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Abstract
Our aim in this present paper is to establish several Chebyshev type inequalities
involving generalized fractional conformable integral operator recently introduced by
T.U. Khan and M.A. Khan (J. Comput. Appl. Math. 346:378–389, 2019). Also, we present
Chebyshev type inequalities involving Riemann–Liouville type fractional conformable
integral operators as a particular result of our main result.
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1 Introduction
Fractional calculus is an extremely useful tool to carry out differentiation and integration
of real or complex number orders. This subject has received great consideration from re-
searchers and mathematicians throughout the last few decades. Beginning with the clas-
sical Riemann–Liouville fractional integral and derivative operators, a large number of
fractional integral and derivative operators and their generalizations have been presented
(see, e.g., [2–4]). Among a large number of the fractional integral operators developed,
due to applications in many fields of sciences, the Riemann–Liouville fractional integral
operator has been extensively investigated. Integrations with weight functions are uti-
lized in numerous mathematical problems such as approximation theory, spectral anal-
ysis, statistical analysis, and the theory of statistical distributions. Recently Khan et al.
[5] established certain inequalities of the Hermite–Hadamard type with applications. In
[6], the authors established Ostrowski type inequalities involving conformable fractional
integrals. In [7–10], the authors introduced Hermite–Hadamard–Fejer inequalities for
conformable fractional integrals via preinvex functions, generalized inequalities via GG-
convexity and GA-convexity, Hermite–Hadamard type inequalities via the Montgomery
identity, and Hermite–Hadamard type inequalities pertaining conformable fractional in-
tegrals and their applications. Rahman et al. [11] established certain Chebyshev type in-
equalities involving fractional conformable integral operators. In [12], the authors intro-
duced the Minkowski inequalities via generalized proportional fractional integral oper-
ators. Some new inequalities involving fractional conformable integrals are found in the
work of Nisar et al. [13]. Also, many researchers (see, e.g., [14–23]) have established a

' The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-019-2197-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-019-2197-1&domain=pdf
mailto:n.sooppy@psau.edu.sa
mailto:ksnisar1@gmail.com


Nisar et al. Journal of Inequalities and Applications        (2019) 2019:245 Page 2 of 9

variety of inequalities by employing Riemann–Liouville fractional integral and derivative
operators and their generalizations.

Recall the Chebyshev inequality [24] for two integrable and synchronous functions Φ

and Ψ defined on [a, b]

1
b – a

∫ b

a
Φ(θ )Ψ (θ ) dθ ≥

(
1

b – a

∫ b

a
Φ(θ ) dθ

)(
1

b – a

∫ b

a
Ψ (θ ) dθ

)
. (1)

The two functions Φ and Ψ are said to be synchronous on [a, b] if

(
Φ(ζ ) – Φ(�)

)(
Ψ (ζ ) – Ψ (�)

) ≥ 0
(
ζ ,� ∈ [a, b]

)
. (2)

In [25–28], various researchers studied and introduced various generalizations of inequal-
ity (1). In [29], Belarbi and Dahmani established the following results related to the Cheby-
shev inequalities via Riemann–Liouville fractional integral operators.

Theorem 1.1 Suppose that Φ and Ψ are two synchronous functions defined on [0,∞).
Then the following inequality holds for all θ > 0, ξ > 0:

Iξ (ΦΨ )(θ ) ≥ Γ (ξ + 1)
θξ

IξΦ(θ )IξΨ (θ ). (3)

Theorem 1.2 Suppose that Φ and Ψ are two synchronous functions defined on [0,∞).
Then the following inequality holds for all θ > 0, ξ > 0, λ > 0:

θξ

Γ (ξ + 1)
Iλ(ΦΨ )(θ ) +

θλ

Γ (λ + 1)
Iξ (ΦΨ )(θ ) ≥ IξΦ(θ )IλΨ (θ ) + IλΦ(θ )IξΨ (θ ). (4)

Theorem 1.3 Suppose that (Φj)j=1,...,n are n positive increasing functions defined on [0,∞).
Then the following inequality holds for any θ > 0, ξ > 0:

Iξ

( n∏
j=1

Φj

)
(θ ) ≥ (

Iξ (1)
)1–n

n∏
i=1

IξΦj(θ ). (5)

Theorem 1.4 Suppose that Φ and Ψ are two functions defined on [0,∞) such that Φ is
increasing, Ψ is differentiable, and there exists a real number m := infθ≥0 g ′(θ ). Then the
following inequality is valid for all θ > 0, ξ > 0:

Iξ (ΦΨ )(θ ) ≥ (
Iξ (1)

)–1IξΦ(θ )IξΨ (θ ) –
mθ

ξ + 1
IξΦ(θ ) + mIξ

(
θΨ (θ )

)
. (6)

The left and right generalized fractional conformable integral operators are presented
respectively in [1] as follows:

η

ξIλ
a+Φ(θ ) =

1
Γ (λ)

∫ θ

a

(
θξ+η – τ ξ+η

ξ + η

)λ–1
Φ(τ )
τ 1–ξ–η

dτ , θ > a, (7)

and

η

ξIλ
b–Φ(θ ) =

1
Γ (λ)

∫ b

θ

(
τ ξ+η – θξ+η

ξ + η

)λ–1
Φ(τ )
τ 1–ξ–η

dτ , θ < b, (8)
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where λ ∈ C, �(λ) > 0, ξ ∈ (0, 1], η ∈R, ξ +η �= 0, and Γ is the well-known gamma function
[30].

Remark 1 (i) If η = 0 in (7) and (8), then we have the following Riemann–Liouville type
fractional conformable integral operators:

ξIλ
a+Φ(θ ) =

1
Γ (λ)

∫ θ

a

(
θξ – τ ξ

ξ

)λ–1
Φ(τ )
τ 1–ξ

dτ , θ > a, (9)

and

ξIλ
b–Φ(θ ) =

1
Γ (λ)

∫ b

θ

(
τ ξ – θξ

ξ

)λ–1
Φ(τ )
τ 1–ξ

dτ , θ < b, (10)

where λ ∈C, �(λ) > 0, ξ ∈ (0, 1].
(ii) If ξ = 1 in (9) and (10), then we obtain the following Riemann–Liouville fractional

integral operators:

Iλ
a+Φ(θ ) =

1
Γ (λ)

∫ θ

a
(θ – τ )λ–1Φ(τ ) dτ , θ > a, (11)

and

Iλ
b–Φ(θ ) =

1
Γ (λ)

∫ b

θ

(τ – θ )λ–1Φ(τ ) dτ , θ < b, (12)

where λ ∈C, �(λ) > 0.

In this paper, we consider the following one-sided fractional conformable integral oper-
ator for conformable integrable function Φ :

η

ξIλΦ(θ ) =
1

Γ (λ)

∫ θ

0

(
θξ+η – τ ξ+η

ξ + η

)λ–1
Φ(τ )
τ 1–ξ–η

dτ , (13)

where λ ∈C, �(λ) > 0, ξ ∈ (0, 1], η ∈R, and ξ + η �= 0.

Remark 2 (i) When we let η = 0, then (13) will lead to the following Riemann–Liouville
type fractional conformable integral operator:

ξIλΦ(θ ) =
1

Γ (λ)

∫ θ

0

(
θξ – τ ξ

ξ

)λ–1
Φ(τ )
τ 1–ξ

dτ . (14)

(ii) When we let η = 0 and ξ = 1, then (13) will lead to the following Riemann–Liouville
fractional integral operator:

IλΦ(θ ) =
1

Γ (λ)

∫ θ

0
(θ – τ )λ–1Φ(τ ) dτ . (15)

Our aim is to establish Chebyshev type inequalities with two synchronous functions for
a new generalized integral.
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2 Main results
In this section, we present Chebyshev type inequalities involving generalized fractional
conformable integral operator (13).

Theorem 2.1 Let Φ and Ψ be two integrable functions which are synchronous on [0,∞).
Then

(η

ξIλΦΨ
)
(θ ) ≥ Γ (λ + 1)(ξ + η)λ

θ (ξ+η)λ

(η

ξIλΦ
)
(θ )

(η

ξIλΨ
)
(θ ), (16)

where λ ∈C, �(λ) > 0, ξ ∈ (0, 1], η ∈R, ξ + η �= 0, and Γ is the gamma function.

Proof Since Φ and Ψ are synchronous on [0,∞), we have

(
Φ(ζ ) – Φ(�)

)
(Ψ (ζ ) – Ψ (�) ≥ 0, (17)

or equivalently

Φ(ζ )Ψ (ζ ) + Φ(�)Ψ (�) ≥ Φ(ζ )Ψ (�) + Φ(�)Ψ (ζ ). (18)

Multiplying both sides of (18) by 1
Γ (λ)ζ1–ξ–η ( θξ+η–ζ ξ+η

ξ+η
)λ–1 and integrating the resultant in-

equality with respect to ζ over (0, θ ), we get

1
Γ (λ)

∫ θ

0

(
θξ+η – ζ ξ+η

ξ

)λ–1
Φ(ζ )Ψ (ζ )

ζ 1–ξ–η
dζ +

1
Γ (λ)

∫ θ

0

(
θξ+η – ζ ξ+η

ξ + η

)λ–1
Φ(�)Ψ (�)

ζ 1–ξ–η
dζ

≥ 1
Γ (λ)

∫ θ

0

(
θξ+η – ζ ξ+η

ξ + η

)λ–1
Φ(ζ )Ψ (�)

ζ 1–ξ–η
dζ

+
1

Γ (λ)

∫ θ

0

(
θξ+η – ζ ξ+η

ξ + η

)λ–1
Φ(�)Ψ (ζ )

ζ 1–ξ–η
dζ .

It follows that

(η

ξIλΦΨ
)
(θ ) + Φ(�)Ψ (�)

1
Γ (λ)

∫ θ

0

(
θξ+η – ζ ξ+η

ξ + η

)λ–1 dζ

ζ 1–ξ–η

≥ Ψ (�)
(η

ξIλΦ
)
(θ ) + Φ(�)

(η

ξIλΨ
)
(θ ).

Thus, we obtain

(η

ξIλΦΨ
)
(θ ) +

θ (ξ+η)λ

Γ (λ + 1)(ξ + η)λ
Φ(�)Ψ (�) ≥ Ψ (�)

(η

ξIλΦ
)
(θ ) + Φ(�)

(η

ξIλΨ
)
(θ ), (19)

where

∫ θ

0

(
θξ+η – ζ ξ+η

ξ + η

)λ–1 dζ

ζ 1–ξ–η
=

θ (ξ+η)λ

λ(ξ + η)λ
.
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Multiplying both sides of (19) by 1
Γ (λ)�1–ξ–η ( θξ+η–�ξ+η

ξ+η
)λ–1 and integrating the resultant iden-

tity with respect to � over (0, θ ), we get

(η

ξIλΦΨ
)
(θ )

1
Γ (λ)

∫ θ

0

(
θξ+η – �ξ+η

ξ + η

)λ–1 d�

�1–ξ–η

+
θ (ξ+η)λ

Γ (λ + 1)(ξ + η)λ
1

Γ (λ)

∫ θ

0

(
θξ+η – �ξ+η

ξ + η

)λ–1
Φ(�)Ψ (�)

�1–ξ–η
d�

≥ (η

ξIλΦ
)
(θ )

1
Γ (λ)

∫ θ

0

(
θξ+η – �ξ+η

ξ + η

)λ–1
Ψ (�)
�1–ξ–η

d�

+
(η

ξIλΨ
)
(θ )

1
Γ (λ)

∫ θ

0

(
θξ+η – �ξ+η

ξ + η

)λ–1
Φ(�)
�1–ξ–η

d�.

It follows that

θ (ξ+η)λ

Γ (λ + 1)(ξ + η)λ
(η

ξIλΦΨ
)
(θ ) +

θ (ξ+η)λ

Γ (λ + 1)(ξ + η)λ
(η

ξIλΦΨ
)
(θ )

≥ (η

ξIλΦ
)
(θ )

(η

ξIλΨ
)
(θ ) +

(η

ξIλΦ
)
(θ )

(η

ξIλΨ
)
(θ ),

which completes the desired proof. �

Corollary 1 Let Φ and Ψ be two integrable functions which are synchronous on [0,∞).
Then

(
ξIλΦΨ

)
(θ ) ≥ Γ (λ + 1)ξλ

θξλ

(
ξIλg

)
(θ )

(
ξIλΨ

)
(θ ), (20)

where ξ ∈ (0, 1], λ ∈C, and �(λ) > 0.

Proof If we take η = 0 in Theorem 2.1, then we get the desired inequality involving
Riemann–Liouville type conformable fractional integral. �

Remark 3 Applying Theorem 2.1 for η = 0 and ξ = 1 will give Theorem 1.1.

Theorem 2.2 Let Φ and Ψ be two integrable functions which are synchronous on [0,∞).
Then

θ (ξ+η)τ

Γ (τ + 1)(ξ + η)τ
(η

ξIλΦΨ
)
(θ ) +

θ (ξ+η)λ

Γ (λ + 1)(ξ + η)λ
(η

ξIτΦΨ
)
(θ )

≥ (η

ξIλΦ
)
(θ )

(η

ξIτΨ
)
(θ ) +

(η

ξIτΦ
)
(θ )

(η

ξIλΨ
)
(θ ), (21)

where λ, τ ∈C, �(λ) > 0, �(τ ) > 0, ξ ∈ (0, 1], η ∈ R, and ξ + η �= 0.

Proof Multiplying both sides of (19) by 1
Γ (τ )�1–ξ–η ( θξ+η–�ξ+η

ξ+η
)τ–1 and integrating the resul-

tant inequality with respect to � over (0, θ ), we get

(ηξIλΦΨ )(θ )
Γ (τ )

∫ θ

0

(
θξ+η – �ξ+η

ξ + η

)τ–1 d�

�1–ξ–η

+
θ (ξ+η)λ

Γ (λ + 1)(ξ + η)λ
1

Γ (τ )

∫ θ

0

(
θξ+η – �ξ+η

ξ + η

)τ–1
Φ(�)Ψ (�)

�1–ξ–η
d�
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≥ (ηξIλΦ)(θ )
Γ (τ )

∫ θ

0

(
θξ+η – �ξ+η

ξ + η

)τ–1
Ψ (�)
�1–ξ–η

d�

+
(ηξIλΨ )(θ )

Γ (τ )

∫ θ

0

(
θξ+η – �ξ+η

ξ + η

)τ–1
Φ(�)
�1–ξ–η

d�.

Therefore, we have

θ (ξ+η)τ

Γ (τ + 1)(ξ + η)τ
(η

ξIλΦΨ
)
(θ ) +

θ (ξ+η)λ

Γ (λ + 1)(ξ + η)λ
(η

ξIτΦΨ
)
(θ )

≥ (η

ξIλΦ
)
(θ )

(η

ξIτΨ
)
(θ ) +

(η

ξIτΦ
)
(θ )

(η

ξIλΨ
)
(θ ),

which completes the desired proof of Theorem 2.2. �

Remark 4 If we consider τ = λ in Theorem 2.2, then we obtain Theorem 2.1.

Corollary 2 Suppose that Φ and Ψ are two integrable functions which are synchronous
on [0,∞). Then

θξτ

Γ (τ + 1)ξ τ

(
ξIλΦΨ

)
(θ ) +

θξλ

Γ (λ + 1)ξλ

(
ξIτΦΨ

)
(θ )

≥ (
ξIλΦ

)
(θ )

(
ξIτΨ

)
(θ ) +

(
ξIτΦ

)
(θ )

(
ξIλΨ

)
(θ ), (22)

where λ, τ ∈C, �(λ) > 0, �(τ ) > 0, ξ ∈ (0, 1].

Proof If we take η = 0 in Theorem 2.2, then we get the desired inequality involving
Riemann–Liouville type fractional conformable integral operator. �

Remark 5 If we consider η = 0 and ξ = 1 2.2, then we get Theorem 1.2.

Remark 6 The inequalities in Theorems 2.1 and 2.2 will be reversed if the functions are
asynchronous on [0,∞).

Theorem 2.3 Let (Φj)j=1,2,...,n be n positive increasing functions on [0,∞). Then, for θ > 0,
ξ ∈ (0, 1], η ∈R, λ ∈C, we have

η

ξIλ

( n∏
j=1

Φj

)
(θ ) ≥ (η

ξIλ(1)
)1–n

n∏
j=1

(η

ξIλΦj
)
(θ ). (23)

Proof To prove this theorem, we apply induction on n. Obviously, for n = 1, we have

η

ξIλ(Φ1)(θ ) ≥ η

ξIλ(Φ1)(θ ) for all θ > 0

holds. For n = 2, since Φ1 and Φ2 are positive and increasing functions, therefore we have

(
Φ1(θ ) – Φ1(y)

)(
Φ2(θ ) – Φ2(y)

) ≥ 0.

Hence, by applying Theorem 2.1, we obtain

η

ξIλ(Φ1Φ2)(θ ) ≥ (η

ξIλ(1)
)–1η

ξIλ(Φ1)(θ )ηξIλ(Φ2)(θ ) for all θ > 0.
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Now, assume that by induction hypothesis

η

ξIλ

(n–1∏
j=1

Φj

)
(θ ) ≥ (η

ξIλ(1)
)2–n

n–1∏
j=1

(η

ξIλΦj
)
(θ ), θ > 0. (24)

Since Φj; j = 1, 2, . . . , n, are positive increasing functions on R
+, therefore g :=

∏n–1
j=1 Φj is

increasing on R
+. Let h := Φn. Applying Theorem 2.1 to the functions Φ and Ψ , we have

η

ξIλ

( n∏
j=1

Φj

)
(θ ) = η

ξIλ(ΦΨ )(θ ) ≥ (η

ξIλ(1)
)–1η

ξIλ

(n–1∏
j=1

Φj

)
(θ )

(η

ξIλΦn
)
(θ ).

By using (24), we obtain

η

ξIλ

( n∏
j=1

Φj

)
(θ ) ≥ (η

ξIλ(1)
)–1(η

ξIλ(1)
)2–n

(
η

ξIλ

n–1∏
j=1

Φj

)
(θ )

(η

ξIλΦn
)
(θ ),

which completes the desired proof. �

Corollary 3 Suppose that (Φj)j=1,2,...,n are n positive increasing functions on [0,∞). Then,
for θ > 0, ξ ∈ (0, 1], λ ∈C, and �(λ) > 0, we have

ξIλ

( n∏
j=1

Φj

)
(θ ) ≥ (

ξIλ(1)
)n–1

n∏
j=1

(
ξIλΦj

)
(θ ). (25)

Proof If we let η = 0 in Theorem 2.3, then we get the desired corollary involving Riemann–
Liouville type fractional conformable integral operator. �

Remark 7 If we let η = 0 and ξ = 1 in Theorem 2.3, we get Theorem 1.3.

Theorem 2.4 Let ξ ∈ (0, 1], η ∈ R, λ ∈ C, �(λ) > 0, and ξ + η �= 0. Also, let two functions
Φ ,Ψ : R+

0 → R such that Φ is increasing and Ψ is differentiable with Ψ ′ bounded below,
and let m = infθ∈R+

0
Ψ ′(θ ). Then

(η

ξIλΦΨ
)
(θ ) ≥ Γ (λ + 1)(ξ + η)λ

θ (ξ+η)λ

(η

ξIλΦ
)
(θ )

(η

ξIλΨ
)
(θ ) (26)

–
mx

(λ + 1)
(η

ξIλΦ
)
(θ ) + m

(η

ξIλiΦ
)
(θ ), (27)

where i(θ ) is the identity function.

Proof Let Ψ (θ ) = Ψ (θ ) – mθξ+η . We find that Ψ is differentiable and increasing on R
+
0 . As

in the process of Theorem 2.3, for clarity, let p(θ ) := mθξ+η , we obtain

(η

ξIλg(h – p)
)
(θ ) ≥ Γ (λ + 1)(ξ + η)λ

θ (ξ+η)λ

(η

ξIλΦ
)
(θ )

(η

ξIλ(h – p)
)
(θ )

=
Γ (λ + 1)(ξ + η)λ

θ (ξ+η)λ

(η

ξIλΦ
)
(θ )

(η

ξIλΨ
)
(θ )

–
Γ (λ + 1)(ξ + η)λ

θ (ξ+η)λ

(η

ξIλΦ
)
(θ )

(η

ξIλp
)
(θ ). (28)
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We have

(η

ξIλg(h – p)
)
(θ ) =

(η

ξIλΦΨ
)
(θ ) – m

(η

ξIλiΦ
)
(θ ) (29)

and

(η

ξIλp
)
(θ ) =

mθ (ξ+η)λ+1

Γ (λ + 2)(ξ + η)λ
. (30)

Finally using (29) and (30) in (28), we obtain the desired result. �

Corollary 4 Let ξ ∈ (0, 1], λ ∈ C, and �(λ) > 0. Also, let two functions Φ ,Ψ : R+
0 → R

such that Φ is increasing and Ψ is differentiable with Ψ ′ bounded below, and let m =
infθ∈R+

0
Ψ ′(θ ). Then

(
ξIλΦΨ

)
(θ ) ≥ Γ (λ + 1)ξλ

θξλ

(
ξIλΦ

)
(θ )

(
ξIλΨ

)
(θ ) (31)

–
mx

(λ + 1)
(
ξIλΦ

)
(θ ) + m

(
ξIλiΨ

)
(θ ), (32)

where i(θ ) is the identity function.

Proof If we take η = 0 in Theorem 2.4, then we get the desired Corollary 4, which involves
Riemann–Liouville type fractional conformable integral operator. �

Remark 8 If we let ξ = 1 and η = 0 in Theorem 2.4, then we obtain Theorem 1.4.

3 Concluding remarks
Several Chebyshev type inequalities involving generalized conformable fractional integral
operators are introduced in this paper. Also, we presented some particular results which
involve Riemann–Liouville type conformable fractional integral operator. We observed
that if we let ξ = 1 and η = 0, then the inequalities obtained in this paper will reduce to the
inequalities obtained earlier by Belarbi and Dahmani [29].
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