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1 Introduction

The theory of variational inequality for multi-valued mappings has been studied by several
authors (see [1, 4, 9, 14, 16, 25]). Since variational inequality theory is closely related to
mathematical programming problems under mild conditions, consequently the concept
of Tykhonov well-posedness has also been generalized to variational inequalities [7—12]
and equilibrium problems, fixed point problems, optimization problems, mixed quasi-
variational-like inequality with constraints etc. [15, 17, 18, 24, 26].

In 2000, Lignola and Morgan [20] defined the parametric well-posedness for opti-
mization problems with variational inequality constraints by using the approximating se-
quences. Lignola [19] discussed the well-posedness, L-well-posedness and metric charac-
terizations of well-posedness for quasi-variational-inequality problems. Ceng and Yao [3]
extended these concepts to derive the conditions under which the generalized mixed vari-
ational inequality problems are well-posed. Thereafter, Lin and Chuang [21] established
well-posedness for variational inclusion, and optimization problems with variational in-
clusion and scalar equilibrium constraints in a generalized sense. In 2010, Fang et al. [11]
extended the notion of well-posedness by perturbations to a mixed variational inequal-
ity problem in a Banach space. Recently, Ceng et al. [2] suggested the conditions of well-
posedness for hemivariational inequality problems involving Clarkes generalized direc-
tional derivative under different types of monotonicity assumptions.
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Inspired and motivated by recent work [6, 7, 13—16, 23, 25], we consider and study well-
posedness for generalized (1, g, ¢)-mixed vector variational-type inequality problems and
optimization problems with constrained involving a relaxed n-o,-P-monotone operator.

2 Preliminaries
Assume that X’ and ) are two real Banach spaces. Let D C X be a nonempty closed convex
subset of ¥ and P C ) a closed convex and proper cone with nonempty interior. Through-
out this paper, we shall use the following inequalities. For all x,y € V:

(i) x<py©y-xebh;

(i) xLpyy-xéPD;

(i) x <py & y—xe P’
where P° denotes the interior of P.

If <p is a partial order, then (), <p) is called an ordered Banach space ordered by P.
Let T : X — 2M¥Y) be a set-valued mapping where L(X,)) denotes the space of all
continuous linear mappings from X into ). Assume that Q : L(X,)) x D — L(X,)),
9:DxD— )Y, n: X x X — X arebi-mappingsand g : D — D is single-valued mapping.
We consider the following generalized (7, g, ¢)-mixed vector variational-type inequality
problem for finding x € D and u € T'(x) such that

(QU,x),n(1,8())) + ¢(g(x),y) £p 0, VyeD. (2.1)
Denote by

2 = {x € D:3u € T(x) such that (Q(x,x),7(y,g(x))) + ¢(g(x),y) £ 0,y € D}
the solution set of the problem (2.1).

Definition 2.1 A mapping ¢ : D — ) is said to be
(i) P-convex, if

¢ (ux+(1—py) <pup(®) + 1 -u)p(y), Vx,yeD,uel0,1];
(ii) P-concave, if
¢ (nx+ (1= )y) =p pepx) + (1 - w)g(y), Vx,y € D,p € [0,1].

Definition 2.2 ([25]) A set-valued mapping T : D — 24*Y) is said to be monotone with
respect to the first variable of Q, if

(Qu,) - Q,-),x-y)>p0, Vx,yeD,ucT(x),veTy).
Definition 2.3 Letg: D — D beasingle-valued mapping. A set-valued mapping 7 : D —
2LX.Y) s said to be relaxed n-og-P-monotone with respect to the first variable of Q and g,

if

(Q(u, )= 0QW,-), n(g(x),y)) —a,(x-y)>p0, Vx,yeD,ucT(x),veT(y),
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where o, : X — ) is a mapping such that o, (tz) = tPa,(z), V1 >0,ze X,and p>1lisa
constant.

Definition 2.4 A mapping y : X x X — X is said to be affine with respect to the first
variable if, for any x; € D and 1; > 0 (1 <i < n) with Z:’:I A;=1and for anyy € D,

n n
Y (Z ki%)’) =Y hiv(@y).
i-1 i-1

Lemma 2.5 ([5]) Let (), P) be an ordered Banach space with closed convex pointed cone
P and P° #0. Then, for all x,y,z € Y, we have

(i) z2€pox, x>py=2z<Lp y;
(i) z2pox,x<py=zFpy.

Lemma 2.6 ([22]) Let (X, | - ||) be a normed linear space and $) be a Hausdor(f metric on
the collection CB(X) of all nonempty, closed and bounded subsets of X induced by metric

d(M, V) = ”M - V”r
which is defined by

$(A,B) = max{sup inf [l ], sup inf |1 - v| } VA, B € CB(X).
€. (S

ueAV veB U

If A, B are compact sets in X, then for each u € A there exists v € B such that
llu—vil < $H(A,B).

Definition 2.7 A set-valued mapping T : D — 21X is said to be £)-hemicontinuous, if
H(T(x+t(y-),T(x) >0 ast— 0",Vx,yeD,t€(0,1),

where $) is the Hausdorff metric defined on CB(L(X,))).

Lemma 2.8 Let D be a closed convex subset of a real Banach space X, ) be a real Banach
space ordered by a nonempty closed convex pointed cone P with apex at the origin and
P° + (. Assume that Q : L(X,Y) — L(X, D) is a continuous mapping and T : D — 21XV
is a nonempty compact set-valued mapping. If the following conditions are satisfied:
(i) ¢ :D xD— Y isa P-convex in the second variable with ¢(x,x) = 0, Vx € D;
(i) n: X x X > X is an affine mapping in the first variable with n(x,x) = 0, Vx € D;
(iii) T:D — 2M%Y) is §-hemicontinuous and relaxed n-a-P-monotone with respect
to Q;

then the following two problems are equivalent:

(a) there exist xg € D and ug € T (xo) such that

(Q(uo), n(,%0)) + @(x0,y) £ 0, Vy €D,
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(b) there exists xy € D such that

(QW), n(y,%0)) + 9(x0,y) — a(y —x0) £po 0, ¥y €D, ve T(y).

3 Well-posedness for problem (2.1)
In this section, we established the well-posedness for problem (2.1) with relaxed 7-o,-P-

monotone operator.

Definition 3.1 A sequence {x,} € D is said to be an approximating sequence for problem
(2.1) if, there exist u, € T(x,) and a sequence of positive real numbers €, — 0 such that

(QUusxn)s 1 (1:8(xn))) + 9 (g(®0),¥) + €ne £ 0, Vy €D, e €intP.

Definition 3.2 The generalized (1, g, ¢)-mixed vector variational-type inequality prob-
lem is said to be well-posed if

(i) there exists a unique solution xq of problem (2.1);

(ii) every approximating sequence of problem (2.1) converges to xj.

Corollary 3.3 From Definition 3.2, it follows that if the generalized (n,g, ¢)-mixed vector
variational-type inequality problem is well-posed, then

(i) the solution set §2 of problem (2.1) is nonempty;

(ii) every approximating sequence has a subsequence that converges to some point of §2.

To investigate well-posedness of problem (2.1), we denote the approximate solution set
of problem (2.1) by

2. = {x € D :3u € T(x) such that

(Q(u, X), n(y,g(x))) +¢(gx),y) +ee £p0 0,¥y € D,e > 0}.

Remark 3.4 We note that, if € = 0 then 2 = 2., and if € > 0 then £2 C £2..
Denote by diam B the diameter of a set 3 which is defined as

diam B = sup |la - b|.
a,beB

Theorem 3.5 Letg:D — Dand Q:L(X,Y) x D — L(X,)) be two continuous mappings.
Let ¢(-, ), n(y, -) and o, be continuous functions forally € D. If the conditions in Lemma 2.8
are satisfied, then problem (2.1) is well-posed if and only if

240, VYe>0
and
diam 2. -0 ase — 0.

Proof Assume that problem (2.1) is well-posed, then it has a unique solution x( € £2. Since
£2 C §2¢, Ve > 0, this implies that 2. # @, Ve > 0. On the contrary, if

diam 2, »0 ase — 0,
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then there exist » > 0, m (a positive integer), and a sequence {¢, > 0} with ¢, — 0 and
%> %), € §2¢, such that

|n =, || > 7, ¥n=m. (3.1)
Since x,,x,, € §2.,, there exist u,, € T(x,) and u), € T(x]) such that

(QUetns %), 1 (3, 8(x))) + 0(g(xn),y) + €ne £po 0, VyeD,
(Q(u ), (1 g(x))) + (g (x,),5) + €ne Zpo 0, VyeD.

Since the problem is well-posed, the approximating sequences {x,} and {x),} of problem
(2.1) converge to xo. Therefore we have

o6 =, || = | = %0 + 20 = &, || < lloew = w0l + |0 =, || <€,

which contradicts to (3.1), for some € = r.
Conversely, assume that {x,} is an approximating sequence of problem (2.1). Then there
exist u, € T(x,) and a sequence of positive real numbers €, — 0 such that

(QUut %), 1 (3:8(x)) + ©(g(xn),y) + €ne £po 0, VyeD, (3.2)

which implies that x,, € £2,. Since diam £2,, — 0 as €, — 0, {x,} is a Cauchy sequence,
which converges to some xy € D (because D is closed). Again since T is relaxed 1-o,-P-
monotone with respect to the first variable of Q and g on D, it follows from Definition 2.3,
for any y € D and u € T(y), we have

(Q(um Xn), 77( ’g(xn))> + @(g(xn)7y)
=p (Q(u,xn), 77( ’g(xn))> + (p(g(xn)ry) - ag(y - xn)' (3'3)

From the continuity of g, ¢, # and a,, we have
(Q(u, x0), n (7, g(%0))) + 0 (g(x0), ¥) — gy — %0)
= lim {(Q(u, x4), 1 (7,8(xn))) + @ (g(x), y) — gy — %) }.
This together with (3.3) shows that
(Q(u, x0), n(7,g(%0))) + ¢ (g(x0), ¥) — gy — %0)
=p lim {(QQtn, x4), n(y,8(xn)) + 0 (g(6n), 3) - (3.4)

Taking the limit in (3.2), we have

lim {(Q(nr %), 1(3: (%)) + @(g(),y) } £po O. (35)

n—00

Combining (3.4) and (3.5) and using Lemma 2.5(ii), we get

(Q(u,x0), 1 (3g(%0))) + @ (g(x0), ¥) — ctg(y — %0) £p0 0.
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Thus, by Lemma 2.8, there exist xg € D and ug € T'(xy) such that

{Q(uo, %0), n(,8(x0))) + ¢ (¢(x0),¥) £po 0, VyeD,

which implies that xy € £2. It remains to prove that x, is a unique solution of the problem
(2.1).
Assume contrary that x; and «, are two distinct solutions of (2.1). Then

0< ¢ —xo|| <diam 2. — 0 ase — 0.
This is absurd and the proof is completed. g

Corollary 3.6 Assume that all assumptions of Lemma 2.8 hold and g, ¢(-, y), n(y, -) and a,
are continuous functions for all y € D. Then the problem (2.1) is well-posed if and only if

240
and
diam 2. -0 ase — 0.

Theorem 3.7 Let D be a closed convex subset of a real Banach space X. Let ) be a real
Banach space ordered by a nonempty closed convex pointed cone P with the apex at the
origin and P° # 9. Assume that Q : L(X,Y) x D — L(X,)) is a continuous mapping and
T:D — 2H%Y) is a nonempty compact set-valued mapping. If the following conditions are
satisfied:
(i) g:D — D is continuous and P-convex;
(i) ¢ :D x D — Y is P-convex in the second variable and P-concave in the first
argument with ¢(g(x),x) =0, Vx € D;
(iti) n:X x X = X is an affine mapping in the first and second variables with
n(g(x),x) =0, Vx € D;
(iv) T:D — 2MXY) s §-hemicontinuous and relaxed n-og-P-monotone with respect to
first the variable of Q and g;
W) ©(>9), n(y,-) and og are continuous functions for all y € D.
Then problem (2.1) is well-posed if and only if it has a unique solution.

Proof Assume that problem (2.1) is well-posed, then it has a unique solution.

Conversely, let (2.1) have a unique solution x. If the problem (2.1) is not well-posed,
then there exists an approximating sequence {x,} of (2.1) which does not converge to xy.
Since {x,} is an approximating sequence, there exist u, € T(x,) and a sequence of positive
real numbers ¢, — 0 such that

(QUuw %), n(9:g(x))) + 0 ((xn),y) + €ne £0 0, Vy €D, (3.6)

Now, we prove that {x,} is bounded. Suppose that {x,} is not bounded. Then, without
loss of generality, we can suppose that

[[%,|| > +00 aswn— +o0.
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Let

1

ty= ————
llc = ol

and
Wy = X0 + by (Xn — X0).

Without loss of generality, we can assume that ¢, € (0,1) and
Wy, — W #xo.

By the hypothesis, T is relaxed 5 — oy — P-monotone with respect to the first variable of Q
and g; therefore, for any x,y € D, we have

(QUu, x0) — Quo, %0), 1 (7, g(x0))) — et (y —%0) =p 0, Vuup € T(o),u € T(y),

which implies that

(Q(u0,%0), 1(y,g(x0))) + ¢ (g(x0),7)
<p (Q(u, %0), n(3,8(%0))) + ¢ (g(%0), ¥) — g (y — x0). (3.7)

Since xy is a solution of (2.1), there exists uy € T(xg) such that

(Quo, x0), n (3,8 (x0))) + ¢ (g(x0),y) £po 0, VyeD. (3.8)

Combining (3.7) and (3.8) and, using Lemma 2.5(ii), we get

(Qu, x0), n (3, £(%0))) + 9(g(%0), ¥) — ctg(y — %0) Zpo O. (3.9)

From the continuity of g, ¢, # and o, we obtain

(Qu, w), (7, 8(W))) + 0 (gW),y) — ag(y — w)
= 1im {Q(t, wn), 0(3,8(Wn)) + 0 (g(Wn),¥) — gy — wn) }.

n—00

Since 7 is affine in the second variable, ¢ is P-concave in the first variable and using w), =

X0 + £, (%, — x9), the above equation can be rewritten as

(QUe, w), n(y,8m)) + ¢ (gW), ) — ag(y —w)
> (Qu, x0), 1(7,8(%0))) + ¢ (g(%0), 7) — g (y = o). (3.10)

Using (3.9), (3.10) and Lemma 2.5(ii), we obtain

(Qu, w), n(7,2W))) + 9(g(w),y) — ag(y — w) Zpo 0.



Chang et al. Journal of Inequalities and Applications (2019) 2019:238 Page 8 of 16

Therefore, by Lemma 2.8, there exist w € D and wy € T'(w) such that

(Qwo, w), 1(y,gW))) + ¢(gw),y) <p 0, VyeD.
The above inequality implies that w is also a solution of (2.1), which contradicts the
uniqueness of xy. Hence, {x,} is a bounded sequence having a convergent subsequence

{, } which converges to x (say) as £ — 00. Therefore from the definition of relaxed n-a,-
P-monotonicity, for any x,,,y € D, we have

(Q,y) = Quany>¥), 1 (3, 8(xn,))) — 0tg(y = %n,) =p 0, Vit € T (%), uu € T(p).

This implies that

(Q(ungrxng): 77( ’g(xng))> + w(g(xn,z),y)
=<p (Q(u’xn5)7 77( ’g(xng)» + (p(g(xng)’y) - O‘g()’ - xne)' (311)

Again from the continuity of g, ¢, 7 and oy, we have

(QUu, %), n(1,4(®))) + ¢(g(®),y) — gy — %)
= Zl—i>IEo{<Q(u,xnl), 77( ’g(xng)» + (p(g(xne)’y) - ag(y _x"Z)}‘

This together with (3.11) shows that

(Qu, %), n(y,g(%))) + 0 (g(®),y) — gy — %)
Zp Zli)rgo{(Q(unpxng): n(y’g(xmg))) + (p(g(xn[):y) } (3.12)

By virtue of (3.6), we can obtain
Jim {(Qut 20, 1(7,80n,))) + @ (g6, ) 9) } £opo . (3.13)
From (3.12), (3.13) and Lemma 2.5(ii), we get
(QUu,2), n(3,8@)) + ¢ (€(3),9) = oty = 5) £pm 0.
Thus, by Lemma 2.8, there exist x € D and u € T'(x) such that
Q@ 2),n(y.(®)) + ¢ (€(3).7) £ 0,
which shows that x is a solution to (2.1). Hence,
Xpg —> X, Le,  Xp, —> Xo.
Since {x,,} is an approximating sequence, we have
Xp — Xo.

The proof of Theorem 3.7 is completed. g
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Example 3.8 Let X =Y =R, D =[0,1] and P = [0,00). Let us define the mappings T :
D— 2LV 6 DxD—Y,n: X xX— X,and Q: L(X,Y) x D — L(X,)) as follows:

T(x) = {u:R — R | u is a continuous linear mapping such that u(x) = —x};
gx) =x;

p(g),y) =y -x;

n(y,gw)) = 5(y - x)

Qv,y) =v;

ag = —x%.

In this case, the generalized (7,g, ¢)-mixed vector variational-type inequality problem
(2.1) is to find x € D and u € T'(x) such that

<u,%(x—y)>+y—xﬁpoo, VyeD. (%)

It easy to see that £2 = {0} and T is relaxed n-a,-P-monotone with respect to the first
variable of Q and g, and all conditions in Theorem 3.7 are satisfied. Therefore the problem
() is well-posed.

Theorem 3.9 Suppose that all the conditions in Lemma 2.8 are satisfies. Further, assume
that D is a compact set and g, (-, y), n(y, -), &g are continuous functions for ally € D. Then
problem (2.1) is well-posed if and only if the solution set §2 is nonempty.

Proof Suppose that problem (2.1) is well-posed. Then its solution set §2 is nonempty.
Conversely, let {x,} be an approximating sequence of problem (2.1). Then there exist
uy, € T(x,) and a sequence of positive real numbers €, — 0 such that

(QUetns %), 1 (3:8(x))) + ©(g(xn),y) + €ne £po 0, ¥y e D. (3.14)

By the hypothesis, £2 is compact; hence, {x,} has a subsequence {x,,} converging to some
point xg € D. Since T is relaxed n-a,-P-monotone with respect to the first variable of Q
and g, by Definition 2.3, for any y € D, we have

(Q(u»xng) - Q(unpxn@)’ n(y'g(xng ))) - Olg()/ - xnz)
>p0, Vx,, €Duy, € T(xy,),uc T(y),

which implies
Jim {(QQt, %), 13, 8@n,))) + (gt ), ) = ety = 5, |
=p Jim {(QQatns %), 1(7,806n,))) + 0 (g, ),7) -
Since g, 1, ¢, g are continuous,

(Q(u, x0), (7, 8(%0))) + ¢ (g(x0), ¥) — gy — %0)
= Jim {{QQt, ), 1(7, 806, ))) + 0(80xn ),3) = tgly = x,)}.
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Using the above inequality, we obtain

(Q(u, x0), n (7, 8(%0))) + 0 (g(x0), ¥) — ety — %0)

=p Jim {{QQty, %) 17,8, ))) + 9 (86, ),7) - (3.15)
By virtue of (3.14), it can be written as

tim {(QQat, %, ), 19,8 (%,))) + 9 (g%, ), 9) } £po O. (3.16)

{—00

It follows from (3.15), (3.16) and Lemma 2.5(ii) that

(Q(u,%0), 1 (3 g(%0))) + @ (g(x0), ¥) — ctg(y — %0) £p0 0.

Thus, by Lemma 2.8, there exist xo € D and ug € T'(xo) such that

(Q(u0,%0), 1 (y,g(%0))) + @(g(x0),5) £ po 0.

This implies that xy € £2.
The proof is completed. O

Example 3.10 Let X =Y =R?, D =[0,1] x [0,1] and P = [0,00) x [0,00). Let us define
the mappings 7:D — 2 . DxD - Y, n: X x X - X,and Q: L(X,)) x D —
L(X,)) as follows:

T(x) = {w,z: R* - R | w, z are continuous linear mappings
such that w(x1, %) = x1,2(x1, %2) = %2 };

g =x;

Pgx),y) =y —x;

n(,gx)) =y —x;

Qu, %) = —u;

a, =0.

In this case, the generalized (1, g, ¢)-mixed vector variational-type inequality problem
(2.1) is to find x € D and u € T'(x) such that

(~,x—y)+y—x%p0, VyeD. (%)

Clearly, 2 = [0,1] x [0,1]. It can be easily verified that T is relaxed n-og-P-monotone
with respect to the first variable of Q and g, and all conditions in Theorem 3.9 are satisfies.

Hence, problem (xx) is well-posed.

Theorem 3.11 Assume that all conditions in Lemma 2.8 are satisfied and assume that
290Gy, n(y,+), ag are continuous functions for all y € D. If there exists some € > 0 such
that 2. # V) and is bounded. Then problem (2.1) is well-posed.
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Proof Let € > 0 such that
2. #9

and suppose {x,} is an approximating sequence of problem (2.1). Then there exist u, €
T (x,) and a sequence of positive real numbers €, — 0 such that

(QUutns ), (7, 8(xn))) + 9(g(®n),y) + €ne £p0 0, ¥y €D,
which implies that
Xn € §2:, VYn>m.

Therefore, {x,} is a bounded sequence which has a convergent subsequence {x,, } converg-
ing to x as £ — oo. Following lines similar to the proof of Theorem 3.9, we get x; € £2.
The proof is completed. d

4 Well-posedness of optimization problems with constraints
This section is devoted to a study of the well-posedness of optimization problems with
generalized (1, g, ¢)-mixed vector variational-type inequality constraints:

P-minimize ¥ (x)

subject to x € £2,

where ¥ : D — Ris a function, and £2 is the solution set of problem (2.1).
Denote by ¢ the solution set of (4.1), i.e.,

¢ = {x eD } du € T'(x) such that ¥ (x) <p in£ ¥ (y) and
ye
(Qu,x),n(7,8(x))) + ¢(g(x),y) £p 0, ¥y € D}«
Definition 4.1 A sequence {x,} € D is said to be an approximating sequence for problem
(4.1), if

(1) limy—eosup¥(x,) <p infye(z llf()/),
(ii) there exist u,, € T(x,) and a sequence of positive real numbers €, — 0 such that

(QUtns %), 1 (9:8(xn))) + ©(g(xn),y) + €ne £po 0, ¥y € D.
For §,¢ > 0, we denote the approximating solution set of (4.1) by ¢ (3, €), i.e.,
(8,¢€) = [x eD | Ju € T(x) such that ¥ (x) fpyigg Y (y) + 8 and
(Qu,x),n(,g(x))) + 0 (g(x),y) + €e £po 0,Vy € D}.
Remark 4.2 1t is obvious that ¢ = (8, €) when (8, ¢) = (0,0) and

£ <C¢(8,€), Vée>0.
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Theorem 4.3 Assume that all assumptions of Theorem 3.5 are satisfies and ¥ is lower
semicontinuous. Then (4.1) is well-posed if and only if

L(8,€)#0, Vé,e>0
and
diam¢(8,€) > 0 as (8,¢) — (0,0).
Proof The necessary part directly follows from the proof of Theorem 3.5, so it is omitted.

Conversely, suppose that {x,} is an approximating sequence of (4.1). Then there exist u, €

T (x,) and a sequence of positive real number €, — 0 such that

lim sup ¥ (x,) <p in£ v (y), (4.2)
n—0Q yE
(Q(um Xn), 77( ’g(xn)» + (p(g(xn):y) +€ne ﬁPO 0, VyeD, (4.3)

which implies that
x, € £(8,,€,), foré, — 0.
Since
diam¢(8,€) - 0 as (8,€) — (0,0),

and {x,} is a Cauchy sequence converging to xy € D (because D is closed). By the same
argument as in Theorem 3.5, we get

(Q(u01 QC()), U(J”g(xo)» + </7(g(x0)73’) ﬁPO 0, VuO € T(x())’y eD. (44')
Since ¥ is lower semicontinuous,
W (x9) <p lim inf¥(x,) <p lim sup ¥ (x,).
n—00 n— 00
By using (4.1), the above inequality reduces to

¥ (x0) <p ylél}; (). (4.5)

Thus, from (4.3) and (4.4), we conclude that x, solve (4.1). The uniqueness of x, directly
follows from the assumption

diam¢(8,€) > 0 as (8,€) — (0,0).

This completes the proof. O
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Example4.4 Let X =Y =R, D =[0,1] and P = [0, 00). Let us define the mappings ¥ : D —
RT:D—2M¥Y) . DxD—-Y,n:XxX—> X,and Q: L(X,)) x D — L(X,)) as
follows:

¥ (x) = 53];

T(x) = {u: R — R | u is a continuous linear mapping such that u(x) = —x};
gw) =x;

pgx),y) =y —x;

n(g),y) = 30— );

Qv,x) =v;

Oy = —X".

Consider the optimization problem with generalized (7, g, ¢)-mixed vector variational-

type inequality constraints:

P-minimize ‘x3|
(4.6)
subject to x € £2,

where

2= {x eD ’ Ju € T'(x) such that <u, %(x—y)> +y—x%po 0,Vy € D}.
We see that £2 = {0}. Since

(8,¢€) = {x eD ‘ Jdu € T(x) such that ’x3| <pdand (y—x)(1+ g) +€ £po 0,Vy € D},
we have

diam¢(8,€) — 0 as (8,€) — (0,0).

It is easily verified that T is relaxed n-o,-P-monotone with respect to the first variable of

Q and g, and all assumptions of Theorem 4.3 are satisfied. Hence (4.6) is well-posed.

Theorem 4.5 Let all conditions in Theorem 3.7 hold and let ¥ be lower semicontinuous.

Then the problem (4.1) is well-posed if and only if it has a unique solution.

Proof The necessary condition is obvious. Conversely, let (4.1) have a unique solution x;.
Then

¥ (x0) = inf ¥ 0),

(Q(uo,xo), U(y»g(xo)» + (p(g(xo),y) i<_1>0 0, Vup€ T(x0),y€D.
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Let {x,} be an approximating sequence. Then there exist u, € T(x,) and a sequence of
positive real numbers €, — 0 such that

lim sup ¥ (x,) <p inf ¥(y),
n—00 yes

(QUuts ) (7, 8(xn))) + 9(g(®n),y) + €ne £p0 0, ¥y € D.

Now, following lines similar to the proof of Theorem 3.7, we find that the sequence {x,}
has a subsequence {x,,} converging to x, for any x € D and

(Q@%),n(r,¢®))) + ¢(¢(®),y) £p 0, Ve T(x),yeD. (4.7)

Since ¥ is lower semicontinuous, therefore,

¥ (x) <p lim inf¥(x,,) <p lim sup ¥ (x,,) <p inf ¥(y). (4.8)
{—00 {—o00 yes2
Thus, from (4.7) and (4.8), we conclude that x € ¢, and the proof is completed. O

Theorem 4.6 Assume that all assumptions of Theorem 4.5 are satisfies and ¥ is lower
semicontinuous, and there exists some € > 0 such that ¢ (¢,€) # 0, and it is bounded. Then
(4.1) is well-posed.

Proof Let € > 0 such that

{(e,€)#9

and suppose {x,} is an approximating sequence of problem (2.1). Then
(1) lim,—cosup¥(x,) <p infye(l ‘I’(Y),
(ii) there exist u, € T(x,) and a sequence of positive real numbers €, — 0 such that

(QQutns %), 1 (3, 8(xn))) + 0(g(Xn),y) + €ne £p0 0, ¥yeD,neN,
which implies that for some positive integer m
x, € C(€,€), Vn>m.

Therefore, {x,} is a bounded sequence and there exists a subsequence {x,, } such that {x,, }
converges to xg as £ — 0o. Following the lines similar to the proof of Theorem 4.5, we
conclude that x € . Hence, (4.1) is well-posed and the proof is completed. d

5 Well-posedness of optimization problems by using well-posedness of
constraints

In this section, we derive the well-posedness of problem (4.1) by using the well-posedness

of problem (2.1).

Theorem 5.1 Let D be a nonempty compact set and ¥ be lower semicontinuous. Suppose
problem (4.1) has a unique solution. If problem (2.1) is well-posed, then problem (4.1) is
also well-posed.
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Proof If problem (4.1) has a unique solution xy, and {x,,} is an approximating sequence for
problem (4.1), then there exist u, € T(x,) and a sequence of positive real numbers €, — 0
such that

lim sup ¥ (x,) <p inf ¥ (y),
n— 00 ye
Qs %), (7. 8(00))) + 9 (8(a).7) + €ne £0 0, ¥y € D.

Since D is compact, there exists a subsequence {x,,} of {x,} such that {x,,} converges to a
x (say) as £ — oo. Since problem (2.1) is well-posed, x solves (2.1), i.e.,

(Q@, %), n(y,g®))) + ¢(g(®),y) £p 0, Ve T(x),y € D. (5.1)
Since ¥ is lower semicontinuous, we have
W(x) <p lim inf¥ (x,,) <p lim sup¥(x,,) <p inf ¥(y). (5.2)
—00 {—o00 yes2

Thus, from (5.1) and (5.2) we conclude that x solves problem (4.1). But (4.1) has a unique
solution xy; therefore,

x=x9 and x,— xo.

Hence, (4.1) is well-posed. The proof is completed. d
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