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1 Introduction

It is well known that optimal control and optimization problems are approximated by
many numerical methods, such as standard finite element methods (FEMs), mixed FEMs,
space-time FEMs, finite volume element methods, spectral methods, multigrid methods
etc.; see e.g., [5, 8, 10, 16, 17, 24-26, 31]. There is no doubt that FEMs occupy the most
important position in these methods.

For a control constrained elliptic optimal control problem (OCP), the regularity of the
control variable is lower than the regularity of the state or co-state variable. Hence, most
of the researchers use piecewise constant function and piecewise linear function to ap-
proximate the control variable and the state or co-state variable, respectively. If the mesh
size is h, the convergent order in L2-norm for the control or in H!-norm for the state and
co-state is just O(h); see e.g., [2, 9, 12, 18]. When we use these techniques to deal with
control constrained parabolic OCP, the similar convergent order is O(k + k). In order to
boost the accuracy and efficiency, superconvergence and adaptive algorithm of FEMs have
become research focus. The convergent order will be improved to O(h%) or (’)(h% + k) by
superconvergence analysis. Some superconvergence results of FEMs for linear and semi-
linear elliptic or parabolic OCPs can be found in [4, 6, 15, 27-29]. Adaptive FEMs that
approximate elliptic and parabolic OCPs have been investigated in [1, 11, 19, 32] and [3],
respectively.

Hinze presents a variational discretization (VD) concept for control constrained opti-
mization problems in [13]. It cannot only save some computation cost but also improve
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the convergent order to O(/2). Recent years, VD are used to solve different kinds of con-
strained OCPs, for example, VD approximation of a convection dominated diffusion OCP
with control constraints and linear parabolic OCPs with pointwise state constraints are
investigated in [14] and [7], respectively.

In this paper, we consider VD approximation for constrained parabolic bilinear OCPs.
The main purpose is to analyze the convergence and superconvergence. We are interested
in the following control constrained parabolic bilinear OCP:

min > f T(H (6, %) - ya(t, %) + || ut, %)) dt, (1)
uek 2 J,

yi(t,x) — div(A®) Vy(t, %)) + u(t,x)y(t,x) = f(t,x), t€],x€ £, ()
y(t,x)=0, te],xe€ds, 3)
¥(0,x) = yo(x), x€£2, (4)

where o > 0 represents the weight of the cost of the control, £2 € R? is a convex bounded
open set with smooth boundary 952 and / = [0, T] (0 < T < +00). The symmetric and
positive definite matrix A(x) = (a;(x))2x2 € [W*(£2)]**2. Moreover, we assume that
f(t,x) € C(J; L*(£2)), yo(x) € H}(£2), and the set of admissible controls K is defined by

K ={v(t,x) e L°(J;L*(2)) :a <v(t,x) < b, ae.in 2, €]},

where 0 < g < b are real numbers.

In this paper, we adopt the notation L*(J; W"4(£2)) for the Banach space of all L* in-
tegrable functions from J into W"4(§2) with norm ||v||zsg,wma(2) = (fOT IVIFymag) dt)%
for s € [1,00) and the standard modification for s = co, where W"4(2) is Sobolev spaces
on £2 with norm || - |wma(g) and semi-norm | - [yma(q). We set Hy(2) = {v € HY(2) :
V|ag = 0} and denote W”2(£2) by H”(£2). Similarly, one can define H'(J; W"4(£2)) and
Ck(J; W™4(£2)) (see e.g. [22]). In addition, ¢ or C is a generic positive constant.

The plan of our paper is as follows. In Sect. 2, we present VD approximation scheme for
the model problem (1)—(4). In Sect. 3, we introduce some important intermediate vari-
ables and their error estimates. Convergence of the control variable is derived in Sect. 4.
Superconvergence of the state and the co-state are established in Sect. 5. In Sect. 6, we

present two numerical examples to illustrate our theoretical results.

2 VD approximation for parabolic bilinear OCP

In this section, we construct VD approximation for (1)—(4). We set LP(J; W"4(£2)) and
I - leg;wma 2y by LP(W™1) and | - || p(wma), respectively. Let W = H}(£2) and U = L*($2).
Moreover, we denote || - || (2) and || - || 2(q) by II - l,» and || - ||, respectively. Let

a(v,w) = f (AVv)-Vw, VYrv,weW,
2

(fl,fz>=/ﬂfl o Vfifpe U

According to the assumptions on A, we have

a(v,v) = c|vll}, la(v,w)| < Clviilwlh, YvweW.
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We recast (1)—(4) as the following weak formulation:

1T
521?5/0 (Ily = yall* + el ) dit, (5)
yew) +aly, w) + (wy,w) =(f,w), YweW,te], (6)
y(x,0) =yo(x), Vxe . (7)

It follows from (see e.g. [21]) that the problem (5)—(7) has at least one solution (y, %), and
that if the pair (y, u) € (H*(L*) N L*(H')) x K is a solution of the formulation (5)—(7), then
there is a co-state p € H*(L*) N L*(H!) such that the triplet (y,p, u) satisfies the following
optimality conditions:

Oew) +aly,w) + (wy,w) = (f,w), YweW,t€], 8)
$(0,%) = yo(x), Vxe £, 9)
—(peq) +alg,p) + up,q) = (Y - ya,q), Vge W,te], (10)
p(T,x)=0, Vxeg, (11)
(@u—-yp,v—u)>0, VveK,te]. (12)

As in Ref. [27], we can easily prove the following lemma.

Lemma 2.1 Let (y, p, u) be the solution of (8)—(12). Then

u= min(max (a, j%),b). (13)

Let 7" be regular triangulations of £2, such that 2 = |, T and & = max, cyufh.},
where /1, is the diameter of the triangle element 7. Furthermore, we set

Wi, = {vi € C(2) : il €P1,VT € T", vils =0},

where P; denotes the space of polynomials no more than order 1.
LetO=ty<ty<---<ty=T,ky=t, —ty-1, n=12,...,N, k = max;<,<n{ky}. Set ¢" =
¢(x,t,) and

dip" =

Moreover, we define for 1 < p < oo the discrete time-dependent norms

1

N-I P
N llgswmace) = (Z k| ||’;m,,,(9)) ;

n=1-1

where [ = 0 for the control u and the state y and / = 1 for the co-state p, with the standard

modification for p = 0o. For convenience, we denote || - [lls¢;wmag)) by Ill - ls(wma) and let

P(H?) = {f : If sy < 00}, 1< p < oo.
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Then a possible VD approximation of (1)—(4) is as follows:

M 1 N N M 2 n 2
z}é}l{g;kn(ﬂyh—ydﬂ +alup]”), (14)
(deywn) + a (v wn) + (yh wa) = (f", wa), (15)
Yw,e Wy,n=1,2,...,N,
) =yh(x), VYxe, (16)

where y/(x) = Ru(yo(x)) and Ry, is an elliptic projection operator which will be specified
later.

Forn=1,2,...,N, the OCP (14)—(16) again has a solution (y}, %)) and that if (y}, u};) €
W), x K is a solution of (14)—(16), then there is a co-state pZ‘l € W}, such that the triplet
L pit ul) € Wy, x Wy, x K, satisfies the following optimality conditions:

(deyown) + a(yiwn) + (g wi) = (f" wh),  Ywy € W, (17)
) =yex), VYxe, (18)
~(dwi @) + alan ey ) + (i an) = Oh =), Yan € Wi (19)
=0, Vxeg, 20)
(ot —yppp V' — ) >0, WveK. (1)

Similar to (13), the variational inequality (21) can be equivalently rewritten as follows.

Lemma 2.2 Let (yy, pj, uy,) be the solution of (17)—(21). Then, for n = 1,2,...,N, we have

n o n—1
uj, = min <max (a, TP ), b). (22)
o

Remark 2.1 1t should be pointed out that we minimize over the infinite dimensional set

K instead of minimizing over a finite dimensional subset of K in (21). Then we just need
to solve the discrete equations (17)—(20) and obtain u, from (22).

3 Error estimates of intermediate variables

Some useful intermediate variables and their important error estimates will be introduced
in this section. For any control function v € K and wy,q, € W}, let y;,(v), pj(v) € W}, for
n=1,2,...,N satisfy the following system:

(deyy @) wa) + a(y ) wa) + (V950 wi) = (£, wa), (23)
W) =shx), Vref, (24)
(i) qn) + a(gn by~ ) + (V237 V) an) = (0h0V) =y an), (25)
Py =0, Vxe®. (26)

If (yp, p, uy) be the solutions of and (17)—(21), then (yy, pr) = n(u), pru(uy)).

Page 4 of 13
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We introduce the elliptic projection operator R;, : W — W), which satisfies: for any ¢ €
W;

a(Rydp — p,wy,) =0, VoeW,w,eW,. (27)
It has the following property (see e.g., [4]):

IRup — $lls < CH*1plla, Vb € H*(£2),5=0, 1. (28)
Lemma 3.1 Let (y, p, u) be the solution of (8)—(12) and (y,(u), py(u)) be the discrete solution

of (23)—(26) with v = u. Suppose that u € [*(H') and y,p € [2(H?*) N H*(L?) N H'(H?), we
have

|||yh(”) _ymﬂ(LZ) + |||ph(u) _p|||l2(L2) = C(h2 +k). (29)

Proof Set v =u in (23), then from Eq. (8) and the elliptic projection operator Rj,. For n =
1,2,...,N and Vw;, € W),, we derive

(deyp(u) — diRpy", wy) + a(yj () — Rpy™, wi) + (" (¥ () = Ry ), w)
= —(deRpy", wi) — a(y", wn) — (" Ry, wi) + (f", wi)
= —(diRpy" — duy", wi) — (dey” =yt wi) — (" (Ruy" = "), wa). (30)

We note that
(dtyZ(”) - dtRhy”,yZ(u) - Rhy”)

1
2 o (17 = Ry |” = 700 = Ruy" | |97 ) = Ry ) (31)
and
a(yj(u) = Ruy", yi(u) = Rpy") = (u” (yj;(w) = Riy"), Ry — vy (w)). (32)

By choosing wy, = yj(x) — R;y” in (30) and using (31)—(32) and Hoélder’s inequality, and
multiplying both sides of (30) by &, and summing # from 1 to N* (1 < N* < N), we get

|y () = Ry™"

N* N*
<D I@i=D0" =y )| + Xl =y~ ki
n=1 n=1

N*
) k(R =y
n=1
N* N* g,
SN RS o) AL
n=1 n=1 %"=
N*

+CY k| Riy =y

n=1
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N* g N* g N*
<oy [ idadesk Y [ alder o Yk,
n=1 Y tn-1 n=1 Y tn-1 n=1

tnp tarx
<cn / ellade + k / Iyl de + CR Iyl 2
0 0
< C(h2||yt||L2(H2) +klyell2q2) + h2|||y|||l2(H2))' (33)

Hence

|||yh(”) _Rhy|||1oo(L2) = C(h2 +k). (34)

It follows from (28) that

N
n M 2
Ry =32y = Y Ku|RRY" =3 < CH* Iy llagyp0y- (35)
n=1

According to (34)—(35) and the embedding theorem, we obtain

llyna) =l o2y < €O + ). (36)
Similarly, we can derive

Iln ) _p|||l2(L2) < C(I* + k). (37)
Therefore, (29) follows from (36) and (37). O

4 Convergence analysis
In this section, we will derive the convergence analysis for the control variable. For ease of

exposition, we set

1 T
T = 5/0 (Iy - yal + allul) dt,

1 T
i) = 5 f (I = yall® + ellun ) .
0

It can be shown that

T
(]/(u),v) :/0 (au —yp,v)dt,

N

o), v) = > Koy (cenay, — 3 (i)™ (), v).

n=1

In many applications, the objective functional J(-) is uniform convex near the solution
(see, e.g., [23]) that is closely related to the second order sufficient conditions of the control
problem. It is assumed in many studies on numerical methods of the problem (see, e.g.,
[2]). Hence, if /& and k are small enough, we can assume that Jj.(-) is uniform convex,
namely, there is a positive constant c, such that

C”'u - V|||122(L2) = (]]i,k(u) _]1;/((1/)1 u-— V)r VL{,V S K. (38)
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Theorem 4.1 Let (y, p, u) and (yy, pn, uy) be the solutions of (8)—(12) and (17)—(21), respec-
tively. Assume that y,(u), p € I°°(L*>°) and all the conditions in Lemma 3.1 are valid. Then
we have

e — wnll 22y < C(H* + k). (39)
Proof Setv=uy and v =u in (12) and (21), respectively, we obtain

(au,u —up) < (yp,u-—uy), Vtej, (40)
and

(auZ—yZpZ’l,u”—uZ) >0, n=12,...,N. (41)
From (38) and (40)—(41), we have

Ml = w122y < Uha0) = T (), 16 = 10,)

N
= k(o =y u)p™ (u), w” - uf)
n=1

N
= kaloruty = v un)ply™ (), u” - 1)

n=1

N
< k(y'p" -y wp", ' - )

n=1

N
+ 3 ka0 - Y p" " - )

n=1
N
LD A i A A CONTARH)

n=1

= [1 +12 +13. (42)

According to Young’s inequality with € and Lemma 3.1, I; can be estimated as follows:

N
=Y ka(p" (" -3 0), " — )
n=1

< CEly = 1) | sz + €Mt = a2y

< Cle)(H* + k) + el — uylly, (43)

12)*

For the second term I, by using Young’s inequality with €, we have

N
L= Zk,, (yZ(u)(p" —p”’l), u" - MZ)
n=1

= C(OK* el g2y + €l = unlly - (44)

Page 7 of 13
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From Young’s inequality with € and Lemma 3.1, we get

N
I = 3 k(030 (P = i ), " — 14)
n=1

< CE)lp - u(@) | g2y + €t = a2,

< Cle)(H* + k) + ellu — upllh 2, (45)
Let € be small enough, then (39) follows from (42)—(45). a

5 Superconvergence analysis

In this section, we will derive superconvergence of the state and co-state variables.

Theorem 5.1 Let (y, p, u) and (yi, pn, un) be the solutions of (8)—(12) and (17)—(21), respec-
tively. Assume that yy, € [°°(L™) all the conditions in Theorem 4.1 hold, we have

Rwy = yulll 2y + IRkp = pill2gny < C(H* + k). (46)
Proof From (8) and (17), for any w, € W" and n = 1,2,...,N, we have

O} = diywn) +a(y” = yiwn) + (" (0" = 57), wn)
= (= ") ). 47)

According to the definition of Rj, we get

(deRny" = dsyy, wi) + a(Ruy" =y wi) + (u" (Ruy” = 57, wi)
= (dRpy" = dpy" +diy” =y + u" (Ruy" = y") + (= "), i) (48)

Note that

(dtRhy” - dtyZ,Rhy" _yZ)

1 n n n— n—
= 5 (R -y = 1Ry =57 (49)

and
(diRny" - dy", Ry" = yi) < |diRiy” = diy" || | Ry - 7|
< Ch*|dey" |, | Ruy” - 5|

tn
<Pkt f lyella de|Ruy" = )|
tn

-1

_1
= Ok e 26, itz | Ry = D (50)

Page 8 of 13
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In addition

(dy" -y Ry = y3) =k (0" =y = Ky Riy" = ¥)

o D e A | L

tn
k! / (bt = ) )5) ds | | Ry — ]|
ty-1
1
< Cki [|ya(v) HLz(t,,_l,tn;Lz(.Q)) |1Ruy" = - (51)

By choosing wy, = R;y" -y} in (48) and using (49)—(51) and Young’s inequality with €, then
multiplying both sides of (48) by 2k,, and summing # from 1 to N, we get

N
[Ri™ =3 [* + ¢ 3 ka| Ry = 3]
n=1
< C&) (I |yel oy + K2t 2z + B WYy + Mt =l g2

N
+eZk||Rhy” -y ||2 (52)

n=1

From (39) and (52), we obtain

IRky = yulleny < C(h* + k). (53)
Similarly, we can prove

IRnp = pill 2@y < C(H* + k). (54)
Hence, (46) follows from (53)—(54). O

6 Numerical experiments
For an acceptable error Tol, we present the following VD approximation algorithm in
which we have omitted the subscript / just for ease of exposition.

Algorithm 6.1 (VD approximation algorithm)
Step 1. Initialize u.
Step 2. Solve the following equations:

(B2 )+ alyh, ) + (i i, ) = (1),

Y,y te Wy, VYwe W,

(P )+ ala, i)+ i) = O~ o), )
wp P, € Wi, Vg €W,

Up,1 = min(max(a, 222), b).

Step 3. Calculate the iterative error: Ey,1 = [[[tn41 — tnlll 2(12)-
Step 4. If E,,,; < Tol, stop; else go to Step 2.
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Let 2 =[0,1] x [0,1], T=1,a=1,a=0, b =1 and A(x) is a unit matrix. We solve
the following two examples with AFEPack. The details can be found at [20]. We denote
Il 2@y and [l - 22y by Il - ln and || - |Il, respectively. The convergence order rate:

Rate = w, where ¢; and e;,; denote errors when mesh size 4 = h; and & = h;, 1,
log(h;y1)-log(h;)

respectively.

Example 1 The data are as follows:

plx, £) = (1 - ¢) sin(27w 1) sin(2w x5),
y(t,x) = tsin(2mwx;) sin(27 x,),
u(t,x) = min(max (0, y(¢, x)p(t, %)), 1),
ft,x) =y (t,x) - div(A(x)Vy(t,x)) + u(t, x)y(t, x),
va(t,x) = y(&, %) + pe(t, x) + div(A*(x)Vp(t, x)) — u(t, x)p(t, x).
The errors based on a sequence of uniformly meshes are shown in Table 1, where we

cansee [[|lu—uyll = O(h* + k), lIRwy —yulllh = O(h* + k) and [|Ryp — pilll = O(h* + k). When

h= 8—10, k= ﬁ and ¢ = 0.5, the numerical solution #y, is shown in Fig. 1.

Example 2 The data are as follows:

pt,x) = (1 - £)x1 (1 —x1)x2(1 — x2),
y(t, %) = ta1 (1 — x1)%2 (1 — x2),

u(t,x) = min(max(O,y(t,x)p(t, x)), 1),

Table 1 Numerical results of Example 1

h k lIlu = unll Rate IRny = ynlllx Rate I1Rnp = palll Rate
- - 1.46324e-02 - 3.35880e-02 - 7.31505e-02 -

> = 3.91388¢-03 1.90 8.18124e-03 204 1.89129¢-02 1.95
- =5 9.11840e-04 2.10 1.91874e-03 2.09 4.64444e-03 203
= =5 2.01991e-04 217 3.97933e-04 227 1.03486e-03 217

1 1

Figure 1 The numerical solution up at t = 0.5, Example 1
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Table 2 Numerical results of Example 2

h K llu = unll Rate 1RRy =yl Rate llIRnp = pnlls Rate
- - 2.45170e-05 - 5.45644e-04 - 3.56804e-03 -

% B 6.45526e-06 193 1.29880e-04 207 9.02173e-04 1.98
= = 1.72058e-06 191 3.19495e-05 202 226222e-04 2.00
% &5 43535e-07 1.98 7.85015e-06 203 5.64788e-05 2,00

Figure 2 The numerical solution up at t = 0.5, Example 2

ft,x) =y:(t,x) - diV(A(x)Vy(t, x)) + u(t, x)y(t, x),

ya(t,x) = y(t, %) + p,(£, %) + div(A*(¥) Vp(t, x)) — u(t, x)p(t, %).

The errors |||z — uy |||, IRyy — yulll1 and [|Ryp — pilll1 on a sequence of uniformly meshes
are shown in Table 2. When / = g, k = o5 and ¢ = 0.5, we plot the profile of u;, in Fig. 2.

From the numerical results in Example 1 and Example 2, we see that |||z — uy|||, || Ryy —
yull and [|Ryp — pulll1 are the second order convergent. Our numerical results and theo-
retical results are consistent.

7 Conclusions

Although there has been extensive research on convergence and superconvergence of
FEMs for various parabolic OCPs, mostly focused on linear or semilinear parabolic cases
(see, e.g., [6, 10, 16, 26, 30]), the results on convergence and superconvergence are O (4 + k)
and O(h% + k), respectively. Recent years, VD are used to deal with different OCPs in [7,
13, 14]. While there is little work on bilinear OCPs. Hence, our results on convergence
and superconvergence of VD for bilinear parabolic OCPs are new.
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