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Abstract
The purpose of this paper is to focus on the well-posedness for a generalized
(η,g,ϕ)-mixed vector variational-type inequality and optimization problems with a
constraint. We establish a metric characterization of well-posedness in terms of an
approximate solution set. Also we prove that well-posedness of optimization problem
is closely related to that of generalized (η,g,ϕ)-mixed vector variational-type
inequality problems.
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1 Introduction
The theory of variational inequality for multi-valued mappings has been studied by several
authors (see [1, 4, 9, 14, 16, 25]). Since variational inequality theory is closely related to
mathematical programming problems under mild conditions, consequently the concept
of Tykhonov well-posedness has also been generalized to variational inequalities [7–12]
and equilibrium problems, fixed point problems, optimization problems, mixed quasi-
variational-like inequality with constraints etc. [15, 17, 18, 24, 26].

In 2000, Lignola and Morgan [20] defined the parametric well-posedness for opti-
mization problems with variational inequality constraints by using the approximating se-
quences. Lignola [19] discussed the well-posedness, L-well-posedness and metric charac-
terizations of well-posedness for quasi-variational-inequality problems. Ceng and Yao [3]
extended these concepts to derive the conditions under which the generalized mixed vari-
ational inequality problems are well-posed. Thereafter, Lin and Chuang [21] established
well-posedness for variational inclusion, and optimization problems with variational in-
clusion and scalar equilibrium constraints in a generalized sense. In 2010, Fang et al. [11]
extended the notion of well-posedness by perturbations to a mixed variational inequal-
ity problem in a Banach space. Recently, Ceng et al. [2] suggested the conditions of well-
posedness for hemivariational inequality problems involving Clarkes generalized direc-
tional derivative under different types of monotonicity assumptions.
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Inspired and motivated by recent work [6, 7, 13–16, 23, 25], we consider and study well-
posedness for generalized (η, g,ϕ)-mixed vector variational-type inequality problems and
optimization problems with constrained involving a relaxed η-αg -P-monotone operator.

2 Preliminaries
Assume thatX andY are two real Banach spaces. LetD ⊂X be a nonempty closed convex
subset of X and P ⊂ Y a closed convex and proper cone with nonempty interior. Through-
out this paper, we shall use the following inequalities. For all x, y ∈ Y :

(i) x ≤P y ⇔ y – x ∈ P;
(ii) x �P y ⇔ y – x /∈ P;

(iii) x ≤P0 y ⇔ y – x ∈ P0;
where P0 denotes the interior of P.

If ≤P is a partial order, then (Y ,≤P) is called an ordered Banach space ordered by P.
Let T : X → 2L(X ,Y) be a set-valued mapping where L(X ,Y) denotes the space of all
continuous linear mappings from X into Y . Assume that Q : L(X ,Y) × D → L(X ,Y),
ϕ : D×D → Y , η : X ×X →X are bi-mappings and g : D →D is single-valued mapping.
We consider the following generalized (η, g,ϕ)-mixed vector variational-type inequality
problem for finding x ∈D and u ∈ T(x) such that

〈
Q(u, x),η

(
y, g(x)

)〉
+ ϕ

(
g(x), y

)
�P0 0, ∀y ∈D. (2.1)

Denote by

Ω =
{

x ∈D : ∃u ∈ T(x) such that
〈
Q(u, x),η

(
y, g(x)

)〉
+ ϕ

(
g(x), y

)
�P0 0,∀y ∈D

}

the solution set of the problem (2.1).

Definition 2.1 A mapping φ : D → Y is said to be
(i) P-convex, if

φ
(
μx + (1 – μ)y

) ≤P μφ(x) + (1 – μ)φ(y), ∀x, y ∈D,μ ∈ [0, 1];

(ii) P-concave, if

φ
(
μx + (1 – μ)y

) ≥P μφ(x) + (1 – μ)φ(y), ∀x, y ∈D,μ ∈ [0, 1].

Definition 2.2 ([25]) A set-valued mapping T : D → 2L(X ,Y) is said to be monotone with
respect to the first variable of Q, if

〈
Q(u, ·) – Q(v, ·), x – y

〉 ≥P 0, ∀x, y ∈D, u ∈ T(x), v ∈ T(y).

Definition 2.3 Let g : D →D be a single-valued mapping. A set-valued mapping T : D →
2L(X ,Y) is said to be relaxed η-αg -P-monotone with respect to the first variable of Q and g ,
if

〈
Q(u, ·) – Q(v, ·),η(

g(x), y
)〉

– αg(x – y) ≥P 0, ∀x, y ∈D, u ∈ T(x), v ∈ T(y),
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where αg : X → Y is a mapping such that αg(tz) = tpαg(z), ∀t > 0, z ∈ X , and p > 1 is a
constant.

Definition 2.4 A mapping γ : X × X → X is said to be affine with respect to the first
variable if, for any xi ∈D and λi ≥ 0 (1 ≤ i ≤ n) with

∑n
i=1 λi = 1 and for any y ∈D,

γ

( n∑

i=1

λixi, y

)

=
n∑

i=1

λiγ (xi, y).

Lemma 2.5 ([5]) Let (Y , P) be an ordered Banach space with closed convex pointed cone
P and P0 
= ∅. Then, for all x, y, z ∈ Y , we have

(i) z �P0 x, x ≥P y ⇒ z �P0 y;
(ii) z �P0 x, x ≤P y ⇒ z �P0 y.

Lemma 2.6 ([22]) Let (X ,‖ · ‖) be a normed linear space and H be a Hausdorff metric on
the collection CB(X ) of all nonempty, closed and bounded subsets of X induced by metric

d(u, v) = ‖u – v‖,

which is defined by

H(A, B) = max
{

sup
u∈A

inf
v∈B

‖u – v‖, sup
v∈B

inf
u∈A

‖u – v‖
}

, ∀A, B ∈ CB(X ).

If A, B are compact sets in X , then for each u ∈ A there exists v ∈ B such that

‖u – v‖ ≤ H(A, B).

Definition 2.7 A set-valued mapping T : D → 2L(X ,Y) is said to be H-hemicontinuous, if

H
(
T

(
x + τ (y – x)

)
, T(x)

) → 0 as τ → 0+,∀x, y ∈D, τ ∈ (0, 1),

where H is the Hausdorff metric defined on CB(L(X ,Y)).

Lemma 2.8 Let D be a closed convex subset of a real Banach space X , Y be a real Banach
space ordered by a nonempty closed convex pointed cone P with apex at the origin and
P0 
= ∅. Assume that Q : L(X ,Y) → L(X ,Y) is a continuous mapping and T : D → 2L(X ,Y)

is a nonempty compact set-valued mapping. If the following conditions are satisfied:
(i) ϕ : D ×D → Y is a P-convex in the second variable with ϕ(x, x) = 0, ∀x ∈D;

(ii) η : X ×X →X is an affine mapping in the first variable with η(x, x) = 0, ∀x ∈D;
(iii) T : D → 2L(X ,Y) is H-hemicontinuous and relaxed η-α-P-monotone with respect

to Q;
then the following two problems are equivalent:

(a) there exist x0 ∈D and u0 ∈ T(x0) such that

〈
Q(u0),η(y, x0)

〉
+ ϕ(x0, y) �P0 0, ∀y ∈D,
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(b) there exists x0 ∈D such that

〈
Q(v),η(y, x0)

〉
+ ϕ(x0, y) – α(y – x0) �P0 0, ∀y ∈D, v ∈ T(y).

3 Well-posedness for problem (2.1)
In this section, we established the well-posedness for problem (2.1) with relaxed η-αg -P-
monotone operator.

Definition 3.1 A sequence {xn} ∈D is said to be an approximating sequence for problem
(2.1) if, there exist un ∈ T(xn) and a sequence of positive real numbers εn → 0 such that

〈
Q(un, xn),η

(
y, g(xn)

)〉
+ ϕ

(
g(xn), y

)
+ εne �P0 0, ∀y ∈D, e ∈ int P.

Definition 3.2 The generalized (η, g,ϕ)-mixed vector variational-type inequality prob-
lem is said to be well-posed if

(i) there exists a unique solution x0 of problem (2.1);
(ii) every approximating sequence of problem (2.1) converges to x0.

Corollary 3.3 From Definition 3.2, it follows that if the generalized (η, g,ϕ)-mixed vector
variational-type inequality problem is well-posed, then

(i) the solution set Ω of problem (2.1) is nonempty;
(ii) every approximating sequence has a subsequence that converges to some point of Ω .

To investigate well-posedness of problem (2.1), we denote the approximate solution set
of problem (2.1) by

Ωε =
{

x ∈D : ∃u ∈ T(x) such that
〈
Q(u, x),η

(
y, g(x)

)〉
+ ϕ

(
g(x), y

)
+ εe �P0 0,∀y ∈D, ε ≥ 0

}
.

Remark 3.4 We note that, if ε = 0 then Ω = Ωε , and if ε > 0 then Ω ⊆ Ωε .
Denote by diamB the diameter of a set B which is defined as

diamB = sup
a,b∈B

‖a – b‖.

Theorem 3.5 Let g : D →D and Q : L(X ,Y)×D → L(X ,Y) be two continuous mappings.
Let ϕ(·, y), η(y, ·) and αg be continuous functions for all y ∈D. If the conditions in Lemma 2.8
are satisfied, then problem (2.1) is well-posed if and only if

Ωε 
= ∅, ∀ε > 0

and

diamΩε → 0 as ε → 0.

Proof Assume that problem (2.1) is well-posed, then it has a unique solution x0 ∈ Ω . Since
Ω ⊆ Ωε , ∀ε > 0, this implies that Ωε 
= ∅, ∀ε > 0. On the contrary, if

diamΩε � 0 as ε → 0,
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then there exist r > 0, m (a positive integer), and a sequence {εn > 0} with εn → 0 and
xn, x′

n ∈ Ωεn such that

∥∥xn – x′
n
∥∥ > r, ∀n ≥ m. (3.1)

Since xn, x′
n ∈ Ωεn , there exist un ∈ T(xn) and u′

n ∈ T(x′
n) such that

〈
Q(un, xn),η

(
y, g(xn)

)〉
+ ϕ

(
g(xn), y

)
+ εne �P0 0, ∀y ∈D,

〈
Q

(
u′

n, x′
n
)
,η

(
y, g

(
x′

n
))〉

+ ϕ
(
g
(
x′

n
)
, y

)
+ εne �P0 0, ∀y ∈D.

Since the problem is well-posed, the approximating sequences {xn} and {x′
n} of problem

(2.1) converge to x0. Therefore we have

∥∥xn – x′
n
∥∥ =

∥∥xn – x0 + x0 – x′
n
∥∥ ≤ ‖xn – x0‖ +

∥∥x0 – x′
n
∥∥ ≤ ε,

which contradicts to (3.1), for some ε = r.
Conversely, assume that {xn} is an approximating sequence of problem (2.1). Then there

exist un ∈ T(xn) and a sequence of positive real numbers εn → 0 such that

〈
Q(un, xn),η

(
y, g(xn)

)〉
+ ϕ

(
g(xn), y

)
+ εne �P0 0, ∀y ∈D, (3.2)

which implies that xn ∈ Ωεn . Since diamΩεn → 0 as εn → 0, {xn} is a Cauchy sequence,
which converges to some x0 ∈ D (because D is closed). Again since T is relaxed η-αg -P-
monotone with respect to the first variable of Q and g on D, it follows from Definition 2.3,
for any y ∈D and u ∈ T(y), we have

〈
Q(un, xn),η

(
y, g(xn)

)〉
+ ϕ

(
g(xn), y

)

≤P
〈
Q(u, xn),η

(
y, g(xn)

)〉
+ ϕ

(
g(xn), y

)
– αg(y – xn). (3.3)

From the continuity of g , ϕ, η and αg , we have

〈
Q(u, x0),η

(
y, g(x0)

)〉
+ ϕ

(
g(x0), y

)
– αg(y – x0)

= lim
n→∞

{〈
Q(u, xn),η

(
y, g(xn)

)〉
+ ϕ

(
g(xn), y

)
– αg(y – xn)

}
.

This together with (3.3) shows that

〈
Q(u, x0),η

(
y, g(x0)

)〉
+ ϕ

(
g(x0), y

)
– αg(y – x0)

≥P lim
n→∞

{〈
Q(un, xn),η

(
y, g(xn)

)〉
+ ϕ

(
g(xn), y

)}
. (3.4)

Taking the limit in (3.2), we have

lim
n→∞

{〈
Q(un, xn),η

(
y, g(xn)

)〉
+ ϕ

(
g(xn), y

)}
�P0 0. (3.5)

Combining (3.4) and (3.5) and using Lemma 2.5(ii), we get

〈
Q(u, x0),η

(
y, g(x0)

)〉
+ ϕ

(
g(x0), y

)
– αg(y – x0) �P0 0.
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Thus, by Lemma 2.8, there exist x0 ∈D and u0 ∈ T(x0) such that

〈
Q(u0, x0),η

(
y, g(x0)

)〉
+ ϕ

(
g(x0), y

)
�P0 0, ∀y ∈D,

which implies that x0 ∈ Ω . It remains to prove that x0 is a unique solution of the problem
(2.1).

Assume contrary that x1 and x2 are two distinct solutions of (2.1). Then

0 < ‖x1 – x2‖ ≤ diamΩε → 0 as ε → 0.

This is absurd and the proof is completed. �

Corollary 3.6 Assume that all assumptions of Lemma 2.8 hold and g,ϕ(·, y), η(y, ·) and αg

are continuous functions for all y ∈D. Then the problem (2.1) is well-posed if and only if

Ω 
= ∅

and

diamΩε → 0 as ε → 0.

Theorem 3.7 Let D be a closed convex subset of a real Banach space X . Let Y be a real
Banach space ordered by a nonempty closed convex pointed cone P with the apex at the
origin and P0 
= ∅. Assume that Q : L(X ,Y) × D → L(X ,Y) is a continuous mapping and
T : D → 2L(X ,Y) is a nonempty compact set-valued mapping. If the following conditions are
satisfied:

(i) g : D →D is continuous and P-convex;
(ii) ϕ : D ×D → Y is P-convex in the second variable and P-concave in the first

argument with ϕ(g(x), x) = 0, ∀x ∈D;
(iii) η : X ×X →X is an affine mapping in the first and second variables with

η(g(x), x) = 0, ∀x ∈D;
(iv) T : D → 2L(X ,Y) is H-hemicontinuous and relaxed η-αg -P-monotone with respect to

first the variable of Q and g ;
(v) ϕ(·, y), η(y, ·) and αg are continuous functions for all y ∈D.

Then problem (2.1) is well-posed if and only if it has a unique solution.

Proof Assume that problem (2.1) is well-posed, then it has a unique solution.
Conversely, let (2.1) have a unique solution x0. If the problem (2.1) is not well-posed,

then there exists an approximating sequence {xn} of (2.1) which does not converge to x0.
Since {xn} is an approximating sequence, there exist un ∈ T(xn) and a sequence of positive
real numbers εn → 0 such that

〈
Q(un, xn),η

(
y, g(xn)

)〉
+ ϕ

(
g(xn), y

)
+ εne �P0 0, ∀y ∈D. (3.6)

Now, we prove that {xn} is bounded. Suppose that {xn} is not bounded. Then, without
loss of generality, we can suppose that

‖xn‖ → +∞ as n → +∞.
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Let

tn =
1

‖xn – x0‖

and

wn = x0 + tn(xn – x0).

Without loss of generality, we can assume that tn ∈ (0, 1) and

wn → w 
= x0.

By the hypothesis, T is relaxed η – αg – P-monotone with respect to the first variable of Q
and g ; therefore, for any x, y ∈D, we have

〈
Q(u, x0) – Q(u0, x0),η

(
y, g(x0)

)〉
– αg(y – x0) ≥P 0, ∀u0 ∈ T(x0), u ∈ T(y),

which implies that

〈
Q(u0, x0),η

(
y, g(x0)

)〉
+ ϕ

(
g(x0), y

)

≤P
〈
Q(u, x0),η

(
y, g(x0)

)〉
+ ϕ

(
g(x0), y

)
– αg(y – x0). (3.7)

Since x0 is a solution of (2.1), there exists u0 ∈ T(x0) such that

〈
Q(u0, x0),η

(
y, g(x0)

)〉
+ ϕ

(
g(x0), y

)
�P0 0, ∀y ∈D. (3.8)

Combining (3.7) and (3.8) and, using Lemma 2.5(ii), we get

〈
Q(u, x0),η

(
y, g(x0)

)〉
+ ϕ

(
g(x0), y

)
– αg(y – x0) �P0 0. (3.9)

From the continuity of g , ϕ, η and αg , we obtain

〈
Q(u, w),η

(
y, g(w)

)〉
+ ϕ

(
g(w), y

)
– αg(y – w)

= lim
n→∞

{
Q(u, wn),η

(
y, g(wn)

)
+ ϕ

(
g(wn), y

)
– αg(y – wn)

}
.

Since η is affine in the second variable, ϕ is P-concave in the first variable and using wn =
x0 + tn(xn – x0), the above equation can be rewritten as

〈
Q(u, w),η

(
y, g(w)

)〉
+ ϕ

(
g(w), y

)
– αg(y – w)

≥p
〈
Q(u, x0),η

(
y, g(x0)

)〉
+ ϕ

(
g(x0), y

)
– αg(y – x0). (3.10)

Using (3.9), (3.10) and Lemma 2.5(ii), we obtain

〈
Q(u, w),η

(
y, g(w)

)〉
+ ϕ

(
g(w), y

)
– αg(y – w) �P0 0.
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Therefore, by Lemma 2.8, there exist w ∈D and w0 ∈ T(w) such that

〈
Q(w0, w),η

(
y, g(w)

)〉
+ ϕ

(
g(w), y

) ≤P0 0, ∀y ∈D.

The above inequality implies that w is also a solution of (2.1), which contradicts the
uniqueness of x0. Hence, {xn} is a bounded sequence having a convergent subsequence
{xn�

} which converges to x̄ (say) as � → ∞. Therefore from the definition of relaxed η-αg -
P-monotonicity, for any xn�

, y ∈D, we have

〈
Q(u, y) – Q(un�

, y),η
(
y, g(xn�

)
)〉

– αg(y – xn�
)) ≥P 0, ∀un�

∈ T(xn�
), u ∈ T(y).

This implies that

〈
Q(un�

, xn�
),η

(
y, g(xn�

)
)〉

+ ϕ
(
g(xn�

), y
)

≤P
〈
Q(u, xn�

),η
(
y, g(xn�

)
)〉

+ ϕ
(
g(xn�

), y
)

– αg(y – xn�
). (3.11)

Again from the continuity of g , ϕ, η and αg , we have

〈
Q(u, x̄),η

(
y, g(x̄)

)〉
+ ϕ

(
g(x̄), y

)
– αg(y – x̄)

= lim
�→∞

{〈
Q(u, xn�

),η
(
y, g(xn�

)
)〉

+ ϕ
(
g(xn�

), y
)

– αg(y – xn�
)
}

.

This together with (3.11) shows that

〈
Q(u, x̄),η

(
y, g(x̄)

)〉
+ ϕ

(
g(x̄), y

)
– αg(y – x̄)

≥P lim
�→∞

{〈
Q(un�

, xn�
),η

(
y, g(xn�

)
)〉

+ ϕ
(
g(xn�

), y
)}

. (3.12)

By virtue of (3.6), we can obtain

lim
�→∞

{〈
Q(un�

, xn�
),η

(
y, g(xn�

)
)〉

+ ϕ
(
g(xn�

), y
)}

�P0 0. (3.13)

From (3.12), (3.13) and Lemma 2.5(ii), we get

〈
Q(u, x̄),η

(
y, g(x̄)

)〉
+ ϕ

(
g(x̄), y

)
– αg(y – x̄) �P0 0.

Thus, by Lemma 2.8, there exist x̄ ∈D and ū ∈ T(x̄) such that

〈
Q(ū, x̄),η

(
y, g(x̄)

)〉
+ ϕ

(
g(x̄), y

)
�P0 0,

which shows that x̄ is a solution to (2.1). Hence,

xn�
→ x̄, i.e., xn�

→ x0.

Since {xn} is an approximating sequence, we have

xn → x0.

The proof of Theorem 3.7 is completed. �
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Example 3.8 Let X = Y = R, D = [0, 1] and P = [0,∞). Let us define the mappings T :
D → 2L(X ,Y), ϕ : D×D → Y , η : X ×X →X , and Q : L(X ,Y) ×D → L(X ,Y) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(x) = {u : R →R | u is a continuous linear mapping such that u(x) = –x};
g(x) = x;

ϕ(g(x), y) = y – x;

η(y, g(x)) = 1
2 (y – x);

Q(v, y) = v;

αg = –x2.

In this case, the generalized (η, g,ϕ)-mixed vector variational-type inequality problem
(2.1) is to find x ∈D and u ∈ T(x) such that

〈
u,

1
2

(x – y)
〉

+ y – x �P0 0, ∀y ∈D. (∗)

It easy to see that Ω = {0} and T is relaxed η-αg -P-monotone with respect to the first
variable of Q and g , and all conditions in Theorem 3.7 are satisfied. Therefore the problem
(∗) is well-posed.

Theorem 3.9 Suppose that all the conditions in Lemma 2.8 are satisfies. Further, assume
that D is a compact set and g,ϕ(·, y), η(y, ·), αg are continuous functions for all y ∈D. Then
problem (2.1) is well-posed if and only if the solution set Ω is nonempty.

Proof Suppose that problem (2.1) is well-posed. Then its solution set Ω is nonempty.
Conversely, let {xn} be an approximating sequence of problem (2.1). Then there exist
un ∈ T(xn) and a sequence of positive real numbers εn → 0 such that

〈
Q(un, xn),η

(
y, g(xn)

)〉
+ ϕ

(
g(xn), y

)
+ εne �P0 0, ∀y ∈D. (3.14)

By the hypothesis, Ω is compact; hence, {xn} has a subsequence {xn�
} converging to some

point x0 ∈ D. Since T is relaxed η-αg -P-monotone with respect to the first variable of Q
and g , by Definition 2.3, for any y ∈D, we have

〈
Q(u, xn�

) – Q(un�
, xn�

),η
(
y, g(xn�

)
)〉

– αg(y – xn�
)

≥P 0, ∀xn�
∈D, un�

∈ T(xn�
), u ∈ T(y),

which implies

lim
�→∞

{〈
Q(u, xn�

),η
(
y, g(xn�

)
)〉

+ ϕ
(
g(xn�

), y
)

– αg(y – xn�
)
}

≥P lim
�→∞

{〈
Q(un�

, xn�
),η

(
y, g(xn�

)
)〉

+ ϕ
(
g(xn�

), y
)}

.

Since g , η, ϕ, αg are continuous,

〈
Q(u, x0),η

(
y, g(x0)

)〉
+ ϕ

(
g(x0), y

)
– αg(y – x0)

= lim
�→∞

{〈
Q(u, xn�

),η
(
y, g(xn�

)
)〉

+ ϕ
(
g(xn�

), y
)

– αg(y – xn�
)
}

.
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Using the above inequality, we obtain

〈
Q(u, x0),η

(
y, g(x0)

)〉
+ ϕ

(
g(x0), y

)
– αg(y – x0)

≥P lim
�→∞

{〈
Q(un�

, xn�
),η

(
y, g(xn�

)
)〉

+ ϕ
(
g(xn�

), y
)}

. (3.15)

By virtue of (3.14), it can be written as

lim
�→∞

{〈
Q(un�

, xn�
),η

(
y, g(xn�

)
)〉

+ ϕ
(
g(xn�

), y
)}

�P0 0. (3.16)

It follows from (3.15), (3.16) and Lemma 2.5(ii) that

〈
Q(u, x0),η

(
y, g(x0)

)〉
+ ϕ

(
g(x0), y

)
– αg(y – x0) �P0 0.

Thus, by Lemma 2.8, there exist x0 ∈D and u0 ∈ T(x0) such that

〈
Q(u0, x0),η

(
y, g(x0)

)〉
+ ϕ

(
g(x0), y

)
�P0 0.

This implies that x0 ∈ Ω .
The proof is completed. �

Example 3.10 Let X = Y = R2, D = [0, 1] × [0, 1] and P = [0,∞) × [0,∞). Let us define
the mappings T : D → 2L(X ,Y), ϕ : D ×D → Y , η : X ×X → X , and Q : L(X ,Y) ×D →
L(X ,Y) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(x) = {w, z : R2 → R | w, z are continuous linear mappings

such that w(x1, x2) = x1, z(x1, x2) = x2};
g(x) = x;

ϕ(g(x), y) = y – x;

η(y, g(x)) = y – x;

Q(u, x) = –u;

αg = 0.

In this case, the generalized (η, g,ϕ)-mixed vector variational-type inequality problem
(2.1) is to find x ∈D and u ∈ T(x) such that

〈–u, x – y〉 + y – x �P0 0, ∀y ∈D. (∗∗)

Clearly, Ω = [0, 1] × [0, 1]. It can be easily verified that T is relaxed η-αg -P-monotone
with respect to the first variable of Q and g , and all conditions in Theorem 3.9 are satisfies.
Hence, problem (∗∗) is well-posed.

Theorem 3.11 Assume that all conditions in Lemma 2.8 are satisfied and assume that
g,ϕ(·, y), η(y, ·), αg are continuous functions for all y ∈ D. If there exists some ε > 0 such
that Ωε 
= ∅ and is bounded. Then problem (2.1) is well-posed.
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Proof Let ε > 0 such that

Ωε 
= ∅

and suppose {xn} is an approximating sequence of problem (2.1). Then there exist un ∈
T(xn) and a sequence of positive real numbers εn → 0 such that

〈
Q(un, xn),η

(
y, g(xn)

)〉
+ ϕ

(
g(xn), y

)
+ εne �P0 0, ∀y ∈D,

which implies that

xn ∈ Ωε , ∀n > m.

Therefore, {xn} is a bounded sequence which has a convergent subsequence {xn�
} converg-

ing to x0 as � → ∞. Following lines similar to the proof of Theorem 3.9, we get x0 ∈ Ω .
The proof is completed. �

4 Well-posedness of optimization problems with constraints
This section is devoted to a study of the well-posedness of optimization problems with
generalized (η, g,ϕ)-mixed vector variational-type inequality constraints:

P-minimize Ψ (x)

subject to x ∈ Ω ,
(4.1)

where Ψ : D → R is a function, and Ω is the solution set of problem (2.1).
Denote by ζ the solution set of (4.1), i.e.,

ζ =
{

x ∈D
∣∣ ∃u ∈ T(x) such that Ψ (x) ≤P inf

y∈Ω
Ψ (y) and

〈
Q(u, x),η

(
y, g(x)

)〉
+ ϕ

(
g(x), y

)
�P0 0,∀y ∈D

}
.

Definition 4.1 A sequence {xn} ∈D is said to be an approximating sequence for problem
(4.1), if

(i) limn→∞ supΨ (xn) ≤P infy∈Ω Ψ (y),
(ii) there exist un ∈ T(xn) and a sequence of positive real numbers εn → 0 such that

〈
Q(un, xn),η

(
y, g(xn)

)〉
+ ϕ

(
g(xn), y

)
+ εne �P0 0, ∀y ∈D.

For δ, ε ≥ 0, we denote the approximating solution set of (4.1) by ζ (δ, ε), i.e.,

ζ (δ, ε) =
{

x ∈D
∣∣ ∃u ∈ T(x) such that Ψ (x) ≤P inf

y∈Ω
Ψ (y) + δ and

〈
Q(u, x),η

(
y, g(x)

)〉
+ ϕ

(
g(x), y

)
+ εe �P0 0,∀y ∈D

}
.

Remark 4.2 It is obvious that ζ = ζ (δ, ε) when (δ, ε) = (0, 0) and

ζ ⊆ ζ (δ, ε), ∀δ, ε > 0.
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Theorem 4.3 Assume that all assumptions of Theorem 3.5 are satisfies and Ψ is lower
semicontinuous. Then (4.1) is well-posed if and only if

ζ (δ, ε) 
= ∅, ∀δ, ε > 0

and

diam ζ (δ, ε) → 0 as (δ, ε) → (0, 0).

Proof The necessary part directly follows from the proof of Theorem 3.5, so it is omitted.
Conversely, suppose that {xn} is an approximating sequence of (4.1). Then there exist un ∈
T(xn) and a sequence of positive real number εn → 0 such that

lim
n→∞ supΨ (xn) ≤P inf

y∈Ω
Ψ (y), (4.2)

〈
Q(un, xn),η

(
y, g(xn)

)〉
+ ϕ

(
g(xn), y

)
+ εne �P0 0, ∀y ∈D, (4.3)

which implies that

xn ∈ ζ (δn, εn), for δn → 0.

Since

diam ζ (δ, ε) → 0 as (δ, ε) → (0, 0),

and {xn} is a Cauchy sequence converging to x0 ∈ D (because D is closed). By the same
argument as in Theorem 3.5, we get

〈
Q(u0, x0),η

(
y, g(x0)

)〉
+ ϕ

(
g(x0), y

)
�P0 0, ∀u0 ∈ T(x0), y ∈D. (4.4)

Since Ψ is lower semicontinuous,

Ψ (x0) ≤P lim
n→∞ infΨ (xn) ≤P lim

n→∞ supΨ (xn).

By using (4.1), the above inequality reduces to

Ψ (x0) ≤P inf
y∈Ω

Ψ (y). (4.5)

Thus, from (4.3) and (4.4), we conclude that x0 solve (4.1). The uniqueness of x0 directly
follows from the assumption

diam ζ (δ, ε) → 0 as (δ, ε) → (0, 0).

This completes the proof. �
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Example 4.4 LetX = Y = R,D = [0, 1] and P = [0,∞). Let us define the mappings Ψ : D →
R, T : D → 2L(X ,Y), ϕ : D × D → Y , η : X × X → X , and Q : L(X ,Y) × D → L(X ,Y) as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ (x) = |x3|;
T(x) = {u : R →R | u is a continuous linear mapping such that u(x) = –x};
g(x) = x;

ϕ(g(x), y) = y – x;

η(g(x), y) = 1
2 (y – x);

Q(v, x) = v;

αg = –x2.

Consider the optimization problem with generalized (η, g,ϕ)-mixed vector variational-
type inequality constraints:

P-minimize
∣∣x3∣∣

subject to x ∈ Ω ,
(4.6)

where

Ω =
{

x ∈D
∣∣∣ ∃u ∈ T(x) such that

〈
u,

1
2

(x – y)
〉

+ y – x �P0 0,∀y ∈D
}

.

We see that Ω = {0}. Since

ζ (δ, ε) =
{

x ∈D
∣∣∣ ∃u ∈ T(x) such that

∣∣x3∣∣ ≤P δ and (y–x)
(

1+
x
2

)
+ε �P0 0,∀y ∈D

}
,

we have

diam ζ (δ, ε) → 0 as (δ, ε) → (0, 0).

It is easily verified that T is relaxed η-αg -P-monotone with respect to the first variable of
Q and g , and all assumptions of Theorem 4.3 are satisfied. Hence (4.6) is well-posed.

Theorem 4.5 Let all conditions in Theorem 3.7 hold and let Ψ be lower semicontinuous.
Then the problem (4.1) is well-posed if and only if it has a unique solution.

Proof The necessary condition is obvious. Conversely, let (4.1) have a unique solution x0.
Then

Ψ (x0) = inf
y∈Ω

Ψ (y),

〈
Q(u0, x0),η

(
y, g(x0)

)〉
+ ϕ

(
g(x0), y

)
�P0 0, ∀u0 ∈ T(x0), y ∈D.



Chang et al. Journal of Inequalities and Applications        (2019) 2019:238 Page 14 of 16

Let {xn} be an approximating sequence. Then there exist un ∈ T(xn) and a sequence of
positive real numbers εn → 0 such that

lim
n→∞ supΨ (xn) ≤P inf

y∈Ω
Ψ (y),

〈
Q(un, xn),η

(
y, g(xn)

)〉
+ ϕ

(
g(xn), y

)
+ εne �P0 0, ∀y ∈D.

Now, following lines similar to the proof of Theorem 3.7, we find that the sequence {xn}
has a subsequence {xn�

} converging to x̄, for any x̄ ∈D and

〈
Q(ū, x̄),η

(
y, g(x̄)

)〉
+ ϕ

(
g(x̄), y

)
�P0 0, ∀ū ∈ T(x̄), y ∈D. (4.7)

Since Ψ is lower semicontinuous, therefore,

Ψ (x̄) ≤P lim
�→∞ infΨ (xn�

) ≤P lim
�→∞ supΨ (xn�

) ≤P inf
y∈Ω

Ψ (y). (4.8)

Thus, from (4.7) and (4.8), we conclude that x̄ ∈ ζ , and the proof is completed. �

Theorem 4.6 Assume that all assumptions of Theorem 4.5 are satisfies and Ψ is lower
semicontinuous, and there exists some ε > 0 such that ζ (ε, ε) 
= ∅, and it is bounded. Then
(4.1) is well-posed.

Proof Let ε > 0 such that

ζ (ε, ε) 
= ∅

and suppose {xn} is an approximating sequence of problem (2.1). Then
(i) limn→∞ supΨ (xn) ≤P infy∈Ω Ψ (y),

(ii) there exist un ∈ T(xn) and a sequence of positive real numbers εn → 0 such that

〈
Q(un, xn),η

(
y, g(xn)

)〉
+ ϕ

(
g(xn), y

)
+ εne �P0 0, ∀y ∈D, n ∈N,

which implies that for some positive integer m

xn ∈ ζ (ε, ε), ∀n > m.

Therefore, {xn} is a bounded sequence and there exists a subsequence {xn�
} such that {xn�

}
converges to x0 as � → ∞. Following the lines similar to the proof of Theorem 4.5, we
conclude that x0 ∈ ζ . Hence, (4.1) is well-posed and the proof is completed. �

5 Well-posedness of optimization problems by using well-posedness of
constraints

In this section, we derive the well-posedness of problem (4.1) by using the well-posedness
of problem (2.1).

Theorem 5.1 Let D be a nonempty compact set and Ψ be lower semicontinuous. Suppose
problem (4.1) has a unique solution. If problem (2.1) is well-posed, then problem (4.1) is
also well-posed.
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Proof If problem (4.1) has a unique solution x0, and {xn} is an approximating sequence for
problem (4.1), then there exist un ∈ T(xn) and a sequence of positive real numbers εn → 0
such that

lim
n→∞ supΨ (xn) ≤P inf

y∈Ω
Ψ (y),

〈
Q(un, xn),η

(
y, g(xn)

)〉
+ ϕ

(
g(xn), y

)
+ εne �P0 0, ∀y ∈D.

Since D is compact, there exists a subsequence {xn�
} of {xn} such that {xn�

} converges to a
x̄ (say) as � → ∞. Since problem (2.1) is well-posed, x̄ solves (2.1), i.e.,

〈
Q(ū, x̄),η

(
y, g(x̄)

)〉
+ ϕ

(
g(x̄), y

)
�P0 0, ∀ū ∈ T(x̄), y ∈D. (5.1)

Since Ψ is lower semicontinuous, we have

Ψ (x̄) ≤P lim
�→∞

infΨ (xn�
) ≤P lim

�→∞
supΨ (xn�

) ≤P inf
y∈Ω

Ψ (y). (5.2)

Thus, from (5.1) and (5.2) we conclude that x̄ solves problem (4.1). But (4.1) has a unique
solution x0; therefore,

x̄ = x0 and xn → x0.

Hence, (4.1) is well-posed. The proof is completed. �
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