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Abstract
In the last few years, various researchers studied the so-called conformable integrals
and derivatives. Based on that notion some authors used modified conformable
derivatives (proportional derivatives) to generate nonlocal fractional integrals and
derivatives, called fractional proportional integrals and derivatives, which contain
exponential functions in their kernels. Our aim in this paper is to establish some new
integral inequalities by utilizing the fractional proportional-integral operators. In fact,
certain new classes of integral inequalities for a class of n (n ∈ N) positive continuous
and decreasing functions on [a,b] are presented. The inequalities presented in this
paper are more general than the existing classical inequalities.
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1 Introduction
Fractional calculus is the generalization of derivatives and integrals of arbitrary non-
integer order. This field has earned more recognition due to its applications in diverse
domains [11, 18, 25]. Recent research has focused on developing a number of fractional
integral operators and their applications in multiple disciplines of sciences. In [17], the
authors introduced the idea of fractional conformable derivative operators with a short-
coming that the new derivative operator does not tend to the original function when the
order ρ → 0. In [3] the authors studied certain various properties of the fractional con-
formable derivative operator and raised the problem of how to use conformable derivative
operators to generate more general types of fractional derivative operators. Later on, in
[8], Anderson and Ulness improved the idea of the fractional conformable derivative by
introducing the idea of local derivatives. In [4, 5, 7, 9, 19], some researchers defined new
fractional derivative operators by using exponential and Mittag-Leffler functions in the
kernels. In [16], Jarad et al. introduced the left and right generalized proportional-integral
operators which are respectively defined by

(
aI

β ,μf
)
(x) =

1
μβΓ (β)

∫ x

a
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1f (t) dt, x > a, (1.1)
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and

(
I

β ,μ
b f

)
(x) =

1
μβΓ (β)

∫ b

x
exp

[
μ – 1

μ
(t – x)

]
(t – x)β–1f (t) dt, x < b, (1.2)

where μ ∈ (0, 1] and β ∈C and �(β) > 0 and Γ is the well-known gamma function.

Remark If we consider μ = 1 in (1.1) and (1.2), then we get the left and right Riemann–
Liouville which are respectively defined as

(
aI

β f
)
(x) =

1
Γ (β)

∫ x

a
(x – t)β–1f (t) dt, x > a, (1.3)

and

(
I

β

b f
)
(x) =

1
Γ (β)

∫ b

x
(t – x)β–1f (t) dt, x < b, (1.4)

where β ∈C and �(β) > 0.

Such type of generalizations promotes future research to establish more new ideas to
unify the fractional derivative and integral operators and obtain fractional integral in-
equalities via such generalized fractional derivative and integral operators. Integral in-
equalities and their applications play a vital role in the theory of differential equations
and applied mathematics. A variety of various types of some classical integral inequalities
and their generalizations have been established by utilizing the classical fractional inte-
gral, fractional derivative operators and their generalizations are found in [12, 13, 22, 23,
28, 31, 32]. A Gronwall inequality and the Minkowski inequalities via generalized propor-
tional fractional derivative and fractional integral are found in the recent work of Alzabut
et al. and Rahman et al. [6, 29]. The Minkowski’s inequality for the AB-fractional integral
operator is found in [15].

In [30], Sarikaya and Budak studied the (k, s)-Riemann–Liouville fractional integral and
applications.

In [24], generalized Hermite–Hadamard type inequalities via fractional integral oper-
ators are found. In [2], Agarwal et al. introduced Hermite–Hadamard type inequalities
by employing the k-fractional integrals operators. In [14], Dahmani introduced certain
classes of fractional integral inequalities by utilizing a family of n positive functions. In
[1], the authors established fractional integral inequalities for a class of family of n (n ∈ N)
positive continuous and decreasing functions on [a, b] by employing the (k, s)-fractional
integral operators. Recently the authors [10, 21, 26, 27] introduced various types of in-
equalities by employing the fractional conformable integrals.

2 Main results
In this section, we employ the left generalized proportional fractional integral operator to
establish the generalization of some classical inequalities.

Theorem 2.1 Let g be a positive continuous and decreasing function on the interval [a, b].
Let a < x ≤ b, ϑ > 0, σ ≥ γ > 0. Then, for generalized proportional fractional integral oper-
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ator (1.1), we have

aI
β ,μ[gσ (x)]

aIβ ,μ[gγ (x)]
≥ aI

β ,μ[(x – a)ϑgσ (x)]
aIβ ,μ[(x – a)ϑgγ (x)]

, (2.1)

where μ ∈ (0, 1], β ∈C, and �(β) > 0.

Proof Since g is a positive continuous and decreasing function on the interval [a, b], we
have

(
(ρ – a)ϑ – (t – a)ϑ

)(
gσ–γ (t) – gσ–γ (ρ)

) ≥ 0, (2.2)

where a < x ≤ b, ϑ > 0, σ ≥ γ > 0, and t,ρ ∈ [a, x].
By (2.2), we have

(ρ – a)ϑgσ–γ (t) + (t – a)ϑgσ–γ (ρ) – (ρ – a)ϑgσ–γ (ρ) – (t – a)ϑgσ–γ (t) ≥ 0. (2.3)

Consider a function

F(x, t) =
1

μβΓ (β)
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1

=
1

μβΓ (β)
(x – t)β–1

[
1 +

μ – 1
μ

(x – t) +
( μ–1

μ
(x – t))2

2
+ · · ·

]
. (2.4)

We observe that the function F(x, t) remains positive for all t ∈ (a, x), a < x ≤ b, as
each term of the above function is positive in view of conditions stated in Theorem 2.1.
Therefore, multiplying (2.3) by F(x, t)gγ (t) = 1

μβΓ (β) exp[ μ–1
μ

(x – t)](x – t)β–1gγ (t), t ∈ (a, x),
a < x ≤ b, we have

F(x, t)
[
(ρ – a)ϑgσ–γ (t) + (t – a)ϑgσ–γ (ρ) – (ρ – a)ϑgσ–γ (ρ) – (t – a)ϑgσ–γ (t)

]
gγ (t)

= (ρ – a)ϑ
1

μβΓ (β)
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1gγ (t)(t)gσ–γ (t)

+ (t – a)ϑ
1

μβΓ (β)
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1gγ (t)gσ–γ (ρ)

– (ρ – a)ϑ
1

μβΓ (β)
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1gγ (t)gσ–γ (ρ)

– (t – a)ϑ
1

μβΓ (β)
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1gγ (t)gσ–γ (t) ≥ 0. (2.5)

Integrating (2.5) with respect to t over (a, x), we have

(ρ – a)ϑ
1

μβΓ (β)

∫ x

a
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1gσ (t) dt

+ gσ–γ (ρ)
1

μβΓ (β)

∫ x

a
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1(t – a)ϑgγ (t) dt

– (ρ – a)ϑgσ–γ (ρ)
1

μβΓ (β)

∫ x

a
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1gγ (t) dt

–
1

μβΓ (β)

∫ x

a
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1(t – a)ϑgσ (t) dt ≥ 0. (2.6)
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It follows that

(ρ – a)ϑ aI
β ,μ[

gσ (x)
]

+ gσ–γ (ρ)aI
β ,μ[

(x – a)ϑgγ (x)
]

– (ρ – a)ϑgσ–γ (ρ)aI
β ,μ[

gγ (x)
]

– aI
β ,μ[

(x – a)ϑgσ (x)
]
. (2.7)

Multiplying (2.7) by F(x,ρ)gγ (ρ) = 1
μβΓ (β) exp[ μ–1

μ
(x –ρ)](x –ρ)β–1gγ (ρ), ρ ∈ (a, x), a < x ≤

b, and integrating the resultant identity with respect to ρ over (a, x), we get

aI
β ,μ[

gσ (x)
]

aI
β ,μ[

(x – a)ϑgγ (x)
]

– aI
β ,μ[

(x – a)ϑgσ (x)
]

aI
β ,μ[

gγ (x)
] ≥ 0.

It follows that

aI
β ,μ[

gσ (x)
]

aI
β ,μ[

(x – a)ϑgγ (x)
] ≥ aI

β ,μ[
(x – a)ϑgσ (x)

]
aI

β ,μ[
gγ (x)

]
.

Dividing the above equation by aI
β ,μ[(x – a)ϑgγ (x)]aI

β ,μ[gγ (x)], we get the desired in-
equality (2.1). �

Remark The inequality in Theorem 2.1 will reverse if g is an increasing function on the
interval [a, b].

Theorem 2.2 Let g be a positive continuous and decreasing function on the interval [a, b].
Let a < x ≤ b, ϑ > 0, σ ≥ γ > 0. Then, for generalized proportional fractional integral (1.1),
we have

aI
β ,μ[gσ (x)]aI

λ,μ[(x – a)ϑgγ (x)] + aI
λ,μ[gσ (x)]aI

β ,μ[(x – a)ϑgγ (x)]
aIβ ,μ[(x – a)ϑgσ (x)]aIλ,μ[gγ (x)] + aIλ,μ[(x – a)ϑgσ (x)]aIβ ,μ[gγ (x)]

≥ 1, (2.8)

where μ ∈ (0, 1], β ,λ ∈C, �(β) > 0, and �(λ) > 0.

Proof By multiplying both sides of (2.7) by F(x,ρ)gγ (ρ) = 1
μλΓ (λ) exp[ μ–1

μ
(x – ρ)](x –

ρ)λ–1gγ (ρ), ρ ∈ (a, x), a < x ≤ b, and integrating the resultant identity with respect to ρ

over (a, x), we have

aI
β ,μ[

gσ (x)
]

aI
λ,μ[

(x – a)ϑgγ (x)
]

+ aI
λ,μ[

gσ (x)
]

aI
β ,μ[

(x – a)ϑgγ (x)
]

– aI
β ,μ[

(x – a)ϑgσ (x)
]

aI
λ,μ[

gγ (x)
]

– aI
λ,μ[

(x – a)ϑgσ (x)
]

aI
β ,μ[

gγ (x)
] ≥ 0. (2.9)

Hence, dividing (2.9) by

aI
β ,μ[

(x – a)ϑgσ (x)
]

aI
λ,μ[

gγ (x)
]

+ aI
λ,μ[

(x – a)ϑgσ (x)
]

aI
β ,μ[

gγ (x)
]

completes the desired proof. �

Remark Applying Theorem 2.2 for β = λ, we get Theorem 2.1.

Theorem 2.3 Let g and h be positive continuous functions on the interval [a, b] such that
h is increasing and g is decreasing function on the interval [a, b]. Let a < x ≤ b, ϑ > 0, σ ≥
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γ > 0. Then, for generalized proportional fractional integral (1.1), we have

aI
β ,μ[gσ (x)]aI

β ,μ[hϑ (x)gγ (x)]
aIβ ,μ[hϑ (x)gσ (x)]aIβ ,μ[gγ (x)]

≥ 1, (2.10)

where μ ∈ (0, 1], β ∈C, and �(β) > 0.

Proof Under the conditions stated in Theorem 2.3, we can write

(
hϑ (ρ) – hϑ (t)

)(
gσ–γ (t) – gσ–γ (ρ)

) ≥ 0, (2.11)

where a < x ≤ b, ϑ > 0, σ ≥ γ > 0, and t,ρ ∈ [a, x].
From (2.11), we have

hϑ (ρ)gσ–γ (t) + hϑ (t)gσ–γ (ρ) – hϑ (ρ)gσ–γ (ρ) – hϑ (t)gσ–γ (t) ≥ 0. (2.12)

Multiplying both sides of (2.12) by F(x, t)gγ (t) = 1
μβΓ (β) exp[ μ–1

μ
(x – t)](x – t)β–1gγ (t), t ∈

(a, x), a < x ≤ b, where F(x, t) is defined by (2.4), we have

F(x, t)gγ (t)
[
hϑ (ρ)gσ–γ (t) + hϑ (t)gσ–γ (ρ) – hϑ (ρ)gσ–γ (ρ) – hϑ (t)gσ–γ (t)

]

= hϑ (ρ)
1

μβΓ (β)
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1gσ (t)

+ hϑ (t)
1

μβΓ (β)
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1gσ–γ (ρ)gσ (t)

– hϑ (ρ)
1

μβΓ (β)
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1gσ–γ (ρ)gσ (t)

– hϑ (t)ϑ
1

μβΓ (β)
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1gσ (t) ≥ 0. (2.13)

Integrating (2.13) with respect to t over (a, x), we have

hϑ (ρ)
1

μβΓ (β)

∫ x

a
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1gσ (t) dt

+ gσ–γp
p (ρ)

1
μβΓ (β)

∫ x

a
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1hϑ (t)gγ (t) dt

– hϑ (ρ)gσ–γ (ρ)
1

μβΓ (β)

∫ x

a
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1gγ (t) dt

–
1

μβΓ (β)

∫ x

a
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1hϑ (t)gσ (t) dt ≥ 0. (2.14)

From (2.14), it can be written as

hϑ (ρ)aI
β ,μ[

gσ (x)
]

+ gσ–γ (ρ)aI
β ,μ[

hϑ (x)gγ (x)
]

– hϑ (ρ)gσ–γ (ρ)aI
β ,μ[

gγ (x)
]

– aI
β ,μ[

hϑ (x)gγ (x)
] ≥ 0. (2.15)
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Again, multiplying (2.15) byF(x,ρ)gγ (ρ) = 1
μβΓ (β) exp[ μ–1

μ
(x–ρ)](x–ρ)β–1gγ (ρ), ρ ∈ (a, x),

a < x ≤ b, where F(x,ρ) is defined by (2.4), and integrating the resultant identity with
respect to ρ over (a, x), we get

aI
β ,μ[

gσ (x)
]

aI
β ,μ[

hϑ (x)gγ (x)
]

– aI
β ,μ[

hϑ (x)gσ (x)
]

aI
β ,μ[

gγ (x)
] ≥ 0,

which completes the desired inequality (2.10) of Theorem 2.3. �

Theorem 2.4 Let g and h be positive continuous functions on the interval [a, b] such that
h is increasing and g is decreasing function on the interval [a, b]. Let a < x ≤ b, ϑ > 0, σ ≥
γ > 0. Then, for generalized proportional fractional integral (1.1), we have

aI
β ,μ[gσ (x)]aI

λ,μ[hϑ (x)gγ (x)] + aI
λ,μ[gσ (x)]aI

β ,μ[hϑ (x)gγ (x)]
aIβ ,μ[hϑ (x)gσ (x)]aIλ,μ[gγ (x)] + aIλ,μ[hϑ (x)gσ (x)]aIβ ,μ[gγ (x)]

≥ 1, (2.16)

where μ ∈ (0, 1], β ,λ ∈C, �(β) > 0, and �(λ) > 0.

Proof Multiplying (2.15) by F(x,ρ)gγ (ρ) = 1
μλΓ (λ) exp[ μ–1

μ
(x –ρ)](x –ρ)λ–1gγ (ρ), ρ ∈ (a, x),

a < x ≤ b, where F(x,ρ) is defined by (2.4), and integrating the resultant identity with
respect to ρ over (a, x), we get

aI
β ,μ[

gσ (x)
]

aI
λ,μ[

hϑ (x)gγ (x)
]

+ aI
λ,μ[

gσ (x)
]

aI
β ,μ[

hϑ (x)gγ (x)
]

– aI
β ,μ[

hϑ (x)gσ (x)
]

aI
λ,μ[

gγ (x)
]

– aI
λ,μ[

hϑ (x)gσ (x)
]

aI
β ,μ[

gγ (x)
] ≥ 0.

It follows that

aI
β ,μ[

gσ (x)
]

aI
λ,μ[

hϑ (x)gγ (x)
]

+ aI
λ,μ[

gσ (x)
]

aI
β ,μ[

hϑ (x)gγ (x)
]

≥ aI
β ,μ[

hϑ (x)gσ (x)
]

aI
λ,μ[

gγ (x)
]

+ aI
λ,μ[

hϑ (x)gσ (x)
]

aI
β ,μ[

gγ (x)
]
.

Dividing both sides by

aI
β ,μ[

hϑ (x)gσ (x)
]

aI
λ,μ[

gγ (x)
]

+ aI
λ,μ[

hϑ (x)gσ (x)
]

aI
β ,μ[

gγ (x)
]

gives the desired inequality (2.32). �

Remark Applying Theorem 2.4 for β = λ, we get Theorem 2.3.

Now, we use the left generalized proportional fractional integral operator to establish
some inequalities for a class of n-decreasing positive functions.

Theorem 2.5 Let (gj)j=1,2,3,...,n be n positive continuous and decreasing functions on the
interval [a, b]. Let a < x ≤ b, ϑ > 0, σ ≥ γp > 0 for any fixed p ∈ {1, 2, 3, . . . , n}. Then, for
generalized proportional fractional integral operator (1.1), we have

aI
β ,μ[

∏n
j �=p gγj

j gσ
p (x)]

aIβ ,μ[
∏n

j=1 gγj
j (x)]

≥ aI
β ,μ[(x – a)ϑ

∏n
j �=p gγj

j gσ
p (x)]

aIβ ,μ[(x – a)ϑ
∏n

j=1 gγj
j (x)]

, (2.17)

where μ ∈ (0, 1], β ∈C, and �(β) > 0.
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Proof Since (gj)j=1,2,3,...,n are n positive continuous and decreasing functions on the interval
[a, b], we have

(
(ρ – a)ϑ – (t – a)ϑ

)(
gσ–γp

p (t) – gσ–γp
p (ρ)

) ≥ 0 (2.18)

for any fixed p ∈ {1, 2, 3, . . . , n}, a < x ≤ b, ϑ > 0, σ ≥ γp > 0, and t,ρ ∈ [a, x]. By (2.18), we
have

(ρ – a)ϑgσ–γp
p (t) + (t – a)ϑgσ–γp

p (ρ) ≥ (ρ – a)ϑgσ–γp
p (ρ) + (t – a)ϑgσ–γp

p (t). (2.19)

Multiplying both sides of (2.19) by F(x, t)
∏n

j=1 gγj
j (t) = 1

μβΓ (β) exp[ μ–1
μ

(x – t)](x – t)β–1 ×
∏n

j=1 gγj
j (t), t ∈ (a, x), a < x ≤ b, where F(x, t) is defined by (2.4), we have

F(x, t)
[
(ρ – a)ϑgσ–γ (t) + (t – a)ϑgσ–γ (ρ) – (ρ – a)ϑgσ–γ (ρ) – (t – a)ϑgσ–γ (t)

] n∏

j=1

gγj
j (t)

= (ρ – a)ϑ
1

μβΓ (β)
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1

n∏

j=1

gγj
j (t)gσ–γp

p (t)

+ (t – a)ϑ
1

μβΓ (β)
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1

n∏

j=1

gγj
j (t)gσ–γp

p (ρ)

≥ (ρ – a)ϑ
1

μβΓ (β)
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1

n∏

j=1

gγj
j (t)gσ–γp

p (ρ)

+ (t – a)ϑ
1

μβΓ (β)
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1

n∏

j=1

gγj
j (t)gσ–γp

p (t). (2.20)

Integrating (2.20) with respect to t over (a, x), we have

(ρ – a)ϑ
1

μβΓ (β)

∫ x

a
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1

n∏

j=1

gγj
j (t)gσ–γp

p (t) dt

+ gσ–γp
p (ρ)

1
μβΓ (β)

∫ x

a
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1(t – a)ϑ

n∏

j=1

gγj
j (t) dt

≥ (ρ – a)ϑgσ–γp
p (ρ)

1
μβΓ (β)

∫ x

a
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1

n∏

j=1

gγj
j (t) dt

+
1

μβΓ (β)

∫ x

a
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1(t – a)ϑ

n∏

j=1

gγj
j (t)gσ–γp

p (t) dt. (2.21)

From (2.21), it follows that

(ρ – a)ϑ aI
β ,μ

[ n∏

j �=p

gγj
j gσ

p (x)

]

+ gσ–γp
p (ρ)aI

β ,μ

[

(x – a)ϑ
n∏

j=1

gγj
j (x)

]

≥ (ρ – a)ϑgσ–γp
p (ρ)aI

β ,μ

[ n∏

j=1

gγj
j (x)

]

– aI
β ,μ

[

(x – a)ϑ
n∏

j �=p

gγj
j gσ

p (x)

]

. (2.22)



Rahman et al. Journal of Inequalities and Applications        (2019) 2019:244 Page 8 of 13

Again, multiplying both sides of (2.22) by F(x,ρ)
∏n

j=1 gγj
j (ρ) = 1

μβΓ (β) exp[ μ–1
μ

(x – ρ)](x –
ρ)β–1 ∏n

j=1 gγj
j (ρ), ρ ∈ (a, x), a < x ≤ b, where F(x,ρ) is defined by (2.4), and integrating the

resultant identity with respect to ρ over (a, x), we get

aI
β ,μ

[ n∏

j �=p

gγj
j gσ

p (x)

]

aI
β ,μ

[

(x – a)ϑ
n∏

j=1

gγj
j (x)

]

≥ aI
β ,μ

[

(x – a)ϑ
n∏

j �=p

gγj
j gσ

p (x)

]

aI
β ,μ

[ n∏

j=1

gγj
j (x)

]

,

which completes the desired inequality (2.17). �

Remark The inequality in Theorem 2.5 will reverse if (gj)j=1,2,3,...,n are increasing functions
on the interval [a, b].

Theorem 2.6 Let (gj)j=1,2,3,...,n be n positive continuous and decreasing functions on the
interval [a, b]. Let a < x ≤ b, ϑ > 0, σ ≥ γp > 0 for any fixed p ∈ {1, 2, 3, . . . , n}. Then, for
generalized proportional fractional integral (1.1), we have

(

aI
β ,μ

[ n∏

j �=p

gγj
j gσ

p (x)

]

aI
λ,μ

[

(x – a)ϑ
n∏

j=1

gγj
j (x)

]

+ aI
λ,μ

[ n∏

j �=p

gγj
j gσ

p (x)

]

aI
β ,μ

[

(x – a)ϑ
n∏

j=1

gγj
j (x)

])

/

(

aI
β ,μ

[

(x – a)ϑ
n∏

j �=p

gγj
j gσ

p (x)

]

aI
λ,μ

[ n∏

j=1

gγj
j (x)

]

+ aI
λ,μ

[

(x – a)ϑ
n∏

j �=p

gγj
j gσ

p (x)

]

aI
β ,μ

[ n∏

j=1

gγj
j (x)

])

≥ 1, (2.23)

where μ ∈ (0, 1], β ,λ ∈C, �(β) > 0, and �(λ) > 0.

Proof Multiplying both sides of (2.22) by F(x,ρ)
∏n

j=1 gγj
j (ρ) = 1

μλΓ (λ) exp[ μ–1
μ

(x – ρ)](x –
ρ)λ–1 ∏n

j=1 gγj
j (ρ), ρ ∈ (a, x), a < x ≤ b, where F(x,ρ) is defined by (2.4), and integrating the

resultant identity with respect to ρ over (a, x), we get

aI
β ,μ

[ n∏

j �=p

gγj
j gσ

p (x)

]

aI
λ,μ

[

(x – a)ϑ
n∏

j=1

gγj
j (x)

]

+ aI
λ,μ

[ n∏

j �=p

gγj
j gσ

p (x)

]

aI
β ,μ

[

(x – a)ϑ
n∏

j=1

gγj
j (x)

]

≥ aI
β ,μ

[

(x – a)ϑ
n∏

j �=p

gγj
j gσ

p (x)

]

aI
λ,μ

[ n∏

j=1

gγj
j (x)

]

+ aI
λ,μ

[

(x – a)ϑ
n∏

j �=p

gγj
j gσ

p (x)

]

aI
β ,μ

[ n∏

j=1

gγj
j (x)

]

. (2.24)
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It follows that

aI
β ,μ

[ n∏

j �=p

gγj
j gσ

p (x)

]

aI
λ,μ

[

(x – a)ϑ
n∏

j=1

gγj
j (x)

]

+ aI
λ,μ

[ n∏

j �=p

gγj
j gσ

p (x)

]

aI
β ,μ

[

(x – a)ϑ
n∏

j=1

gγj
j (x)

]

≥ aI
β ,μ

[

(x – a)ϑ
n∏

j �=p

gγj
j gσ

p (x)

]

aI
λ,μ

[ n∏

j=1

gγj
j (x)

]

+ aI
λ,μ

[

(x – a)ϑ
n∏

j �=p

gγj
j gσ

p (x)

]

aI
β ,μ

[ n∏

j=1

gγj
j (x)

]

. (2.25)

Hence, dividing (2.25) by

aI
β ,μ

[

(x – a)ϑ
n∏

j �=p

gγj
j gσ

p (x)

]

aI
λ,μ

[ n∏

j=1

gγj
j (x)

]

+ aI
λ,μ

[

(x – a)ϑ
n∏

j �=p

gγj
j gσ

p (x)

]

aI
β ,μ

[ n∏

j=1

gγj
j (x)

]

completes the desired proof. �

Remark Applying Theorem 2.6 for β = λ, we get Theorem 2.5.

Theorem 2.7 Let (gj)j=1,2,3,...,n and h be positive continuous functions on the interval [a, b]
such that h is increasing and (gj)j=1,2,3,...,n are decreasing functions on the interval [a, b]. Let
a < x ≤ b, ϑ > 0, σ ≥ γp > 0 for any fixed p ∈ {1, 2, 3, . . . , n}. Then, for generalized propor-
tional fractional integral (1.1), we have

aI
β ,μ[

∏n
j �=p gγj

j gσ
p (x)]aI

β ,μ[hϑ (x)
∏n

j=1 gγj
j (x)]

aIβ ,μ[hϑ (x)
∏n

j �=p gγj
j gσ

p (x)]aIβ ,μ[
∏n

j=1 gγj
j (x)]

≥ 1, (2.26)

where μ ∈ (0, 1], β ∈C, and �(β) > 0.

Proof Under the conditions stated in Theorem 2.7, we can write

(
hϑ (ρ) – hϑ (t)

)(
gσ–γp

p (t) – gσ–γp
p (ρ)

) ≥ 0 (2.27)

for any fixed p ∈ {1, 2, 3, . . . , n}, a < x ≤ b, ϑ > 0, σ ≥ γp > 0, and t,ρ ∈ [a, x].
From (2.27), we have

hϑ (ρ)gσ–γp
p (t) + hϑ (t)gσ–γp

p (ρ) – hϑ (ρ)gσ–γp
p (ρ) – hϑ (t)gσ–γp

p (t) ≥ 0. (2.28)
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Multiplying (2.28) by F(x, t)
∏n

j=1 gγj
j (t) = 1

μβΓ (β) exp[ μ–1
μ

(x – t)](x – t)β–1 ∏n
j=1 gγj

j (t), t ∈
(a, x), a < x ≤ b, where F(x, t) is defined by (2.4), we have

hϑ (ρ)
1

μβΓ (β)
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1

n∏

j=1

gγj
j (t)gσ–γp

p (t)

+ hϑ (t)
1

μβΓ (β)
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1

n∏

j=1

gγj
j (t)gσ–γp

p (ρ)

– hϑ (ρ)
1

μβΓ (β)
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1

n∏

j=1

gγj
j (t)gσ–γp

p (ρ)

– hϑ (t)ϑ
1

μβΓ (β)
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1

n∏

j=1

gγj
j (t)gσ–γp

p (t) ≥ 0. (2.29)

Integrating (2.29) with respect to t over (a, x), we have

hϑ (ρ)
1

μβΓ (β)

∫ x

a
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1

n∏

j=1

gγj
j (t)gσ–γp

p (t) dt

+ gσ–γp
p (ρ)

1
μβΓ (β)

∫ x

a
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1hϑ (t)ϑ

n∏

j=1

gγj
j (t) dt

– hϑ (ρ)gσ–γp
p (ρ)

1
μβΓ (β)

∫ x

a
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1

n∏

j=1

gγj
j (t) dt

–
1

μβΓ (β)

∫ x

a
exp

[
μ – 1

μ
(x – t)

]
(x – t)β–1hϑ (t)

n∏

j=1

gγj
j (t)gσ–γp

p (t) dt ≥ 0. (2.30)

From (2.30), we can write

hϑ (ρ)aI
β ,μ

[ n∏

j �=p

gγj
j gσ

p (x)

]

+ gσ–γp
p (ρ)aI

β ,μ

[

hϑ (x)
n∏

j=1

gγj
j (x)

]

– hϑ (ρ)gσ–γp
p (ρ)aI

β ,μ

[ n∏

j=1

gγj
j (x)

]

– aI
β ,μ

[

hϑ (x)
n∏

j �=p

gγj
j gσ

p (x)

]

≥ 0. (2.31)

Again, multiplying (2.31) by F(x,ρ)
∏n

j=1 gγj
j (ρ) = 1

μβΓ (β) exp[ μ–1
μ

(x – ρ)](x – ρ)β–1 ×
∏n

j=1 gγj
j (ρ), ρ ∈ (a, x), a < x ≤ b, where F(x,ρ) is defined by (2.4) and integrating the resul-

tant identity with respect to ρ over (a, x), we get

aI
β ,μ

[ n∏

j �=p

gγj
j gσ

p (x)

]

aI
β ,μ

[

hϑ (x)
n∏

j=1

gγj
j (x)

]

– aI
β ,μ

[

hϑ (x)
n∏

j �=p

gγj
j gσ

p (x)

]

aI
β ,μ

[ n∏

j=1

gγj
j (x)

]

≥ 0,

which completes the desired inequality (2.26) of Theorem 2.7. �
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Theorem 2.8 Let (gj)j=1,2,3,...,n and h be positive continuous functions on the interval [a, b]
such that h is increasing and (gj)j=1,2,3,...,n are decreasing functions on the interval [a, b]. Let
a < x ≤ b, ϑ > 0, σ ≥ γp > 0 for any fixed p ∈ {1, 2, 3, . . . , n}. Then, for generalized propor-
tional fractional integral (1.1), we have

(

aI
β ,μ

[ n∏

j �=p

gγj
j gσ

p (x)

]

aI
λ,μ

[

hϑ (x)
n∏

j=1

gγj
j (x)

]

+ aI
λ,μ

[ n∏

j �=p

gγj
j gσ

p (x)

]

aI
β ,μ

[

hϑ (x)
n∏

j=1

gγj
j (x)

])

/
(

aI
β ,μ

[

hϑ (x)
n∏

j �=p

gγj
j gσ

p (x)

]

aI
λ,μ

[ n∏

j=1

gγj
j (x)

]

+ aI
λ,μ

[

hϑ (x)
n∏

j �=p

gγj
j gσ

p (x)

]

aI
β ,μ

[ n∏

j=1

gγj
j (x)

])

≥ 1, (2.32)

where μ ∈ (0, 1], β ,λ ∈C, �(β) > 0, and �(λ) > 0.

Proof Multiplying (2.31) by F(x,ρ)
∏n

j=1 gγj
j (ρ) = 1

μλΓ (λ) exp[ μ–1
μ

(x – ρ)](x – ρ)λ–1 ×
∏n

j=1 gγj
j (ρ), ρ ∈ (a, x), a < x ≤ b, where F(x,ρ) is defined by (2.4), and integrating the re-

sultant identity with respect to ρ over (a, x), we get

aI
β ,μ

[ n∏

j �=p

gγj
j gσ

p (x)

]

aI
λ,μ

[

hϑ (x)
n∏

j=1

gγj
j (x)

]

+ aI
λ,μ

[ n∏

j �=p

gγj
j gσ

p (x)

]

aI
β ,μ

[

hϑ (x)
n∏

j=1

gγj
j (x)

]

– aI
β ,μ

[

hϑ (x)
n∏

j �=p

gγj
j gσ

p (x)

]

aI
λ,μ

[ n∏

j=1

gγj
j (x)

]

– aI
λ,μ

[

hϑ (x)
n∏

j �=p

gγj
j gσ

p (x)

]

aI
β ,μ

[ n∏

j=1

gγj
j (x)

]

≥ 0.

It follows that

aI
β ,μ

[ n∏

j �=p

gγj
j gσ

p (x)

]

aI
λ,μ

[

hϑ (x)
n∏

j=1

gγj
j (x)

]

+ aI
λ,μ

[ n∏

j �=p

gγj
j gσ

p (x)

]

aI
β ,μ

[

hϑ (x)
n∏

j=1

gγj
j (x)

]

≥ aI
β ,μ

[

hϑ (x)
n∏

j �=p

gγj
j gσ

p (x)

]

aI
λ,μ

[ n∏

j=1

gγj
j (x)

]

+ aI
λ,μ

[

hϑ (x)
n∏

j �=p

gγj
j gσ

p (x)

]

aI
β ,μ

[ n∏

j=1

gγj
j (x)

]

.
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Dividing both sides by

aI
β ,μ

[

hϑ (x)
n∏

j �=p

gγj
j gσ

p (x)

]

aI
λ,μ

[ n∏

j=1

gγj
j (x)

]

+ aI
λ,μ

[

hϑ (x)
n∏

j �=p

gγj
j gσ

p (x)

]

aI
β ,μ

[ n∏

j=1

gγj
j (x)

]

gives the desired inequality (2.32). �

Remark Applying Theorem 2.8 for β = λ, we get Theorem 2.7.

Remark Similarly, we can establish the inequalities for the right generalized proportional
fractional integral defined by (1.4).

3 Concluding remarks
In this present paper, we established certain inequalities by employing the left generalized
proportional fractional integral operator. Also, some inequalities for a class of n positive
continuous and decreasing functions on the interval [a, b] are presented. In [20], Liu et al.
introduced interesting integral inequalities for continuous functions on [a, b]. Later on,
Dahmani [14] generalized the work of [20] involving the Riemann–Liouville fractional
integral operators. Recently, Jarad et al. [16] introduced Caputo and Riemann–Liouville
generalized proportional fractional derivatives which comprise exponential functions in
their kernels. They proved that the newly defined proportional fractional integrals possess
a semi-group property and they provide an undeviating generalization to the existing Ca-
puto and Riemann–Liouville fractional derivatives and integrals. Therefore the inequal-
ities obtained in this paper are the generalization of integral inequalities involving the
Riemann–Liouville fractional integral operators. If we consider μ = 1, then the inequali-
ties obtained in this paper will reduce to the integral inequalities involving the Riemann–
Liouville fractional integral operators introduced by Dahmani [14]. Some of the special
cases of our main results are found in [20]. The results obtained in this paper give some
contributions towards the theory of integral inequalities and fractional calculus and are
expected to lead to some applications for establishing the uniqueness of solutions in gener-
alized proportional fractional differential equations. Also, as an application, we will try to
find the analytical solutions of some space-time conformable fractional differential equa-
tions using a different method in our future papers.
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