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1 Introduction and preliminaries
Let H(U) denote the space of analytic functions in the unit disk U := {z ∈ C : |z| < 1},
H[a, n] denote the subclass of functions f ∈H(U) of the form

f (z) = a + anzn + an+1zn+1 + · · · , z ∈U,
(
a ∈C, n ∈N := {1, 2, . . .}),

and Hp := H[0, p]. Also, let A(p) be the subclass of functions f ∈H(U) of the form

f (z) = zp +
∞∑

n=1

ap+nzp+n, z ∈U, (p ∈N) (1.1)

and set A := A(1).
For two functions f , g ∈ H(U), we say that the function f is subordinate to g , written

f ≺ g , if there exists a Schwarz function w, analytic in U with w(0) = 0 and |w(z)| < 1 such
that f (z) = g(w(z)) for all z ∈ U. Furthermore, if the function g is univalent in U, then we
have the following equivalence (see [9] and [12]):

f (z) ≺ g(z) ⇔ f (0) = g(0) and f (U) ⊂ g(U).
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Let φ(r, s, t; z) : C4 ×U →C and h be univalent in U. If p is analytic in U and satisfies the
third-order differential subordination

φ
(
p(z), zp′(z), z2p′′(z), z3p′′′(z); z

) ≺ h(z), (1.2)

then p is called a solution of the differential subordination (1.2). The univalent function q
is said to be a dominant of (1.2) if p(z) ≺ q(z) for all p that satisfy (1.2). A dominant q̃ is
called the best dominant if q̃(z) ≺ q(z) for all dominants q of (1.2).

We recall here the following generalized fractional integral and generalized fractional
derivative operators due to Srivastava et al. [22] (see also [16, 17]).

Definition 1.1 ([22, Definition 3]) For λ > 0 and μ, η real numbers, the Srivastava–Saigo–
Owa hypergeometric fractional integral operator Iλ,μ,η

0,z is defined by

Iλ,μ,η
0,z f (z) =

z–λ–μ

Γ (λ)

∫ z

0
(z – ζ )λ–1F

(
μ + λ, –η;λ; 1 –

ζ

z

)
f (ζ ) dζ ,

where f is an analytic function in a simply-connected region of the complex z-plane con-
taining the origin with the order f (z) = O(|z|ε), z → 0, where ε > max{0,μ – η} – 1 and the
multiplicity of (z – ζ )λ–1 is removed by requiring log(z – ζ ) to be real when z – ζ > 0. Also,
Γ is the well-known gamma function, while the function F denotes the Gauss hypergeo-
metric function, that is,

2F1(a, b; c : z) =
∞∑

n=0

(a)n(b)n

(c)nn!
zn, |z| < 1,

and its analytic continuation into | arg(1 – z)| < π and (a)n = Γ (a + n)/Γ (a).

Definition 1.2 Under the hypotheses of Definition 1.1, the Srivastava–Saigo–Owa hy-
pergeometric fractional derivative operator Jλ,μ,η

0,z is defined by

Jλ,μ,η
0,z f (z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d
dz [ zλ–μ

∫ z
0 (z–ζ )–λf (ζ )2F1(μ–λ,1–η;1–λ;1– ζ

z ) dζ

Γ (1–λ) ],

if 0 ≤ λ < 1,
dn

dzn Jλ–n,μ,η
0,z f (z), if n ≤ λ < n + 1, n ∈N,

where the multiplicity of (z – ζ )–λ is removed as in Definition 1.1.

We note that

Iλ,–λ,η
0,z f (z) = D–λ

z f (z), if λ > 0, and Jλ,λ,η
0,z f (z) = Dλ

z f (z), if 0 ≤ λ < 1,

where D–λ
z denotes the fractional integral operator, and Dλ

z denotes the fractional deriva-
tive operator studied by Owa [13].
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In relation to the Srivastava–Saigo–Owa hypergeometric fractional derivative operator,
Goyal and Prajapat [10] (see also [15]) defined the operator

Sλ,μ,η,p
0,z f (z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Γ (p+1–μ)Γ (p+1–λ+η)
Γ (p+1)Γ (p+1–μ+η) zμJλ,μ,η

0,z f (z),

if 0 ≤ λ < η + p + 1, z ∈U,
Γ (p+1–μ)Γ (p+1–λ+η)
Γ (p+1)Γ (p+1–μ+η) zμI–λ,μ,η

0,z f (z),

if – ∞ < λ < 0, z ∈U.

Thus, for a function f ∈A(p) of the form (1.1), we have

Sλ,μ,η,p
0,z f (z) = zp

3F2(1, 1 + p, 1 + p + η – μ; 1 + p – μ, 1 + p + η – λ; z) ∗ f (z)

= zp +
∞∑

n=1

(p + 1)n(p + 1 – μ + η)n

(p + 1 – μ)n(p + 1 – λ + η)n
ap+nzp+n, z ∈U,

(p ∈N,μ,η ∈R,μ < p + 1,∞ < λ < η + p + 1),

where qFs, with q ≤ s + 1 and q, s ∈ N0 := N ∪ {0}, is the well-known generalized hyperge-
ometric function (for more details, see [14] and [20]) and (ν)n is the Pochhammer symbol
defined by

(ν)n =

⎧
⎨

⎩
1, if n = 0,

ν(ν + 1)(ν + 2) · · · (ν + n – 1), if n ∈N.

Let

Gλ
p,η,μ(z) = zp +

∞∑

n=1

(p + 1)n(p + 1 – μ + η)n

(p + 1 – μ)n(p + 1 – λ + η)n
zp+n, z ∈U,

(p ∈N,μ,η ∈R,μ < p + 1, –∞ < λ < η + p + 1),

and define the new function [Gλ
p,η,μ]–1 by means of the Hadamard (or convolution) product

Gλ
p,η,μ(z) ∗ [

Gλ
p,η,μ(z)

]–1 =
zp

(1 – z)δ+p , z ∈U, (δ > –p).

Using the above defined function, Tang et al. [24] (see also Aouf et al. [4, 7] and [8])
defined the operator Hλ,δ

p,η,μ : A(p) →A(p) by

Hλ,δ
p,η,μf (z) =

[
Gλ

p,η,μ(z)
]–1 ∗ f (z).

It is easy to check that, for a function f ∈A(p) of the form (1.1), we have

Hλ,δ
p,η,μf (z) = zp +

∞∑

n=1

(δ + p)n(p + 1 – μ)n(p + 1 – λ + η)n

(1)n(p + 1)n(p + 1 – μ + η)n
ap+nzp+n, z ∈U.
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For k ∈ N0 and ζ > 0, Aouf et al. [6] defined the operator Nm,δ,ζ
p,λ,μ,η : A(p) → A(p) as fol-

lows:

N 0,δ,ζ
p,λ,μ,ηf (z) = Hλ,δ

p,η,μf (z),

N 1,δ,ζ
p,λ,μ,ηf (z) =: N δ,ζ

p,λ,μ,ηf (z) = (1 – ζ )Hλ,δ
p,η,μf (z) + ζ

z
p
[
Hλ,δ

p,η,μf (z)
]′

= zp +
∞∑

n=1

p + ζn
p

(δ + p)n(p + 1 – μ)n(p + 1 – λ + η)n

(1)n(p + 1)n(p + 1 – μ + η)n
ap+nzp+n,

and, in general,

N k,δ,ζ
p,λ,μ,ηf (z) =: N δ,ζ

p,λ,μ,η
(
N k–1,δ,ζ

p,λ,μ,η f (z)
)

= zp +
∞∑

n=1

(
p + ζn

p

)k (δ + p)n(p + 1 – μ)n(p + 1 – λ + η)n

(1)n(p + 1)n(p + 1 – μ + η)n
ap+nzp+n. (1.3)

Remark 1.1 1. We note that the operator Nm,δ,ζ
p,λ,μ,η generalizes many other remarkable pre-

viously studied operators, like:

(i) N 0,δ,ζ
p,λ,μ,ηf (z) =: Hλ,δ

p,η,μf (z) (see [24]);

(ii) N k,1,ζ
p,p,p,0f (z) =: Dk

ζ ,pf (z) (see [3]);

(iii) N k,1,1
p,p,p,0f (z) =: Dk

pf (z) (see [5] and [11]);

(iv) N k,1,ζ
1,1,1,0f (z) =: Dk

ζ f (z) (see [1]);

(v) N k,1,1
1,1,1,0f (z) =: Dkf (z) (see [18]).

2. Also, we remark the following special cases of this operator:

(i) N k,1,ζ
p,λ,μ,ηf (z) =: N k,ζ

p,λ,μ,ηf (z)

= zp +
∞∑

n=1

(
p + ζn

p

)k (p + 1 – μ)n(p + 1 – λ + η)n

(1)n(p + 1 – μ + η)n
ap+nzp+n;

(ii) N k,δ,ζ
p,λ,λ,ηf (z) =: N k,δ,ζ

p,λ f (z) = zp +
∞∑

n=1

(
p + ζn

p

)k (δ + p)n(p + 1 – λ)n

(1)n(p + 1)n
ap+nzp+n;

(iii) N k,1,ζ
p,μ,μ,ηf (z) =: N k,δ,ζ

p,μ f (z) = zp +
∞∑

n=1

(
p + ζn

p

)k (δ + p)n(p + 1 – μ)n

(1)n(p + 1)n
ap+nzp+n.

Moreover, it is easy to verify from (1.3) that

ζ z
(
N k,δ,ζ

p,λ,μ,ηf (z)
)′ = pN k+1,δ,ζ

p,λ,μ,η f (z) – p(1 – ζ )N k,δ,ζ
p,λ,μ,ηf (z) for ζ > 0,

z
(
N k,δ,ζ

p,λ+1,μ,ηf (z)
)′ = (p + η – λ)N k,δ,ζ

p,λ,μ,ηf (z) – (η – λ)N k,δ,ζ
p,λ+1,μ,ηf (z),

(1.4)

and

z
(
N k,δ,ζ

p,λ,μ,ηf (z)
)′ = (δ + p)N k,δ+1,ζ

p,λ,μ,η f (z) – δN k,δ,ζ
p,λ,μ,ηf (z).
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To obtain our results, we need to use the following definitions and theorems.

Definition 1.3 ([2, p. 441]) Let Q be the set of all functions q that are analytic and univa-
lent on U \ E(q), where

E(q) =
{
ξ ∈ ∂U : lim

z→ξ
q(z) = ∞

}
,

and are such that

min
∣
∣q′(ξ )

∣
∣ = ρ > 0 for ξ ∈ ∂U \ E(q).

Further, let the subclass of Q for which q(0) = a be denoted by Q(a) and Q(0) =: Q0.

Definition 1.4 ([2, p. 449]) Let Ω be a subset ofC, q ∈Q and n ≥ 2. The class of admissible
operators Ψn[Ω , q] consists of those functions ψ : C4 × U → C that satisfy the following
admissibility condition

ψ(r, s, t, u; z) /∈ Ω ,

whenever

r = q(w), s = nwq′(w), Re
t
s

+ 1 ≥ n Re

(
wq′′(w)
q′(w)

+ 1
)

,

and

Re
u
s

≥ n2 Re
w2q′′′(w)

q′(w)
, z ∈ U, w ∈ ∂U \ E(q).

Lemma 1.1 ([2, p. 449]) Let Ω be a subset of C, ψ ∈ Ψn[Ω , q] and p ∈H[a, n] with n ≥ 2.
If q ∈Q(a) and satisfies the following conditions

Re
wq′′(w)
q′(w)

≥ 0 and
∣∣
∣∣
zp′(z)
q′(w)

∣∣
∣∣ ≤ n, z ∈U, w ∈ ∂U \ E(q),

then

ψ
(
p(z), zp′(z), z2p′′(z), z3p′′′(z); z

) ∈ Ω , z ∈U,

implies p(z) ≺ q(z).

The aim of the present article is to use the recent works by Tang et al. (see [25, 26])
to systematically investigate the third-order differential subordination general theory to a
suitable classes of admissible functions. We obtained new results for a wide class of oper-
ators defined by convolution products with Srivastava–Saigo–Owa generalized fractional
integral and generalized fractional derivative operators. Our results give interesting new
properties and, together with other papers that appeared in the last years, could empha-
size the perspective of the importance of the third-order subordination theory and the
Srivastava–Saigo–Owa generalized operators.
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We emphasize that in recent years, several authors obtained many interesting results in-
volving different linear and convolution operators associated with second-order differen-
tial subordinations (see [19, 23]) and regarding the third-order differential subordinations
(see [21]) for the above mentioned operator.

2 Main results
Unless otherwise mentioned, we assume throughout this paper that f ∈A(p), ζ > 0, p ≥ 2,
w ∈ ∂U \ E(q), θ ∈ [0, 2π ] and z ∈U.

Definition 2.1 Let Ω be a subset of C and q ∈ Q0. The class of admissible operators
Φp[Ω , q] consists of those functions φ : C4 ×U →C that satisfy the following admissibility
condition:

φ(α,β ,γ , ε; z) /∈ Ω ,

whenever

α = q(w), β = wζq′(w) + (1 – ζ )q(w),

Re

(
p
ζ

γ + (1 – ζ )(1 – ζ + ζ

p )α – (2 – 2ζ + ζ

p )β
β – (1 – ζ )α

+ 1
)

≥ p Re

(
wq′′(w)
q′(w)

+ 1
)

,

and

p2

ζ 2 Re

⎛

⎜⎜
⎜⎜
⎝

ε – 3(1 – ζ + ζ

p )γ – (1 – ζ )(1 – ζ + ζ

p )(1 – ζ + 2ζ

p )α
+ [2(1 – ζ + ζ

p )(2 – 2ζ + ζ

p ) – (1 – ζ )2]β
β – (1 – ζ )α

⎞

⎟⎟
⎟⎟
⎠

≥ p2 Re
w2q′′′(w)

q′(w)
.

Theorem 2.1 Let Ω be a subset of C and φ ∈ Φp[Ω , q]. If q ∈ Q0 satisfies the following
conditions:

Re
wq′′(w)
q′(w)

≥ 0 and
∣∣∣
∣
z(N k,δ,ζ

p,λ,μ,ηf (z))′

q′(w)

∣∣∣
∣ ≤ p, (2.1)

then

{
φ
(
N k,δ,ζ

p,λ,μ,ηf (z),N k+1,δ,ζ
p,λ,μ,η f (z),N k+2,δ,ζ

p,λ,μ,η f (z),N k+3,δ,ζ
p,λ,μ,η f (z); z

)
: z ∈U

} ⊂ Ω (2.2)

implies

N k,δ,ζ
p,λ,μ,ηf (z) ≺ q(z).

Proof Defining the function p by

p(z) = N k,δ,ζ
p,λ,μ,ηf (z), (2.3)
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then p is analytic in U. Differentiating three times (2.3) with respect to z and using (1.4),
we obtain the following relations, respectively:

N k+1,δ,ζ
p,λ,μ,η f (z) =

ζ

p
zp′(z) + (1 – ζ )p(z), (2.4)

N k+2,δ,ζ
p,λ,μ,η f (z) =

ζ 2

p2 z2p′′(z) +
ζ

p

(
2 – 2ζ +

ζ

p

)
zp′(z) + (1 – ζ )2p(z), (2.5)

N k+3,δ,ζ
p,λ,μ,η f (z) =

ζ 3

p3 z3p′′′(z) +
3ζ 2

p2

(
1 – ζ +

ζ

p

)
z2p′′(z),

+
ζ

p

[
(1 – ζ )2 +

(
1 – ζ +

ζ

p

)(
2 – 2ζ +

ζ

p

)]
zp′(z) + (1 – ζ )3p(z). (2.6)

Letting

α(r, s, t, u) = r, β(r, s, t, u) =
ζ

p
s + (1 – ζ )r,

γ (r, s, t, u) =
ζ 2

p2 t +
ζ

p

(
2 – 2ζ +

ζ

p

)
s + (1 – ζ )2r,

ε(r, s, t, u) =
ζ 3

p3 u +
3ζ 2

p2

(
1 – ζ +

ζ

p

)
t

+
ζ

p

[
(1 – ζ )2 +

(
1 – ζ +

ζ

p

)(
2 – 2ζ +

ζ

p

)]
s + (1 – ζ )3r,

we will define the transformation ψ : C4 ×U →C by

ψ(r, s, t, u; z) = φ(α,β ,γ , ε; z). (2.7)

Then, using relations (2.3), (2.4), (2.5) and (2.6), we have

ψ
(
p(z), zp′(z), z2p′′(z), z3p′′′(z); z

)

= φ
(
N k,δ,ζ

p,λ,μ,ηf (z),N k+1,δ,ζ
p,λ,μ,η f (z),N k+2,δ,ζ

p,λ,μ,η f (z),N k+3,δ,ζ
p,λ,μ,η f (z); z

)
. (2.8)

Since

t
s

+ 1 =
p
ζ

γ + (1 – ζ )(1 – ζ + ζ

p )α – (2 – 2ζ + ζ

p )β
β – (1 – ζ )α

+ 1,

and

u
s

=
p2

ζ 2

⎛

⎜
⎜⎜
⎜
⎝

ε – 3(1 – ζ + ζ

p )γ – (1 – ζ )(1 – ζ + ζ

p )(1 – ζ + 2ζ

p )α
+ [2(1 – ζ + ζ

p )(2 – 2ζ + ζ

p ) – (1 – ζ )2]β
β – (1 – ζ )α

⎞

⎟
⎟⎟
⎟
⎠

,

the admissibility condition for φ ∈ Φp[Ω , q] of Definition 2.1 is equivalent to the admissi-
bility condition for ψ as given in Definition 1.4. Thus, the proof follows from Lemma 1.1
by setting a = 0, n = p and ap = 1. �
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The next result is an extension of Theorem 2.1 for the case when the behavior of q on
∂U is unknown.

Corollary 2.1 Let Ω be a subset of C and q be univalent in U with q ∈ Q0. Let φ ∈
Φp[Ω , qρ] for some ρ ∈ (0, 1), where qρ(z) = q(ρz). If qρ satisfies the following conditions:

Re
wq′′

ρ(w)
q′

ρ(w)
≥ 0 and

∣
∣∣∣
z(N k,δ,ζ

p,λ,μ,ηf (z))′

q′
ρ(w)

∣
∣∣∣ ≤ p, w ∈ ∂U \ E(qρ), (2.9)

then

{
φ
(
N k,δ,ζ

p,λ,μ,ηf (z),N k+1,δ,ζ
p,λ,μ,η f (z),N k+2,δ,ζ

p,λ,μ,η f (z),N k+3,δ,ζ
p,λ,μ,η f (z); z

)
: z ∈U

} ⊂ Ω

implies

N k,δ,ζ
p,λ,μ,ηf (z) ≺ q(z).

Proof From Theorem 2.1 we obtain N k,δ,ζ
p,λ,μ,ηf (z) ≺ qρ(z) and since qρ(z) ≺ q(z), we con-

clude that N k,δ,ζ
p,λ,μ,ηf (z) ≺ q(z). �

If Ω 
= C is a simply connected domain, then Ω = h(U) for some conformal mapping h
of U onto Ω . In this case, the class Φp[h(U), q] will be written as Φp[h, q]. The following
two results are direct consequences of Theorem 2.1 and Corollary 2.1.

Corollary 2.2 Let φ ∈ Φp[h, q], where h is univalent in U and suppose that q ∈Q0 satisfies
conditions (2.1). Then

φ
(
N k,δ,ζ

p,λ,μ,ηf (z),N k+1,δ,ζ
p,λ,μ,η f (z),N k+2,δ,ζ

p,λ,μ,η f (z),N k+3,δ,ζ
p,λ,μ,η f (z); z

) ≺ h(z) (2.10)

implies

N k,δ,ζ
p,λ,μ,ηf (z) ≺ q(z).

Corollary 2.3 Let q be univalent in U with q ∈ Q0 and φ ∈ Φp[h, qρ] for some ρ ∈ (0, 1),
where qρ(z) = q(ρz). If qρ satisfies conditions (2.9), then the subordination (2.10) implies
that

N k,δ,ζ
p,λ,μ,ηf (z) ≺ q(z).

We next show the relation between the best dominant of a differential subordination
and the solution of a corresponding differential equation.

Corollary 2.4 Let h be univalent in U and ψ be given by (2.8) where φ ∈ Φp[h, q]. Suppose
that the differential equation

ψ
(
q(z), zq′(z), z2q′′(z), z3q′′′(z); z

)
= h(z)
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has a solution q with q ∈ Q0 that satisfies conditions (2.1). Then subordination (2.10) im-
plies that

N k,δ,ζ
p,λ,μ,ηf (z) ≺ q(z),

and q is the best dominant of (2.10).

Proof Since

φ
(
N k,δ,ζ

p,λ,μ,ηf (z),N k+1,δ,ζ
p,λ,μ,η f (z),N k+2,δ,ζ

p,λ,μ,η f (z),N k+3,δ,ζ
p,λ,μ,η f (z); z

)

= ψ
(
p(z), zp′(z), z2p′′(z), z3p′′′(z); z

) ≺ h(z), (2.11)

then p is a solution of (2.11), and from Corollary 2.2 we obtain that p(z) ≺ q(z), that is, q
is a dominant of (2.11). Also,

φ
(
N k,δ,ζ

p,λ,μ,ηf (z),N k+1,δ,ζ
p,λ,μ,η f (z),N k+2,δ,ζ

p,λ,μ,η f (z),N k+3,δ,ζ
p,λ,μ,η f (z); z

)

= ψ
(
p(z), zp′(z), z2p′′(z), z3p′′′(z); z

) ≺ h(z) = ψ
(
q(z), zq′(z), z2q′′(z), z3q′′′(z); z

)
,

which means that q is the best dominant of (2.11). �

3 Special Cases
We specialize the class of admissible functions and corresponding theorems for the case
when q(U) is the disk UM := {w ∈C : |w| < M}. First, we remark that the function

q(z) = Mz, M > 0, z ∈U, (3.1)

is univalent in U and satisfies q(U) = UM , q ∈Q0 and E(q) = ∅.

Definition 3.1 Let Ω be a subset of C and q be given by (3.1). The class of admissible
operators Φp[Ω , M] consists of those functions φ : C4 ×U → C that satisfy the following
admissibility condition:

φ(α1,β1, L, N ; z) /∈ Ω , (3.2)

whenever

α1 = β1 = Meiθ , M > 0,

Re

(
p
ζ 2

[L + (1 – ζ )(1 – ζ + ζ

p )α2 – (2 – 2ζ + ζ

p )β2]
α1

+ 1
)

≥ p,

and

p2

ζ 2 Re

(
N – 3(1 – ζ + ζ

p )L – (1 – ζ )(1 – ζ + ζ

p )(1 – ζ + 2ζ

p )α2

+ [2(1 – ζ + ζ

p )(2 – 2ζ + ζ

p ) – (1 – ζ )2]β2

)

≥ 0,

where Re(Le–iθ ) ≥ p(p – 1)M and Re(Ne–iθ ) ≥ 0 for all θ ∈ [0, 2π ] and p ≥ 2.
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Using this definition of the class of admissible functions, from Theorem 2.1 we obtain
the following result.

Corollary 3.1 Let Ω be a subset of C and φ ∈ Φp[Ω , M]. If we suppose that

∣∣z
(
N k,δ,ζ

p,λ,μ,ηf (z)
)′∣∣ ≤ pM, z ∈ U, (3.3)

and the function q is given by (3.1), then

φ
(
N k,δ,ζ

p,λ,μ,ηf (z),N k+1,δ,ζ
p,λ,μ,η f (z),N k+2,δ,ζ

p,λ,μ,η f (z),N k+3,δ,ζ
p,λ,μ,η f (z); z

) ∈ Ω , z ∈U,

implies

N k,δ,ζ
p,λ,μ,ηf (z) ≺ Mz.

For the special case when Ω = q(U) = {w ∈ C : |w| < M}, Corollary 3.1 reduces to the
following corollary.

Corollary 3.2 Let φ ∈ Φp[q(U), M] and suppose that the function q given by (3.1) satisfies
condition (3.3). Then

∣∣φ
(
N k,δ,ζ

p,λ,μ,ηf (z),N k+1,δ,ζ
p,λ,μ,η f (z),N k+2,δ,ζ

p,λ,μ,η f (z),N k+3,δ,ζ
p,λ,μ,η f (z); z

)∣∣ < M, z ∈U,

implies

N k,δ,ζ
p,λ,μ,ηf (z) ≺ Mz.

Let φ(α1,β1,γ1, ε1; z) = α1 + β1 and Ω = h(U), where h(z) = 2Mz. We will show that φ ∈
Φp[h(U), M] by proving that condition (3.2) is satisfied. Thus,

∣∣φ(α1,β1, L, N ; z)
∣∣ =

∣∣Meiθ + Meiθ ∣∣ = 2M,

where Re(Le–iθ ) ≥ p(p – 1)M, Re(Ne–iθ ) ≥ 0 for all θ ∈ [0, 2π ] and p ≥ 2.
Suppose that A and B are two complex-valued functions defined on U that satisfy

Re A(z) > 0, Re B(z) > 0 for all z ∈ U. Let φ(α1,β1,γ1, ε1; z) = 1 + A(z)α1 + B(z)β1 and
Ω = h(U), where h(z) = z. We will show that φ ∈ Φp[h(U), M] by proving that condition
(3.2) is satisfied. Since

∣∣φ(α1,β1, L, N ; z)
∣∣ =

∣∣1 + A(z)Meiθ + B(z)Meiθ ∣∣ ≥ 1 + M Re
[
A(z) + B(z)

]
> 1, z ∈U

where Re(Le–iθ ) ≥ p(p – 1)M, Re(Ne–iθ ) ≥ 0 for all θ ∈ [0, 2π ] and p ≥ 2.
Let A : U → (1, +∞), B : U → (0, +∞), φ(α1,β1,γ1, ε1; z) = α1 + β1 + A(z)γ1 + B(z)ε1 and

Ω = h(U), where h(z) = 4Mz. We will show that φ ∈ Φp[h(U), M] by proving that condition
(3.2) is satisfied. Thus,

∣∣φ(α1,β1, L, N ; z)
∣∣ =

∣∣2Meiθ + A(z)L + B(z)N
∣∣
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=
∣∣2M + A(z)Le–iθ + B(z)Ne–iθ ∣∣

≥ 2M + A(z) Re
(
Le–iθ ) + B(z) Re

(
Ne–iθ)

≥ 2M + p(p – 1)MA(z) ≥ 2M + p(p – 1)M ≥ 4M, z ∈U,

where Re(Le–iθ ) ≥ p(p–1)M, Re(Ne–iθ ) ≥ 0 for all θ ∈ [0, 2π ] and p ≥ 2, from Corollary 3.2
we have the following special case.

Example 3.1 If A : U → (1, +∞), B : U → (0, +∞) and f ∈A(p) such that

∣
∣z

(
N k,δ,ζ

p,λ,μ,ηf (z)
)′∣∣ ≤ pM, z ∈ U,

then

∣∣N k,δ,ζ
p,λ,μ,ηf (z) + N k+1,δ,ζ

p,λ,μ,η f (z) + A(z)N k+2,δ,ζ
p,λ,μ,η f (z) + B(z)N k+3,δ,ζ

p,λ,μ,η f (z)
∣∣ < 4M, z ∈U,

implies that

N k,δ,ζ
p,λ,μ,ηf (z) ≺ Mz.

Let A, B : U → C, with Re[A(z) + B(z)] > 0 for all z ∈ U, let C : U → (1, +∞), D : U →
(0, +∞), φ(α1,β1,γ1, ε1; z) = A(z)α1 + B(z)β1 + C(z)γ1 + D(z)ε1 and Ω = h(U), where h(z) =
2Mz. We will show that φ ∈ Φp[h(U), M] by proving that condition (3.2) is satisfied. Thus,

∣∣φ(α1,β1, L, N ; z)
∣∣ =

∣∣Meiθ A(z) + Meiθ B(z) + C(z)L + D(z)N
∣∣

=
∣∣M

[
A(z) + B(z)

]
+ C(z)Le–iθ + D(z)Ne–iθ ∣∣

≥ M Re
[
A(z) + B(z)

]
+ C(z) Re

(
Le–iθ) + D(z) Re

(
Ne–iθ)

≥ p(p – 1)MC(z) ≥ p(p – 1)M ≥ 2M, z ∈ U,

where Re(Le–iθ ) ≥ p(p–1)M, Re(Ne–iθ ) ≥ 0 for all θ ∈ [0, 2π ] and p ≥ 2, from Corollary 3.2
we have the following special case.

Example 3.2 Let A, B : U →C, with Re[A(z) + B(z)] > 0 for all z ∈U, and C : U → (1, +∞),
D : U → (0, +∞). If f ∈A(p) such that

∣∣z
(
N k,δ,ζ

p,λ,μ,ηf (z)
)′∣∣ ≤ pM, z ∈ U,

then

∣∣A(z)N k,δ,ζ
p,λ,μ,ηf (z) + B(z)N k+1,δ,ζ

p,λ,μ,η f (z) + C(z)N k+2,δ,ζ
p,λ,μ,η f (z) + D(z)N k+3,δ,ζ

p,λ,μ,η f (z)
∣∣ < 2M,

z ∈U,

implies that

N k,δ,ζ
p,λ,μ,ηf (z) ≺ Mz.
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Let φ(α1,β1,γ1, ε1; z) = 1 + γ1
α1

+ ε1
α1

and Ω = {w ∈ C : Re w < 3}. We will show that φ ∈
Φp[Ω , M] by proving that condition (3.2) is satisfied. Thus,

Reφ(α1,β1, L, N ; z) = Re

(
1 +

Le–iθ

M
+

Ne–iθ

M

)
≥ 1 + p(p – 1) ≥ 3, z ∈U,

where Re(Le–iθ ) ≥ p(p – 1)M and Re(Ne–iθ ) ≥ 0 for all θ ∈ [0, 2π ] and p ≥ 2, from Corol-
lary 3.2 we obtain the following.

Example 3.3 If f ∈A(p) such that

∣∣z
(
N k,δ,ζ

p,λ,μ,ηf (z)
)′∣∣ ≤ pM, z ∈ U,

then

Re

(
1 +

N k+2,δ,ζ
p,λ,μ,η f (z)

N k,δ,ζ
p,λ,μ,ηf (z)

+
N k+3,δ,ζ

p,λ,μ,η f (z)

N k,δ,ζ
p,λ,μ,ηf (z)

)
< 3, z ∈U,

implies that

N k,δ,ζ
p,λ,μ,ηf (z) ≺ Mz.

Remark 3.1 For different choices of k, δ, ζ , p, λ, μ, and η, we will obtain new results for
different operators defined in the introduction.
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