sequences in (0, 1) satisfying the following conditions:
@) lim,_ o0 :3;1 =0and Zzil ﬂ; =00;
(i) O<er <%
(iii) ¢! > max{6% k=1,2,...,K}, liminf, o X [T (1 - ¢H) () - 651) > 0,
k=2,3,...,(K-1);

(iv) liminf, o0 [Th; (1 - ¢5(g) - 65) > 0;

(V) liminf, oo 1}, [T} = 1%) >0,i=2,3,...,(I - 1) and liminf, .o [ ],_, (1 — %) > O;

(vi) liminf, oo [[21(1—al) >0,/ =2,3,...,(J - 1) and liminf,_, o, [T, (1 - &) > 0.
Then the sequence {x,} converges strongly to an element of 1.

Proof Letq € T, then from (3.1), (3.7) and Lemma 2.3, we obtain

61 = al” = B} (i) = £u(@)) + B (@) — @) + (1= B [Biwa + (1= ) — ]|
<[ (1= BY)[B2xn + (1= B2y —a] + BL(fulx) - £u@) |
+ 2B){fn(@) — @ %ni1 — q)
< (1= 8’| B2+ (1= By —a|* + (B2’ (o) ~ @) |”
+ 285 (1= B)(Brxn + (1= ) — . fu(x) — fu@)
+ 283 /(@) — @ %1 — q)
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= (1= BN B2ln —all® + (1= BL) (1 - B2) 1, — g
— (1= B B2 - ) I — ol + (BY) | () ~ @) |
+ 285 (1= B)(Baxa + (1= B2)m = 4, fu6) = fu(@)
+ 2B0f(@) = @ %ni1 — q)
< (1= BY) I —ql? ~ (1= BL) BH(1 = B2) I — I
+ (81 |ulen) ~ ()|
+ 280 (1= BY)(Brxn + (1= B2y = .fu () — ()
+ 2B3{(@) = @ %ns1 — q)
< (1= B0l —ql* - (1= BY) B2~ B2) 12 — 11
+(BY) P2 — gl
+ 2B, (1= B,) | B3z + (1= B2y — | | ) = (@) |
+ 2B0fu(@) — @ %ni1 — q)
< (1= BNl —aql® ~ (1 - BY)*B2(1 ~ B2) 1% — a1
+(BY) 7 1 — gl + 2581 (1 = BY) I — gl
+ 2B3fn(@) — @ Xne1 — q)- (3.8)
We now divide the rest of the proof into two cases.

Case 1. Suppose that there exists ny € N such that {||x,, —g||}°2
by Lemma 3.1, {||x, — ¢||} converges. Thus,

o is nonincreasing. Then,

%7 = qll = %441 —qll = 0 asn— oo. (3.9)

By (3.1) and (3.6), we obtain

e = ql> < BEfulen) —a* + (1 - B B2 — ql> + (1= BL) (1 = B2) 11— 411>
< Balfulen) = q|” + (1= BL) B2 1% — gl
(1= (1= B (vl — gl + @ = v)lyn - qll?)
< Ballfulen) = q|” + (1= BL) B2 1% — gl
(1= (1= B (vlan —ql* + A= v)llwa —qlI?)
= Bl —a”+ (1-
+(1-8,) (-0

By (3.3) and (3.10), we obtain

BY) (B +v(1 - B2))lIxn— qll
V)W, —qll*. (3.10)

i-1 I
M, |:Z’7 1_[ 1 nn “xn i_l ||2 +1_[(1—1’}f,1) ||xn—W£1”2:|
i=2 t=1

t=1

2
< Ilxx — gl = Iw, 4l

Page 19 of 33
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By +v(1- A7) B

2
=< ||xn_q|| + (1_133)(1_‘)) ”xn_q

1 2 1 2
+ A= A= B =) (—||xn+1—61|| +ﬁn“f”(xn)_q” )
- (1-8,) 50— al?
1-gHA-gHA-v) "
! 2 1 2
A Y (=l%ns1 = ql® + B fuln) — q|*)

1
T A-pha-pA1-

(1% = qlI* = %41 = q1I°]
v)

ﬂl
T a-BNa-pa- 3y L) ~al” = I - al). (3.11)

By the conditions on the control sequences, we obtain
lim ||x, - w/, | =0, i=1,2,...,1 (3.12)
n— 00
By the condition on {y,}, we obtain
. Qi . _ .
Tim [[(A7) Je(A'x = T 5 Ax) [ =0, =121 (3.13)

Also, from (3.2), (3.12) and (3.13), we obtain

, . P 2 i
2yi Al = TS A% < oo =gll® = W, = al* + ()] (4) Je (@ - TS A%) |
< Jow=w | = 2l = wi | |, - a]®
+ () [ (A) Te(Atx, - TS A, |
— 0, asun— oo. (3.14)
Hence,
lim A%, - T2 Alx,| =0, i=1,2,...,I. (3.15)
n—00 w
By (3.8), we have

2
(1= 8,) Br(1 = B xn = mal® < 1% = q1* = 1 = q11* + By M1,

for some M; > 0 and this implies that
lim ||, — m,] = 0. (3.16)
H—0Q

Hence, by (3.1) and condition (i), we obtain

lim ||%,.1 — 5] = 0. (3.17)
n— 00

Page 20 of 33
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From (3.7) and (3.16), we obtain

j-1 J

0= [Zaznl a)lwn - 1||2+H<1—az>||wn—m|ﬂ
t=1 t=1

< |l%n —qll* = llm, —qlI* = 0, asn— oo,

which implies from condition (vi) that

Jim |w, ~y,[ =0, j=1,2...]. (3.18)
Since 0 < / < A},, by Lemma 2.6, we obtain

| =T (1= ¥N)wy | < 2w =4 = 0, asn— o0,j=1,2,...,]J. (3.19)

Similarly, we obtain from (3.7) and (3.16)

K k-1 K
v(gh =05 ) S ek T =g e — b7+ (g =05 [T - 62) o0 — X
j=2 t=1 t=1
< 1% = ql1* = llm, — qII*
— 0, asun— 00,
which implies that
lim |, —us| =0, k=1,2,....K. (3.20)
n—00
Therefore,
d (%, S %) = || —ul| > 0, n—o00,k=1,2,...,K. (3.21)

Since {x,} is bounded (by Lemma 3.1), there exists a subsequence {%n;} of {x,} such that
xy, — x* € H, and by the demiclosedness of (I - §*) (for each k) at zero and (3.21), we have
x* € Mk, F(S¥). Moreover,

i-1

1 1
1w =21 < bl =2l + Y [T (1= ) i =+ ] (2= m5) W = |

i=2 t=1 t=1

-1
nn[znnnl )i P TT0 =) - u/n}
t=1 t=1

I i1
52 1—7),, ||w’1 xn“ +1_[1 nn ||w1 x,,},
=2 t=1

t=1

which implies from (3.12) that

lim ||w, —x,]|| = 0. (3.22)
n— 00
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Furthermore, A’ is a bounded linear operator for each i = 1,2,...,1I, so {Aix,,],} converges
weakly to Aix* € E. Also, T;?i is nonexpansive, thus, by (3.15) and the demiclosedness of

- TS} ) at 0, we obtain

I
Ax* e ﬂF(TS,.").

i=1

Similarly, we obtain from (3.19) and (3.22)
ﬂ (7 (- ¥N)))
J=

Therefore, we conclude that x* € T".
Meanwhile, since {f,(x)} is uniformly convergent on any bounded subset of H and {x*}
is bounded, we can set f(x*) = lim,,_, o f;,(x*). Thus, we obtain

limsup(f,, (x*) — %, %, — x*) = lim sup(f,,l. (%) - ", %, - ")

n—00 j—o00

=0.
By replacing q with x* in (3.8), we get
[ =" = (1= 28, (1= (1= 1)) [ =" [ = (1= B2)° B3 (1 = B3 s —

+ (B0 (1+2) | =" | + 285 (") = 6" 1 — )
< (1-2811- ) |u —#*[* + 2831 - )

Bir(1+ %) L2 1 . . .
x[( 2, x||+1_15((fn(x)—x,xn+1—x>)]. (3.23)

Using Lemma 2.4, we obtain x,, - x* € 7" as n — oo.
Case 2. Assume that {||x, — ¢||} is not a monotonically decreasing sequence. Set I, =
lx, — qll* and let 7 : N — N be a mapping for all # > n, (for some #, large enough) by
t(n):=max{ke N:k<n, I < T}
Clearly, t is non-decreasing sequence such that t(n) — oo as n — oo and

0=<Itpm < Itw+1, Yn=no.

This implies that ||, — gll < %741 — gll, Y1 > 1p. Thus lim,,—, oo |#7() — gl exists. In a

similar way to Case 1, we can show that
[(A) Te(Alsen - TS Alsegn) | = 0, n—00,i=1,2,...,I. (3.24)
Similarly,

ety = Uyl = 0, n—>00,k=1,2,...,K, (3.25)
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so that
d(xf(n),Ser(,,)) = fo(,,) - u];(n) ” -0, n—o00,k=1,2,...,K.

We can also show that

1%z 41 =%zl = 0, 11— 00,
Wy —%ell = 0, n— o0, (3.26)
|Aixe ~ TS Al | =0, n—00,i=1,2,...,1.
and
|Wet =12 (1= VN we | = 0, asn— 00,j=1,2,...,]. (3.27)
From the fact that {x,(,} is bounded, we see that there exists a subsequence of {x(,},

denoted as {x(,}, that converges weakly to x* € H;. Since ||wr () — X0 || = 0, it follows
that we(,) — «* € H;. As in Case 1, we can show that x* € 7" and

limsup(f; o) (x*) = &%, %7 (nys1 — &%) = 0.

n—00

By replacing g with x* in (3.8), we get

P = = (1= 2850 (170~ B e =
— (1= Bin) Bl (L= Bl [ (m) = ()|
4 (BY) (14 52) e = 2% | + 28X fron (57) = &7 o1 — 27)
< (1=281 (1= 5)) e = 2% | + (BL0) (1 + 57) | e — 2*|°

+ 2B fron (£°) = & Ko (1 — &), (3.28)

This implies that (noting that I, < I't(»+1 and B}, > 0)

21 = ) et =" = B (14 5) [eein =2 [+ 20fo (x7) =5 eger = 27). (3:29)
This implies that

lim sup||x; (s —x*|| < 0.

100

Thus,

Jlim [z — 27| =0. (3.30)

Therefore,

||xr(n)+l -x* || = er(n) -x* || + ||xr(n)+1 _xr(n)” —0, n— o0
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Furthermore, for n > ny, it is easy to see that Iy < Ir(n+1 if n # T(n) (that is, T(n) < n),

because I} < I},; for t(n) + 1 <j < n. As a consequence, we obtain for all # > #,,
0<rI,=< maX{Fr(n); Fr(n)+} = Fr(n)+1~

Hence, lim,,_, I, = 0, that is, {x,} converges to x* € 7. This completes the proof. O
The following new results follow directly from Theorem 3.2.

Corollary 3.3 Let H be a real Hilbert space and E be a real uniformly convex and uni-
formly smooth Banach space. Let i = 1,2,...,1, k=1,2,...,K, for some I,K € N. For each
i, k, let A" : H — E be a bounded linear operator and (A')* : E* — H be the adjoint of
Al, M : H — 2 be a multivalued maximal monotone mapping and N : H — H be an
a-inverse strongly monotone mapping and S* : H — P(H), k = 1,2,...,K be a finite fam-
ily of multivalued type-one demicontractive mappings with coefficient 6% € [0, 1) such that
(I — S%) is demiclosed at zero, and Q: E — 25* bea multimlued maximal monotone map-
ping such that T : ﬂ NM+N)0)N ﬂl A Q’) 1(0)) # 0. Let the stepsize .

( o 2)|Alx,— TQ Al xnll
)

be chosen such that, for some €' > 0, y; € (€' €', sz/?LAix,, # Alx,;

o I(AiY (Al ~TH Ay |
otherwise y): = y' (y' being any nonnegative real number). Let f,, : H — H be a sequence of
pn-contractive mappings with 0 < p < p, < p < 1 such that {f,(x)} is uniformly convergent
forany x € D, where D is any bounded subset of H. For arbitrary x, € H, define the iterative

sequence {x,} by

Wi = % — Yu(A) Je(Alx, - T? Al,),  i-1,2,...,1,

W = i+ 2t 1 [T (L= nf)wit + [T, (L= miw!,

Vn :11”(1 = AuN) Wy, (3.31)
= 00+ Y SN T (L= gul™ + T, (1= gk,

Kni1 = Bful®n) + (1 - ﬁn)[ﬁﬁxn + (1= B (v, + (1= v)y,)],

where uk € Pyxy = {uk e Skx,, : ||uk — x|l = dx, S*x,)}, k=1,2,...,K, >0, v e (0,1),
0<A <A,<2a, {BI2, {8212, ()2, and {g“ 192, are realsequences in (0, 1) satisfying
the following conditions:

(i) limy—oo Br=0and y o2 Bl =

(i) 0<er < B

(iii) ¢! > max{6%k = 1,2,...,K}, liminf, .o £ [[55(1 = £5)(¢) - 651 > 0,

k=2,3,...,(K-1);
(iv) liminf, o [Ti, (1 -2} - 05) > 0;
) liminf, o 7% [T25A =15 >0,i=2,3,...,(I - 1) and liminf, . o []._,(1 - %) > 0.

Then the sequence {x,} converges strongly to an element of 1.

Corollary 3.4 Let H be a real Hilbert space and E be a real uniformly convex and uni-
formly smooth Banach space. Let j =1,2,...,], k=1,2,...,K, for some J,K € N. For each
j, k, let A: H— E be a bounded linear operator and A* : E* — H be the adjoint of A,
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M : H — 2" be a multivalued maximal monotone mapping and N/ : H — H be an a-
inverse strongly monotone mapping and S* : H — P(H), k = 1,2,...,K be a finite family
of multivalued type-one demicontractive mappings with coefficient 0 € [0,1) such that
(I - §%) is demiclosed at zero, and Q : E — 2F" be a multivalued maximal monotone map-
ping such that T : (", F(S¥) N ﬂjl-zl(M" + N))L0) N A1 (Q71(0)) # 0. Let the stepsize y,

Q 2

20| Axy—T 5 Axnl| o Q

’ €), if T?Ax, # Axy; oth-
( ||(A)*/E(Axn—Tﬁ/[Ax,,)”2 ) f witxn n

erwise y, = y (v being any nonnegative real number). Let f, : H — H be a sequence of

be chosen such that, for some € >0, y, €

pn-contractive mappings with 0 < p < p, < p < 1 such that {f,(x)} is uniformly convergent
forany x € D, where D is any bounded subset of H. For arbitrary x, € H, define the iterative

sequence {x,} by

Wy = % — YuA*Je(Ax, — TRAX,),

9, :]i‘Z’(I—ALN/)wn, i=1,2,...,],

Tn=agwn+ Y [T - e + T (- by, (3:32)
U = §) +ZK KT (= gk + i, (1= g,

%ne1 = Bofu@n) + (1= B[ Brxn + (1= B2 Wity + (1= )y)],

where uk € Pyxy = {uk € Skx, : l|2¢, K xall = d®n, Sx0)), k=1,2,...,K, >0, v e (0,1),
0<N <N, <2, B2, {8212, {o/} ° and{{n °, are realsequences in (0,1) satisfying
the following conditions:
(i) limy o0 B} =0 and Y52, B} = 00
(i) 0<e; < ,33;
(iii) ¢! > max{6*,k=1,2,...,K}, liminf, o X []5 (1 - ¢} - 651 > 0
k=2,3,...,(K-1);
(iv) liminf, o [T, (1 =2} - 65) > 0;
) liminf, oo [Ty (1-af)>0,j=2,3,...,(J = 1) and liminf, .o [T, (1 — &%) > 0.

Then the sequence {x,} converges strongly to an element of 1.

Corollary 3.5 Let H be a real Hilbert space and E be a real uniformly convex and uni-
formly smooth Banach space. Let j = 1,2,...,], i =1,2,...,1, for some J,I € N.For each
i, j, let A': H — E be a bounded linear operator and (A")* : E* — H be the adjoint
of AL, M/ : H — 2M be a multivalued maximal monotone mapping and N/ : H — H
be an w-inverse strongly monotone mapping. Suppose S : H — P(H) is a multivalued
type-one demicontractive mapping with coefficient 6 € [0,1) such that (I - S) is demi-
closed at zero and Q' : E — 25* be a multimlued maximal monotone mapping such that

Y :F(SN ﬂl] LM+ NIYH0) NN (A)H(Q7) 1(0)) # V. Let the stepsize y, be chosen

2||A’xn—TQ. Alx, ||
ut

such that, for some €' > 0, y € (€, —€h), if TQA X, # Alx,; other-

AT Ay =T Ay w
wise yi = y' (y' being any nonnegative real number). Let f,, : H — H be a sequence of p,-
contractive mappings with 0 < p < p, < p < 1 such that {f,(x)} is uniformly convergent for

any x € D, where D is any bounded subset of H. For arbitrary x, € H, define the iterative

Page 25 of 33
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sequence {x,} by

Wi = % — YulA) Je(Alx, - T? Alx,),  i=1,2,...,1,
W = it + 2 iy 1 [T (L= nf)wi ! + [T, (L= mi)w/,

Yo :]i‘,z/(l N j=1,2...), (3.33)
=g+ Yo [T (L -y + T (1 -y,

Eni1 = Bufu@n) + (1= B [Brxn + (1= B2)(vity + (1= v)yn)],

where u, € Psxy := {thy € Sxp : |ty — %yl = A(xn, Sxn)}, >0, v € (6,1), 0 < NV < M < 20/,
(B2, {BA2,, {0}y and (ni}2, are real sequences in (0,1) satisfying the following

conditions:
(i) limy—oo B =0andy o) B = 00;
(i) 0<e <B2<1-6;
(iii) liminf, ) []231=7L)>0,i=2,3,...,(I - 1) and liminf, o []:_,(1 - 1) > 0;
(iv) liminf, o) [T (1= af)>0,j=2,3,...,(J — 1) and liminf, .o [T, (1 — &%) > 0.
Then the sequence {x,} converges strongly to an element of 1.

Corollary 3.6 Let H be a real Hilbert space and E be a real uniformly convex and uni-
formly smooth Banach space. Letj = 1,2,...,], for some ] € N. For each j, let M/ : H — 2
be a multivalued maximal monotone mapping and N’ : H — H be an a-inverse strongly
monotone mapping A : H — E be a bounded linear operator and A* : E* — H be the adjoint
of A, and S : H — P(H) be a multivalued type-one demicontractive mapping with coeffi-
cient 0 € [0,1) such that (I - S) is demiclosed at zero, and Q : E — 2E° be a multivalued
maximal monotone mapping such that Y : F(S) N ﬂll:l(Mf + N)1(0) N A~1(Q1(0)) # @.
2 AT A, | .
’ |\<A)*”/E(AxnfTﬁ4ALn>u2 —o)
TfBAx,, +# Ax,; otherwise y, = y (y being any nonnegative real number). Let f,, : H — H be a

Let the stepsize y, be chosen such that, for some € >0, y, € (e

sequence of p,-contractive mappings with 0 < p < p, < p < 1 such that {f,(x)} is uniformly
convergent for any x € D, where D is any bounded subset of H. For arbitrary x, € H, define

the iterative sequence {x,} by

Wy = % — YulA)JE(Ax, — TRAx,),

o :Jj,f'(l — N, j=1,2,..],

Tw=awn+ X [T - o + 1L (A -y,
X1 = Bpfuln) + (1= Bo)[B2xy + (1 = B2) vty + (1 = v)yu)],

(3.34)

where u, € Psxy := {thy € Sxp : |ty — 2yl = A(xn, Sxn)}, £ >0, v € (6,1), 0 < N < M < 2/,
(B2, (B2, and {o/,,}z":1 are real sequences in (0, 1) satisfying the following conditions:
(1) hmn%oo ,3; =0and Z;xil ﬂnl = 0X0;
(i) 0<eg <B2<1-6;
(iii) liminf,_ o o), Hj:l(l ~a!)>0,j=2,3,...,(J — 1) and liminf, o [T._,(1 —a’) > 0.
Then the sequence {x,} converges strongly to an element of 1.

Corollary 3.7 Let H be a real Hilbert space and E be a real uniformly convex and uni-
formly smooth Banach space. Let k = 1,2,...,K, for some K € N. For each k, let Sk .
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H — P(H), k=1,2,...,K be a finite family of multivalued type-one demicontractive map-
pings with coefficient 6% € [0,1) such that (I — S*) is demiclosed at zero, A : H — E be a
bounded linear operator and A* : E* — H be the adjoint of A, M : H — 2 be a mul-
tivalued maximal monotone mapping and N : H — H be an w«-inverse strongly mono-
tone mapping, and Q : E — 2% be a multivalued maximal monotone mapping such that

TN, F(SO) N (M +N)™10) NA~1(Q1(0)) # . Let the stepsize y, be chosen such that, for
Q 2
some € >0, y, € ( A% Ty Avl €), ifTEAx,, # Ax,; otherwise y, = y (v being any

AT AT Az
nonnegative real number). Let f,, : H — H be a sequence of p,-contractive mappings with

0<p < pn < p <1such that {f,(x)} is uniformly convergent for any x € D, where D is any
bounded subset of H. For arbitrary x, € H, define the iterative sequence {w,}, {x,} and {y,}

by

Wy = % — YuA*Jp(Ax, — TRAX,),

Y = r (L = 2uN) W,

= C10 + iy GE TS (1= k™ 4+ T, (1= ¢uls

Xne1 = Bufuln) + (L= B [Baxn + (1= B2) (vus, + (1 - v)yn)],

(3.35)

where uk € Pgixy, := {uk € S*x, : ||uk — %l = d(xn, S* %)}, k=1,2,...,K, 0 >0,v €(0,1),0<
A< A <20, (B2 (B2 °,and {£¥1° | are real sequences in (0, l)satzsfymgthefollowmg
conditions:
@) lim,_ o0 :3;1 =0and Zzil ﬂ; =00
(i) 0<er < B2
(iii) ¢! > max{6*, k=1,2,...,K}, liminf, o X [T/ (1 - ¢} =651 > 0
k=2,3,...,(K-1);

(iv) liminf, o [T, (1 -2} - 6%) > 0.

Then the sequence {x,} converges strongly to an element of 1.

Corollary 3.8 Let H be a real Hilbert space and E be a real uniformly convex and uni-
formly smooth Banach space. Let i = 1,2,...,1, for some I € N. For each i, k, let Al
H — E be a bounded linear operator and (A")* : E* — H be the adjoint of A'. Suppose
M : H — 2! be a multivalued maximal monotone mapping and N : H — H be an a-
inverse strongly monotone mapping and S : H — P(H) be a multivalued type-one demi-
contractive mapping with coefficient 0 € [0,1) such that (I — S) is demiclosed at zero, and
Q' : E — 2F be a multivalued maximal monotone mapping such that T : F(S) N (M +

“10) NN (A) Q1) 1(0)) # . Let the stepsize v, be chosen such that, for some €' > 0,

i 2
. . i Qi . i . . S
¥ € (€, AT Al €'),if TS A'x,, # A'x,; otherwise y) = y' (y' being any non-

n

ICA) T (Al —TH i)
negative real number). Let f,, : H — H be a sequence of p,-contractive mappings with
0< p < py < p < 1such that {f,(x)} is uniformly convergent for any x € D, where D is any
bounded subset of H. For arbitrary x; € H, define the iterative sequence {x,} by

W = x, — (A Je(Alx, — TEiAixy,), i=1,2,...,1,

W = Mt + 3 My [Ty (L= mp)wi + T, (L= i)W,

Y =0 = 2uN) W,

Xne1 = Bpfuln) + (1= BOBIxn + (1= B2) (i, + (1 - v)y,)],

(3.36)
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where u, € Psx, := {u, € Sx,, : |ty — x| = d(x,,Sx,)}, £ >0, v € (0,1),0< A <Ay <20,
(B2, {B212, and {n! )2, are real sequences in (0, 1) satisfying the following conditions:
(i) lim,_ o ﬁi =0and Z:il ﬁi =005
(i) 0<er < B2 <1-6;
(iii) liminf, ) [0 =7L)>0,i=2,3,...,(I - 1) and liminf, o []1_,(1 - 1) > 0.
Then the sequence {x,} converges strongly to an element of 1.

4 Application to finite family split convex minimization problems

Let F/ : H — R be a finite family of convex and continuously differentiable functions, Gj1 :
H — (—00,+00] and G}, : E — (—00, +00] be two finite families of proper convex and lower
semi-continuous functions. Then, foreachi=1,2,...,/andj=1,2,...,/, the gradient VE
of F/ is monotone and continuous, and the subdifferentials E)G’i :H — 21 of G]i and 3G} :
E— 2F of G}, are maximal monotone (see [33]). Furthermore,

F(x*) + G, (x*) = migll[Fj(x) + Gjl(x)] & 0eVFP(x")+ G, (**), j=L2...],
X€E
and

G(") =minGy0) & 0€dG("), i=1.2...L

Let us consider the following finite family of split convex minimization problem: Find

x* e F(Sk) such that F/ (x*) + Gé (x*) = mi]? [Fj(x) + G’i (x)], (4.1)
XE
and
y* = A'x* € E such that G}, (x*) = mijlgl G,(), (4.2)
ye

where i=1,2,...,1,j=1,2,...,], k=1,2,...,K, A : H— E is a bounded linear operator
for each i, F/, G’i and G} are as defined above, S* : H — P(H) is a finite family of multival-
ued type-one demicontractive mappings. Suppose the solution set of problem (4.1)—(4.1)
is £2, then setting M = 3G, Q' = 3G} and N/ = VF/ in Theorem 3.2, we obtain the fol-
lowing new result for approximating a common solution of finite family of split convex
minimization problems and fixed point problem for a finite family of multivalued type-
one demicontractive mappings.

Theorem4.1 Let H be a real Hilbert space and E be a real uniformly convex and uniformly
smooth Banach space. Letj=1,2,...,],i=1,2,...,1,k=1,2,...,K, for some ], I,K € N. For
each i, j, k, let A" : H — E be a bounded linear operator and (A")* : E* — H be the adjoint
of AY, let Gé :H — (~00,+00] and G : E — (—00, +00] be proper convex and lower semi-
continuous functions, F/ : H — R be a convex and continuously differentiable function such
that VF is é—Lipschitz continuous, and S*: H — P(H), k = 1,2,...,K be a finite family
of multivalued type-one demicontractive mappings with coefficient 0 € [0,1) such that

(I - S¥) is demiclosed at zero and 2 # . Let the step size v be chosen such that, for some
i 2

. G, .
2||Alx,,—TMl. 2 Alx, |

€>0,y) € (e, 7 —€), i]‘TiiGzAixn # A'x,; otherwise y! = y' (y' being

. . aGh
”(Al)*]E(Alxn—TMi Alxy)||
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any nonnegative real number). Let f, : H — H be a sequence of p,-contractive mappings
with 0 < p < p, < p < 1 such that {f,(x)} is uniformly convergent for any x € D, where D is
any bounded subset of H. For arbitrary x, € H, define the iterative sequence {x,} by

Wi = %, — i (AT (Alx, — TzféAixn), i=1,2,...,1,

Wi = M+ 3 1, Tl (U= w4 Tl (L= nwy,

Yo = ]jf’l U= MNFYw, j=1,2....],

=gy + Yo [T (- ey + [T (- ey,
= Eptn + Yy O Tt (L= k™ + T, (1= ¢ u,
Xni1 = Bofalxn) + (1 = BDIB2x, + (1 = B2 (vity + (1= v)y,)],

(4.3)

where uk € Pgx,, := {uk € S¥x, : |uk — x| = d(x,, S¥x,)}, k= 1,2,...,K, n >0, v € (0,1),
0< NV <N, <2d, (B2, {B2)2%, (B2, ()2, (0822, and (¢X)22, are real sequences
in (0,1) satisfying the following conditions:
(i) limyoo B =0and Y 2, Bl = oo;
(i) 0<e < B%
(iii) ¢! > max{6%,k=1,2,...,K}, liminf, o X [T (1 - cE)(} - 651) > 0,
k=2,3,...,(K-1);

(iv) liminf, o [Ti, (1 - £)(g) - 05) > 0;

) liminf, 0 7% [T25A =15 >0,i=2,3,...,(I - 1) and liminf, . o [T, (1 - %) > 0;

(vi) liminf, oo [[21(1—al) >0,j=2,3,...,(J - 1) and liminf, _, o [T, (1 - &) > 0.
Then the sequence {x,} converges strongly to 2.

5 Numerical example
We now give a numerical example of Algorithm (3.1) to show its performance. Let H = R?
and E = R* (be endowed with the euclidean norm). Let I =5, = 3 and K = 4. Then define
M :R? — R? by

M (x) = (jx1 — 3jx9, 3jx1 +jx2), j=1,2,3.

Clearly, M is maximal monotone for each j. Thus, for each x € R?, we compute the resol-

vent of M as follows:

. . -1
, 10 Xy =3, x
/A,/'H(x) = + ]. j A]j '
Xn 0 1 3])\41 ])\n )
B 1 18, 3, ||x
1+ 24, +10200)2 | =3jAn  1+jw | %2 |

which implies that

) = <(1 + j)\’,%)xl + 3jA;x2 1+ jk’;,.)xg - 3jxgx1 )
1+ 20, + 1072(W,)2 1+ 2jX, + 10/2(A),)?
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Also, we define Q' : R* — R* by Q¥(x) = (dixy, 4ix,, 4ixs, 4ixy), i = 1,2,3,4,5. Then Q' is

maximal monotone. In a similar way, we obtain the resolvent of Q' as

i x x X X
TQz (x) = A 41 T '2 > -3 » T 44 .
W dip' +1 4ipt+1 4ip' +1 4ipt +1

Let A': R? — R* be defined by A(x) = (=3ix; + 4ixy, ixy + 5ixy, 3ixy — 2ixy, 2ix; — 3ixy),
Ju : R? - R? be defined by f,(x) = 2x Vi > 1, and $* : R* — R? be defined by S*(x) =

—( 2k2+1 )(%1,%2), k = 1,2,3,4, then S* is a ¥ -demicontractive mapping with §% = % for
each k =1,2,3,4. Thus, 6 = Z=. Now, define N/ : R* - R? by N (x) = (4jx1,4jx2), j = 1,2,3.

. i ; . i_ 1 _1 p1_ 1
Then N is an o/ -inverse strongly monotone mapping with o/ = 7 Take v =3, B, = 75
. Qi 2
. ; . o 20| AMx =T Al
_ 2in+3 J n+l é.ylf _ 77n+2 and y;i c (él, " _

132 _ n+l 4J n o =
’ T 4jn+2’ ~ 121kn+1 . . i 2
4 AN (A= Al |

l’_
n = 50 M et Tn = ae6in

€), if TlglAixn # A'x,; otherwise ! = y' (y' being any nonnegative real number). Then
conditions (i)—(vi) of Theorem 3.2 are satisfied. Hence, we consider the following cases

for ;' and our initial points x; (see Fig. 1).

0.3 T T T T 4
35}
0.25
3t
02f
25}
2 4
2o15r g 2
w w
15F
01t
1k
0.05
05
T —
0 | I — 0 ) L L
0 5 10 15 20 25 0 5 10 15 20 25
Iteration number (n) Iteration number (n)
35 - - - : 35
3 3
25} 1 25}
2 2
4 14
e [
I ]
15 15
1 1
05 1 05
o I 0 : : i
0 2 4 6 8 10 0 2 4 6 8 10
Iteration number (n) Iteration number (n)
Figure 1 Errors vs. iteration numbers (n): Case I(a) (top left); Case I(b) (top right); Case ll(a) (bottom left);
Case ll(b) (bottom right)
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Casel:

(a) Takex; =(0.5,-0.25)" and ' = pu = <.
(b) Takew; = (-5,4)7 and /= = .
Case I

(a) Takex; =(=5,3)T and pu! = p = 10.

(b) Take %1 = (=5,3)7 and u! = u = 1000.

6 Conclusion

A new viscosity-type iteration process that does not involve the construction of either C,
or Qy is introduced for approximating a common solution of a finite family of split varia-
tional inclusion problem and fixed point problem for a finite family of type-one demicon-
tractive mappings between a Hilbert space and a Banach space. Furthermore, our choice
of stepsize in Algorithm (3.1) does not depend on the norm of the bounded linear operator
A which is very difficult to compute in general as illustrated in Theorem 1.6. Moreover, we
established a strong convergence theorem for approximating a solution of the aforemen-
tioned problem and our control sequences do not require the imposition of the condition
that the sum = 1. Some applications and numerical experiments of the established results

are given to further illustrate the applicability of our results.
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