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Abstract
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1 Introduction
The convexity of functions has been frequently used in various fields of pure and applied
mathematics, for instance in function theory, mathematical analysis, functional analy-
sis, probability theory, optimization theory, operational research, information theory. In
short, convex functions entail a strong and elegant interaction between analysis and ge-
ometry. The simple generalization to a convex function extensively widens our scope for
analysis.

Inequalities are frequently used in solving several problems of the applied sciences.
Some recent work on the applications of mathematical inequalities can be found in [7,
12] and [24].

The Jensen inequality for convex functions plays a pivotal role in the theory of in-
equalities because of the fact that various other inequalities, for instance the Holder and
Minkowski inequalities and the arithmetic mean–geometric mean inequality can be ob-
tained as particular cases.

Some useful results on Jensen’s inequality for strongly convex functions and generalized
majorization inequalities can be found in [20] and [13].

For ψ : [a, b] → R where ψ (n–1) is absolutely continuous, the renowned Taylor formula
∀z ∈ [a, b] at the point c ∈ [a, b] is

ψ(z) =
n–1∑

w=0

ψ (w)(c)
w!

(z – c)w +
1

(n – 1)!

∫ z

c
ψ (n)(ξ )(z – ξ )n–1 dξ . (1)
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Taking v = 1, . . . , 5, the Green functions Gv : [a, b] × [a, b] →R are defined as

G1(z, ξ ) =

⎧
⎨

⎩

(b–z)(a–ξ )
b–a , a ≤ ξ ≤ z,

(b–ξ )(a–z)
b–a , z ≤ ξ ≤ b,

(2)

G2(z, ξ ) =

⎧
⎨

⎩
a – ξ , a ≤ ξ ≤ z,

a – z, z ≤ ξ ≤ b,
(3)

G3(z, ξ ) =

⎧
⎨

⎩
z – b, a ≤ ξ ≤ z,

ξ – b, z ≤ ξ ≤ b,
(4)

G4(z, ξ ) =

⎧
⎨

⎩
z – a, a ≤ ξ ≤ z,

ξ – a, z ≤ ξ ≤ b,
(5)

G5(z, ξ ) =

⎧
⎨

⎩
b – ξ , a ≤ ξ ≤ z,

b – z, z ≤ ξ ≤ b.
(6)

Each of these functions is convex and continuous with respect to the two variables z and ξ .

Lemma 1 ([19]) Suppose ψ ∈ C2[a, b], then the following identities are valid:

ψ(z) =
a – z
b – a

ψ(a) +
z – a
b – a

ψ(b) +
∫ b

a
G1(z, ξ )ψ ′′(ξ ) dξ , (7)

ψ(z) = ψ(a) + (z – a)ψ ′(b) +
∫ b

a
G2(z, ξ )ψ ′′(ξ ) dξ , (8)

ψ(z) = ψ(b) + (b – z)ψ ′(a) +
∫ b

a
G3(z, ξ )ψ ′′(ξ ) dξ , (9)

ψ(z) = ψ(b) – (b – a)ψ ′(b) + (z – a)ψ ′(a) +
∫ b

a
G4(z, ξ )ψ ′′(ξ ) dξ , (10)

ψ(z) = ψ(a) + (b – a)ψ ′(a) – (b – z)ψ ′(b) +
∫ b

a
G5(z, ξ )ψ ′′(ξ ) dξ . (11)

Proof Consider the integral

∫ b

a
Gv(z, r)ψ ′′(r) dr =

∫ z

a
Gv(z, r)ψ ′′(r) dr +

∫ b

z
Gv(z, r)ψ ′′(r) dr.

For fixed v = 1, . . . , 5, after integrating for a particular value of the Green functions, (7)–
(11) are obtained. �

In order to state some recent investigations of Jensen’s inequality, we shall use the fol-
lowing assumptions:

(H1) Suppose 2 ≤ k ≤ m are integers and probability distributions p,λ ∈ R
m
+ so that

∑
i pi = 1 and

∑
k λk = 1.

(H2) Suppose (Z,B,μ) represents probability space.
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Suppose for a fixed integer l ≥ 2 and for m = 1, . . . , l, Bl denotes the σ -algebra in
Zl which is generated by the projection mappings prm : Zl → Z given as

prm(z1, . . . , zl) := zm,

where μl represents a product measure on Bl . This measure is uniquely (μ is σ -
finite) specified by

μl(B1 × · · · × Bl) := μ(B1) · · ·μ(Bl), Bm ∈ B, m = 1, . . . , l.

(H3) g is μ-integrable on Z with values in I ⊂R.
(H4) Suppose ψ is convex on I with ψ ◦ g being μ-integrable on Z.

Considering the assumptions (H1)–(H4), we now define the following.

Theorem 1 ([8]) Assume (H1) with ψ : C →R being a convex function where C is a convex
subset of real vector space Z. If z1, . . . , zm ∈ C, then

ψ

( m∑

i=1

pizi

)
≤ Cdis = Cdis(ψ , z, p,λ)

:=
m∑

i=1

( k–1∑

j=0

λj+1pi+j

)
ψ

(∑k–1
j=0 λj+1pi+jzi+j

∑k–1
j=0 λj+1pi+j

)
≤

m∑

i=1

piψ(zi), (12)

while i + j means i + j (mod m).

Theorem 2 ([8]) Suppose (H1)–(H4) hold. Then

ψ

(∫

Z
g dμ

)
≤ Cpar(t) ≤ Cint ≤

∫

Z
ψ ◦ g dμ, t ∈ [0, 1],

where

Cint = Cint(ψ , g,μ, p,λ)

:=
m∑

i=1

( k–1∑

j=0

λj+1pi+j

)∫

Zm
ψ

(∑k–1
j=0 λj+1pi+jg(zi+j)
∑k–1

j=0 λj+1pi+j

)
dμm(z1, . . . , zm), (13)

and for t ∈ [0, 1]

Cpar(t) = Cpar(t,ψ , g,μ, p,λ)

:=
m∑

i=1

( k–1∑

j=0

λj+1pi+j

)

·
∫

Zm
ψ

(
t
∑k–1

j=0 λj+1pi+jg(zi+j)
∑k–1

j=0 λj+1pi+j
+ (1 – t)

∫

Z
g dμ

)
dμm(z1, . . . , zm), (14)

while i + j means i + j (mod m).
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For the purpose of achieving our targets, we construct non-negative linear functionals
from the above theorem.

Remark 1 Under the assumptions of Theorem 1 and Theorem 2 for ψ to be a convex
function, we have

J1(ψ) = J1(z, p,λ;ψ) :=
m∑

i=1

piψ(zi) – Cdis(ψ , z, p,λ) ≥ 0,

J2(ψ) = J1(z, p,λ;ψ) := Cdis(ψ , z, p,λ) – ψ

( m∑

i=1

pizi

)
≥ 0,

J3(ψ) = J3(ψ , g,μ, p,λ) :=
∫

X
ψ ◦ g dμ – Cint(ψ , g,μ, p,λ) ≥ 0,

J4(ψ) = J4(t,ψ , g,μ, p,λ) :=
∫

X
ψ ◦ g dμ – Cpar(t,ψ , g,μ, p,λ) ≥ 0; t ∈ [0, 1],

J5(ψ) = J5(t,ψ , g,μ, p,λ) := Cint(ψ , g,μ, p,λ) – Cpar(t,ψ , g,μ, p,λ) ≥ 0; t ∈ [0, 1],

J6(ψ) = J6(t,ψ , g,μ, p,λ) := Cpar(t,ψ , g,μ, p,λ) – ψ

(∫

X
g dμ

)
≥ 0; t ∈ [0, 1].

2 Main results
To start for real weights, we need the following assumptions:

(A1) For Ju(·) (u = 1, 2), suppose
∑k–1

j=0 λj+1pi+jzi+j
∑k–1

j=0 λj+1pi+j
∈ [a, b] for i = 1, . . . , m.

(A2) For the linear functionals Ju(·) (u = 3, . . . , 6), suppose (H2)–(H4) are satisfied and

∑k–1
j=0 λj+1pi+jg(zi+j)
∑k–1

j=0 λj+1pi+j
∈ [a, b] for i = 1, . . . , m.

We take cyclic refinements of Jensen’s inequality in discrete and continuous versions
and form the following identities with real weights by using Taylor’s formula.

Theorem 3 Suppose m, k ∈N, p1, . . . , pm and λ1, . . . ,λk are real tuples for 2 ≤ k ≤ m, such
that

∑k–1
j=0 λj+1pi+j 
= 0 for i = 1, . . . , m with

∑m
i=1 pi = 1 and

∑k
j=1 λj = 1. Also let z ∈ [a, b] ⊂R

and z ∈ [a, b]m. Consider the function ψ : [a, b] → R such that ψ (n–1) is absolutely contin-
uous and Gv (v = 1, . . . , 5) are same as given in (2)–(6), respectively. Then for (u = 1, . . . , 6)
along with the assumptions (A1) and (A2), we have the following generalized identities:

(a)

Ju(ψ) =
n–1∑

w=1

ψ (w)(a)
w!

Ju
(
(z – a)w)

+
1

(n – 1)!

∫ b

a
ψ (n)(ξ )Ju

(
(z – ξ )n–1

+
)

dξ , (15)

(b)

Ju(ψ) =
n–1∑

w=1

(–1)wψ (w)(b)
w!

Ju
(
(b–z)w)

–
(–1)n–1

(n – 1)!

∫ b

a
ψ (n)(ξ )Ju

(
(ξ – z)n–1

+
)

dξ , (16)
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(c)

Ju(ψ) =
(

ψ(b) – ψ(a)
b – a

)
Ju(z) +

∫ b

a
Ju

(
G1(z, r)

)
( n–1∑

w=2

ψ (w)(a)(r – a)w–2

(w – 2)!

)
dr

+
1

(n – 3)!

∫ b

a
ψ (n)(ξ )

(∫ b

ξ

Ju
(
G1(z, r)

)
(r – ξ )n–3 dr

)
dξ , (17)

Ju(ψ) = ψ ′(b)Ju(z) +
∫ b

a
Ju

(
G2(z, r)

)
( n–1∑

w=2

ψ (w)(a)(r – a)w–2

(w – 2)!

)
dr

+
1

(n – 3)!

∫ b

a
ψ (n)(ξ )

(∫ b

ξ

Ju
(
G2(z, r)

)
(r – ξ )n–3 dr

)
dξ , (18)

Ju(ψ) = –ψ ′(a)Ju(z) +
∫ b

a
Ju

(
G3(z, r)

)
( n–1∑

w=2

ψ (w)(a)(r – a)w–2

(w – 2)!

)
dr

+
1

(n – 3)!

∫ b

a
ψ (n)(ξ )

(∫ b

ξ

Ju
(
G3(z, r)

)
(r – ξ )n–3 dr

)
dξ , (19)

Ju(ψ) = ψ ′(a)Ju(z) +
∫ b

a
Ju

(
G4(z, r)

)
( n–1∑

w=2

ψ (w)(a)(r – a)w–2

(w – 2)!

)
dr

+
1

(n – 3)!

∫ b

a
ψ (n)(ξ )

(∫ b

ξ

Ju
(
G4(z, r)

)
(r – ξ )n–3 dr

)
dξ , (20)

Ju(ψ) = ψ ′(b)Ju(z) +
∫ b

a
Ju

(
G5(z, r)

)
( n–1∑

w=2

ψ (w)(a)(r – a)w–2

(w – 2)!

)
dr

+
1

(n – 3)!

∫ b

a
ψ (n)(ξ )

(∫ b

ξ

Ju
(
G5(z, r)

)
(r – ξ )n–3 dr

)
dξ , (21)

(d)

Ju(ψ) =
(

ψ(b) – ψ(a)
b – a

)
Ju(z) +

∫ b

a
Ju

(
G1(z, r)

)
( n–1∑

w=2

ψ (w)(a)(r – b)w–2

(w – 2)!

)
dr

–
1

(n – 3)!

∫ b

a
ψ (n)(ξ )

(∫ ξ

a
Ju

(
G1(z, r)

)
(r – ξ )n–3 dr

)
dξ , (22)

Ju(ψ) = ψ ′(b)Ju(z) +
∫ b

a
Ju

(
G2(z, r)

)
( n–1∑

w=2

ψ (w)(a)(r – b)w–2

(w – 2)!

)
dr

–
1

(n – 3)!

∫ b

a
ψ (n)(ξ )

(∫ ξ

a
Ju

(
G2(z, r)

)
(r – ξ )n–3 dr

)
dξ , (23)

Ju(ψ) = –ψ ′(a)Ju(z) +
∫ b

a
Ju

(
G3(z, r)

)
( n–1∑

w=2

ψ (w)(a)(r – b)w–2

(w – 2)!

)
dr

–
1

(n – 3)!

∫ b

a
ψ (n)(ξ )

(∫ ξ

a
Ju

(
G3(z, r)

)
(r – ξ )n–3 dr

)
dξ , (24)

Ju(ψ) = ψ ′(a)Ju(z) +
∫ b

a
Ju

(
G4(z, r)

)
( n–1∑

w=2

ψ (w)(a)(r – b)w–2

(w – 2)!

)
dr

–
1

(n – 3)!

∫ b

a
ψ (n)(ξ )

(∫ ξ

a
Ju

(
G4(z, r)

)
(r – ξ )n–3 dr

)
dξ , (25)
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Ju(ψ) = ψ ′(b)Ju(z) +
∫ b

a
Ju

(
G5(z, r)

)
( n–1∑

w=2

ψ (w)(a)(r – b)w–2

(w – 2)!

)
dr

–
1

(n – 3)!

∫ b

a
ψ (n)(ξ )

(∫ ξ

a
Ju

(
G5(z, r)

)
(r – ξ )n–3 dr

)
dξ , (26)

where (z – ξ )+ = max(z – ξ , 0).

Proof Fix u = 1, . . . , 6.
(a) Applying Taylor’s formula (1) at point a, we get

ψ(z) =
n–1∑

w=0

ψ (w)(a)
w!

(z – a)w +
1

(n – 1)!

∫ b

a
ψ (n)(ξ )(z – ξ )n–1

+ dξ . (27)

Since each Ju(·) is a linear functional, applying it to the Taylor expression (27) and using
the constancy property of the Ju(·), we get (15).

(b) Applying Taylor’s formula (1) at point b, we get

ψ(z) =
n–1∑

w=0

(–1)wψ (w)(b)
w!

(z – b)w –
(–1)n–1

(n – 1)!

∫ b

a
ψ (n)(ξ )(ξ – z)n–1

+ dξ , (28)

and following similar steps we get (16).
(c) For fixed v = 1, applying (7) to Ju(·) and using the linearity of Ju(·), we have

Ju(ψ) = ψ(a)Ju

(
b – z
b – a

)
+ ψ(b)Ju

(
z – a
b – a

)
+

∫ b

a
Ju

(
G1(z, r)

)
ψ ′′(r) dr

= ψ(a)
Ju(b – z)

b – a
+ ψ(b)

Ju(z – a)
b – a

+
∫ b

a
Ju

(
G1(z, r)

)
ψ ′′(r) dr

=
1

b – a
(
ψ(a)Ju(b) – ψ(a)Ju(z) + ψ(b)Ju(z) – ψ(b)Ju(a)

)

+
∫ b

a
Ju

(
G1(z, r)

)
ψ ′′(r) dr

=
1

b – a
(
ψ(b)Ju(z) – ψ(a)Ju(z)

)
+

∫ b

a
Ju

(
G1(z, r)

)
ψ ′′(r) dr. (29)

Differentiating (1) twice and putting c = a and replacing n by (n – 2) or utilizing (1) on the
function ψ ′′ at the point a, we get

ψ ′′(r) =
n–1∑

w=2

ψ (w)(a)
(w – 2)!

(r – a)w–2 +
1

(n – 3)!

∫ r

a
ψ (n)(ξ )(r – ξ )n–3 dξ . (30)

Now, using (30) in (29), we get

Ju(ψ) =
(

ψ(b) – ψ(a)
b – a

)
Ju(z) +

∫ b

a
Ju

(
G1(z, r)

)
( n–1∑

w=2

ψ (w)(a)(r – a)w–2

(w – 2)!

)
dr

+
1

(n – 3)!

∫ b

a
Ju

(
G1(z, r)

)(∫ r

a
ψ (n)(ξ )(r – ξ )n–3 dξ

)
dr.
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Now applying Fubini’s theorem to the last term gives (17), respectively, for v = 1 and u =
1, . . . , 6. The results for v = 2, 3, 4, 5 can be obtained in the same way.

(d) Differentiating (1) twice and now taking c = b, we get

ψ ′′(r) =
n–1∑

w=2

ψ (w)(b)
(w – 2)!

(r – b)w–2 –
1

(n – 3)!

∫ b

r
ψ (n)(ξ )(r – ξ )n–3 dξ . (31)

Analogously, putting (31) in (29) and using Fubini’s theorem gives (22), respectively, for
v = 1 and u = 1, . . . , 6. The results for v = 2, 3, 4, 5 can be obtained in the same way. �

The following theorem gives a key criterion to test the n-convexity of a function ψ (see
[23, p. 16]).

Theorem 4 If ψ (n) exists, then ψ is n-convex if and only if ψ (n) ≥ 0.

We now use Theorem 4 to give generalizations of cyclic Jensen type linear functionals
for real weights.

Corollary 1 Under the assumptions of Theorem 3, if ψ is n-convex, we obtain the following
results:

(a) If, for all u = 1, . . . , 6,

Ju
(
(z – ξ )n–1

+
) ≥ 0, ξ ∈ [a, b], (32)

holds, then we have

Ju(ψ) ≥
n–1∑

w=1

ψ (w)(a)
w!

Ju
(
(z – a)w)

(33)

for u = 1, . . . , 6.
(b) If, for all u = 1, . . . , 6,

(–1)n–1Ju
(
(ξ – z)n–1

+
) ≤ 0, ξ ∈ [a, b], (34)

holds, then we have

Ju(ψ) ≥
n–1∑

w=1

(–1)wψ (w)(b)
w!

Ju
(
(b – z)w)

(35)

for u = 1, . . . , 6.
(c) If, for all u = 1, . . . , 6 and v = 1, . . . , 5,

∫ b

ξ

Ju
(
Gv(z, r)

)
(r – ξ )n–3 dr ≥ 0, ξ ∈ [a, b], (36)



Mehmood et al. Journal of Inequalities and Applications        (2019) 2019:240 Page 8 of 18

holds, then we have

Ju(ψ) ≥
(

ψ(b) – ψ(a)
b – a

)
Ju(z)

+
∫ b

a
Ju

(
G1(z, r)

)
( n–1∑

w=2

ψ (w)(a)(r – a)w–2

(w – 2)!

)
dr, (37)

Ju(ψ) ≥ ψ ′(b)Ju(z) +
∫ b

a
Ju

(
G2(z, r)

)
( n–1∑

w=2

ψ (w)(a)(r – a)w–2

(w – 2)!

)
dr, (38)

Ju(ψ) ≥ –ψ ′(a)Ju(z) +
∫ b

a
Ju

(
G3(z, r)

)
( n–1∑

w=2

ψ (w)(a)(r – a)w–2

(w – 2)!

)
dr, (39)

Ju(ψ) ≥ ψ ′(a)Ju(z) +
∫ b

a
Ju

(
G4(z, r)

)
( n–1∑

w=2

ψ (w)(a)(r – a)w–2

(w – 2)!

)
dr, (40)

Ju(ψ) ≥ ψ ′(b)Ju(z) +
∫ b

a
Ju

(
G5(z, r)

)
( n–1∑

w=2

ψ (w)(a)(r – a)w–2

(w – 2)!

)
dr. (41)

(d) If, for all u = 1, . . . , 6 and v = 1, . . . , 5,

∫ ξ

a
Ju

(
Gv(z, r)

)
(r – ξ )n–3 dr ≤ 0, ξ ∈ [a, b], (42)

holds, then we have

Ju(ψ) ≥
(

ψ(b) – ψ(a)
b – a

)
Ju(z) +

∫ b

a
Ju

(
G1(z, r)

)
( n–1∑

w=2

ψ (w)(b)(r – b)w–2

(w – 2)!

)
dr, (43)

Ju(ψ) ≥ ψ ′(b)Ju(z) +
∫ b

a
Ju

(
G2(z, r)

)
( n–1∑

w=2

ψ (w)(b)(r – b)w–2

(w – 2)!

)
dr, (44)

Ju(ψ) ≥ –ψ ′(a)Ju(z) +
∫ b

a
Ju

(
G3(z, r)

)
( n–1∑

w=2

ψ (w)(b)(r – b)w–2

(w – 2)!

)
dr, (45)

Ju(ψ) ≥ ψ ′(a)Ju(z) +
∫ b

a
Ju

(
G4(z, r)

)
( n–1∑

w=2

ψ (w)(b)(r – b)w–2

(w – 2)!

)
dr, (46)

Ju(ψ) ≥ ψ ′(b)Ju(z) +
∫ b

a
Ju

(
G5(z, r)

)
( n–1∑

w=2

ψ (w)(b)(r – b)w–2

(w – 2)!

)
dr. (47)

Proof We begin with the proof of (a) and its assumed conditions. Fix u = 1, . . . , 6.
By our assumption ψ (n–1) is absolutely continuous on [a, b], as a result ψ (n) exists almost

everywhere. Moreover, ψ is supposed to be n-convex, so by Theorem 4, ψ (n)(z) ≥ 0 almost
everywhere on [a, b]. Therefore by applying Theorem 3, we get (33).

Similarly, the rest of the inequalities can be proved. �

We now give the final results of the present section.
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Theorem 5 Under the assumptions of Theorem 3 if p1, . . . , pm and λ1, . . . ,λk are non-
negative tuples such that

∑m
i=1 pi = 1 and

∑k
j=1 λj = 1, then for ψ being n-convex, we have:

(a) Inequality (33) is valid when n ≥ 3. Besides, for the function

F1(z) :=
n–1∑

w=1

ψ (w)(a)
w!

(z – a)w (48)

to be convex, the right side of (33) is non-negative, meaning

Ju(ψ) ≥ 0, u = 1, . . . , 6. (49)

(b) For n even, (35) holds. Furthermore, for the function

F2(z) :=
n–1∑

w=1

(–1)wψ (w)(b)
w!

(b – z)w (50)

to be convex, the right hand side of (35) is non-negative, particularly (49) holds.
(c) Inequalities (37)–(41) hold for all n ≥ 3. Moreover, let (37)–(41) be valid and

n–1∑

w=2

ψ (w)(a)(r – a)w–2

(w – 2)!
≥ 0, (51)

then we get (49) for every u = 1, . . . , 6 and v = 1, . . . , 5.
(d) If n is even, then (43)–(47) hold. Moreover, let (43)–(47) be valid and

n–1∑

w=2

ψ (w)(b)(r – a)w–2

(w – 2)!
≥ 0, (52)

then we get (49) for u = 1, . . . , 6 and for v = 1, . . . , 5.

Proof (a) For fixed u = 1, . . . , 6.
For (n ≥ 3), x �→ ((x – t)+)n–1 is a convex function, so (32) holds by virtue of Remark

1 on account of the given weights being positive. Hence (33) is established by taking into
account Corollary 1(a). Moreover, we can write the R.H.S. of (33) in the form Ju(F1) for (u =
1, . . . , 6), after reorganizing this side. By using Remark 1 we can ensure the non-negativity
of the R.H.S. of (33), especially (49) is established.

(b) Similar to the proof of (a).
(c) Fix u = 1, . . . , 6.
Considering the positive weights and v = 1, . . . , 5, Gv(z, r) is convex. Hence using Remark

1, Ju(Gv(z, r)) ≥ 0. Since ψ is n-convex, by using Corollary 1(c), we get (37)–(41). Moreover,
the linear function z is convex (concave), therefore considering the positive weights, Re-
mark 1 shows that 0 ≤ Ju(z) ≥ 0 implying Ju(z) = 0. Finally using the positivity of Ju(Gv(z, r))
and (51), (49) is obtained.

(d) Similar to the proof of (c). �
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3 Applications to monotonic functionals
In [22], Pečarić et al. proposed a more generalized class of n-convex functions, that is,
n-convex functions at a point (see also [1]).

Definition 1 Consider the function ψ : I →R, d is a point in the interior of I . ψ is called
(n + 1)-convex at d if there exists a constant C so that the function

F(z) = ψ(z) –
C
n!

zn (53)

is n-concave on the interval I ∩ (–∞, d] and n-convex on the interval I ∩ [d,∞). The func-
tion ψ is called (n + 1)-concave at d if –ψ is (n + 1)-convex at d.

A property that explains the name of this class is that a function is n-convex on an inter-
val if and only if it is n-convex at every point of the interval (see [22]). Witkowski et al. in
[22] deduced the conditions which are necessary and sufficient on two linear functionals,

Γ : C
(
[a, d]

) →R

and

Υ : C
(
[d, b]

) →R

so that Γ (ψ) ≤ Υ (ψ) is valid for each ψ which is n-convex at d. We shall apply this ex-
tended class of n-convex functions to obtaining monotonic linear functionals of Jensen
type. Suppose ζ u represents the monomials ζ u(x) = xu, u ∈ N0. For the remaining part
of this section, Γu(ψ[a,d]) and Υu(ψ[d,b]) will represent the linear functionals obtained as
the difference of the L.H.S. and R.H.S. of inequality (33), where u = 1, . . . , 6, applied to the
intervals [a, d] and [d, b], respectively, i.e., for z ∈ [a, d]m and y ∈ [d, b]m. Let

Γu(ψ[a,d]) := Γu(z, p,λ;ψ[a,d]) = Ju(ψ) –
n–1∑

w=1

ψ (w)(a)
w!

Ju
(
(z – a)w)

, (54)

Υu(ψ[d,b]) := Υu(y, q, λ̃;ψ[d,b]) = Ju(ψ) –
n–1∑

w=1

ψ (w)(d)
w!

Ju
(
(y – d)w)

. (55)

In a similar vein, by using the inequality (35), for u = 1, . . . , 6, we define linear functionals
as

Γ̂u(ψ[a,d]) := Γ̂ (z, p,λ;ψ[a,d]) = Ju(ψ) –
n–1∑

w=1

(–1)wψ (w)(d)
w!

Ju
(
(d – z)w)

, (56)

Υ̂u(ψ[d,b]) := Υ̂u(y, q, λ̃;ψ[d,b]) = Ju(ψ) –
n–1∑

w=1

(–1)wψ (w)(b)
w!

Ju
(
(b – y)w)

. (57)

By constructing new linear functionals Γu(ψ[a,d]) and Υu(ψ[d,b]) using identity (15) for u =
1, . . . , 6, on [a, d] and [d, b] we obtain

Γu(ψ[a,d]) =
1

(n – 1)!

∫ d

a
ψ (n)(ξ )Ju

(
(z – ξ )n–1

+
)

dξ , (58)
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Υu(ψ[d,b]) =
1

(n – 1)!

∫ b

d
ψ (n)(ξ )Ju

(
(y – ξ )n–1

+
)

dξ . (59)

By applying identity (16) for u = 1, . . . , 6 to the intervals [a, d] and [d, b] we get

Γ̂u(ψ[a,d]) = –
(–1)n–1

(n – 1)!

∫ d

a
ψ (n)(ξ )Ju

(
(ξ – z)n–1

+
)

dξ , (60)

Υ̂u(ψ[d,b]) = –
(–1)n–1

(n – 1)!

∫ b

d
ψ (n)(ξ )Ju

(
(ξ – y)n–1

+
)

dξ . (61)

Immediately, we can state the first theorem of the present section.

Theorem 6 Consider z ∈ [a, d]m and y ∈ [d, b]m where we have the following.
(i) For u = 1, . . . , 6, consider

Ju
(
(z – ξ )n–1

+
) ≥ 0, ξ ∈ [a, d], (62)

Ju
(
(y – ξ )n–1

+
) ≥ 0, ξ ∈ [d, b], (63)

∫ d

a
Ju

(
(z – ξ )n–1

+
)

dξ =
∫ b

d
Ju

(
(y – ξ )n–1

+
)

dξ , (64)

and let Γu(ψ[a,d]) and Υu(ψ[d,b]) be the linear functionals introduced in (54) and (55).
If ψ : [a, b] →R is (n + 1)-convex at the point d, then

Γu(ψ[a,d]) ≤ Υu(ψ[d,b]) for u = 1, . . . , 6. (65)

(ii) Similarly, for u = 1, . . . , 6, suppose

(–1)n–1Ju
(
(ξ – z)n–1

+
) ≤ 0, ξ ∈ [a, d], (66)

(–1)n–1Ju
(
(ξ – y)n–1

+
) ≤ 0, ξ ∈ [d, b], (67)

∫ d

a
Ju

(
(ξ – z)n–1

+
)

dξ =
∫ b

d
Ju

(
(ξ – y)n–1

+
)

dξ , (68)

and let Γ̂u(ψ[a,d]) and Υ̂u(ψ[d,b]) be the linear functionals which are given by (56) and
(57). If ψ : [a, b] →R is (n + 1)-convex at the point d, then

Γ̂u(ψ[a,d]) ≤ Υ̂u(ψ[d,b]) for u = 1, . . . , 6. (69)

Proof (i) Fix u = 1, . . . , 6. Using Definition 1, construct the function F = ψ – C
n!ζ

n such that
F is n-concave on [a, d] and is n-convex on [d, b]. Now by applying Corollary 1 to F in the
interval [a, d], we get

0 ≥ Γu(Ψ ) = Γu(ψ[a,d]) –
C

(n)!
Γu

(
ζ n

[a,d]
)
. (70)

Similarly, applying Corollary 1 to F in [d, b], we have

0 ≤ Υu(Ψ ) = Υu(ψ[d,b]) –
C

(n)!
Υu

(
ζ n

[d,a]
)
. (71)
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Moreover, utilizing the monomials ζ n(·) in (58) and (59) we get

Γu
(
ζ n

[a,d]
)

= n
∫ d

a
Ju

(
(z – ξ )n–1

+
)

dξ , (72)

Υu
(
ζ n

[d,b]
)

= n
∫ b

d
Ju

(
(y – ξ )n–1

+
)

dξ . (73)

Therefore assumption (64) is equivalent to

Γu
(
ζ n

[a,d]
)

= Υu
(
ζ n

[d,b]
)
.

So from (70) and (71), one can get

Γu(ψ[a,d]) ≤ C
(n)!

Γu
(
ζ n

[a,d]
)

=
C

(n)!
Υu

(
ζ n

[d,b]
) ≤ Υu(ψ[d,b]). (74)

So (65) is obtained for u = 1, . . . , 6.
(ii) A method similar to the above can be employed by using the identities (60) and (61).

Hence by deducing supposition (68), we have (69) for u = 1, . . . , 6. �

We conclude with the following remarks.

Remark 2 Note that inequality (65) and (69) are also valid on replacing assumptions (64)
and (68) with the weaker assumptions that

C
(
Υu

(
ζ n

[d,b]
)

– Γu
(
ζ n

[a,d]
)) ≥ 0 and

C
(
Υ̂u

(
ζ n

[d,b]
)

– Γ̂u
(
ζ n

[a,d]
)) ≥ 0

for u = 1, . . . , 6, respectively.

Remark 3 Similar results can also be formulated by employing Theorem 6 for the inequal-
ities (37) to (41) and (43) to (47) in Corollary 1.

4 New entropic bounds
In fields like probability theory, mathematical statistics and information theory, mea-
sures of dissimilarity between probability distributions play a pivotal role. Various di-
vergence measures have been introduced for this purpose. For instance, we have the f -
divergence, some particular cases of which are the Kullback–Leibler divergence and the
Jensen–Shannon divergence. Entropies are used to quantify the uncertainty, diversity and
the randomness of a system. The idea is frequently used in several scientific disciplines.
Some new estimations for the Shannon and Zipf–Mandelbrot entropies can be found in
[14].

In the current section we will work in discrete space, i.e., with discrete probability dis-
tributions.

We first introduce some important definitions and results used for the rest of this sec-
tion. Csiszár in [5] introduced the following notion of a divergence functional.
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Definition 2 Let ψ : (0,∞) → (0,∞) be a convex function and let p := (p1, . . . , pm) and
q := (q1, . . . , qm) be positive probability distributions. The ψ-divergence functional is

Iψ (p, q) :=
n∑

i=1

qiψ

(
pi

qi

)
.

It is possible to use non-negative probability distributions in the ψ-divergence func-
tional, by defining

ψ(0) := lim
t→0+

ψ(t); 0ψ

(
0
0

)
:= 0; 0ψ

(
a
0

)
:= lim

t→0+
tψ

(
a
t

)
, a > 0.

Based on the previous definition, we introduce a new functional.

Definition 3 Suppose ψ : I → R with I being an interval in R. Suppose p := (p1, . . . , pm) ∈
R

m and q := (q1, . . . , qm) ∈ (0,∞)m such that

pi

qi
∈ I, i = 1, . . . , m.

Then let

Ĩψ (p, q) =
m∑

i=1

qiψ

(
pi

qi

)
. (75)

Remark 4 As a consequences of Corollary 1 for the case u = 1, we consider the explicit
form of our generalized Jensen inequalities for n-convex functions, from (33) and (35):

m∑

i=1

piψ(zi) –
m∑

i=1

( k–1∑

j=0

λj+1pi+j

)
ψ

(∑k–1
j=0 λj+1pi+jzi+j

∑k–1
j=0 λj+1pi+j

)

≥
n–1∑

w=1

ψ (w)(a)
w!

( m∑

i=1

pi(zi – a)w –
m∑

i=1

( k–1∑

j=0

λj+1pi+j

)(∑k–1
j=0 λj+1pi+jzi+j

∑k–1
j=0 λj+1pi+j

– a
)w

)
, (76)

m∑

i=1

piψ(zi) –
m∑

i=1

( k–1∑

j=0

λj+1pi+j

)
ψ

(∑k–1
j=0 λj+1pi+jzi+j

∑k–1
j=0 λj+1pi+j

)

≥
n–1∑

w=1

(–1)wψ (w)(b)
w!

( m∑

i=1

pi(b – zi)w –
m∑

i=1

( k–1∑

j=0

λj+1pi+j

)(
b –

∑k–1
j=0 λj+1pi+jzi+j

∑k–1
j=0 λj+1pi+j

)w
)

.

(77)

For the rest of this section, we will use the following assumptions:
(A3) Suppose for m, k ∈N (2 ≤ k ≤ m), λ1, . . . ,λk are positive probability distributions.
(A4) Let q := (q1, . . . , qm) ∈ (0,∞)m.

Theorem 7 Considering (A3) and (A4), let p := (p1, . . . , pm) ∈R
m such that

pi

qi
∈ [a, b], i = 1, . . . , m.
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Let ψ : [a, b] → R where ψ (n–1) is absolutely continuous and ψ is n-convex, then the fol-
lowing inequalities hold:

(a)

Ĩψ (p, q) ≥
m∑

i=1

( k–1∑

j=0

λj+1qi+j

)
ψ

(∑k–1
j=0 λj+1pi+j

∑k–1
j=0 λj+1qi+j

)
+

n–1∑

w=1

ψ (w)(a)
w!

·
( m∑

i=1

qi

(
pi

qi
– a

)w

–
m∑

i=1

( k–1∑

j=0

λi+1qi+j

)(∑k–1
i=0 λi+1pi+j

∑k–1
j=0 λj+1qi+j

– a
)w

)
, (78)

(b)

Ĩψ (p, q) ≥
m∑

i=1

( k–1∑

j=0

λj+1qi+j

)
ψ

(∑k–1
j=0 λj+1pi+j

∑k–1
j=0 λj+1qi+j

)
+

n–1∑

w=1

(–1)wψ (w)(b)
w!

·
( m∑

i=1

qi

(
b –

pi

qi

)w

–
m∑

i=1

( k–1∑

j=0

λj+1qi+j

)(
b –

∑k–1
j=0 λj+1pi+j

∑k–1
j=0 λj+1qi+j

)w
)

. (79)

Proof Replacing pi with qi and zi with pi
qi

for (i = 1, . . . , m) in (76) and (77), we get (78) and
(79), respectively. �

We now present two significant applications of the previous results.
Shannon’s entropy, also known as a measure of uncertainty, plays a pivotal role in in-

formation theory. It is also frequently applied in fields like population genetics, molecular
ecology and dynamical systems (see [18]). Some recent bounds for Shannon entropy can
be found in [9, 15]. For a positive m-tuple p = (p1, . . . , pm) such that

∑m
i=1 pi = 1, the Shan-

non entropy is defined by

S(p) = –
m∑

i=1

pi ln pi. (80)

Corollary 2 Suppose (A3) holds.
(a) Considering (A4), if n is even, we get

m∑

i=1

qi ln qi ≥
m∑

i=1

( k–1∑

j=0

λj+1qi+j

)
ln

( k–1∑

j=0

λj+1qi+j

)
+

n–1∑

w=1

(–1)w

w.(a)w

·
( m∑

i=1

qi

(
1
qi

– a
)w

–
m∑

i=1

( k–1∑

j=0

λj+1qi+j

)(
1

∑k–1
j=0 λj+1qi+j

– a
)w

)
.(81)

(b) If q := (q1, . . . , qm) is a positive probability distribution, while n is even, we obtain the
bounds for the Shannon entropy of q,

S(q) ≤ –
m∑

i=1

( k–1∑

j=0

λj+1qi+j

)
ln

( k–1∑

j=0

λj+1qi+j

)
–

n–1∑

w=1

(–1)w

w.(a)w

·
( m∑

i=1

qi

(
1
qi

– a
)w

–
m∑

i=1

( k–1∑

j=0

λj+1qi+j

)(
1

∑k–1
j=0 λj+1qi+j

– a
)w

)
. (82)

For n odd, (81) and (82) are satisfied in the reverse directions.
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Proof (a) Substituting ψ(t) := – ln t, and p := (1, 1, . . . , 1) in Theorem 7(a), we obtain the
desired results.

(b) This part is a special case of (a). �

The Kullback–Leibler measure, also known as the relative entropy, is a famous non-
parametric measure. It is also one of the most famous distance functions used in signal
processing, information theory and mathematical statistics. Some recent bounds for the
relative entropy can be found in [9, 15]. The Kullback–Leibler distance [17] between the
positive probability distributions p = (p1, . . . , pm) and q = (q1, . . . , qm) is given as

D(q ‖ p) =
m∑

i=1

qi ln

(
qi

pi

)
. (83)

Corollary 3 Suppose (A3) holds.
(a) If q := (q1, . . . , qm), p := (p1, . . . , pm) ∈ (0,∞)m. Then, for even n, we get

m∑

i=1

qi ln

(
qi

pi

)
≥

m∑

i=1

( k–1∑

j=0

λj+1qi+j

)
ln

(∑k–1
j=0 λj+1qi+j

∑k–1
j=0 λj+1pi+j

)
+

n–1∑

w=1

(–1)w

w.(a)w

·
( m∑

i=1

qi

(
pi

qi
– a

)w

–
m∑

i=1

( k–1∑

j=0

λj+1qi+j

)(∑k–1
j=0 λj+1pi+j

∑k–1
j=0 λj+1qi+j

– a
)w

)
.

(84)

(b) If q := (q1, . . . , qm), p := (p1, . . . , pm) are positive probability distributions with n even,
we obtain

D(q ‖ p) ≥
m∑

i=1

( k–1∑

j=0

λj+1qi+j

)
ln

(∑k–1
j=0 λj+1qi+j

∑k–1
j=0 λj+1pi+j

)
+

n–1∑

w=1

(–1)w

w.(a)w

·
( m∑

i=1

qi

(
pi

qi
– a

)w

–
m∑

i=1

( k–1∑

j=0

λj+1qi+j

)(∑k–1
j=0 λj+1pi+j

∑k–1
j=0 λj+1qi+j

– a
)w

)
. (85)

In the case n is odd, (84) and (85) are satisfied in the reverse directions.

Proof (a) Setting ψ(t) := – ln t in Theorem 7(a) gives the required results.
(b) This part is a special case of (a). �

Philologist George Kingsley Zipf (1902–1950) studied statistical occurrences of words
in different languages. It was one of the first academic studies of word frequency and was
originally prescribed only for linguistics. It was only later that many other disciplines took
credit of it: the Pareto law in economy reveals another aspect of it and the “Zipfian distri-
bution” is present in other fields as well: information science, bibliometrics, social sciences
etc.

Benoit Mandelbrot (1924–2010), in 1966, generalized the Zipf law and improved for
counting the low-rank words. It has various applications in art, in ecological field studies
and is also used in information sciences [6, p. 294]. Some of the recent studies regarding
the Zipf–Mandelbrot law can be found in the listed references (see [9, 10, 15, 16]).
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Hence if we rank (r) word in accordance with the frequency of the word occurrence (ψ ),
the product is a constant (C):

C = rψ .

For m ∈ {1, 2, . . .}, t ≥ 0 and s > 0 the Zipf–Mandelbrot law is given as

ψ(i; m, t, s) =
1

((i + t)sHm
t,s)

, i = (1, 2, . . . , m), (86)

where

Hm
t,s =

m∑

k=1

1
(k + t)s .

In the formula, i represents the rank of the data, t and s are parameters of the distribution.
Suppose m ∈ {1, 2, . . .}, t ≥ 0, s > 0, then the Zipf–Mandelbrot entropy is given as

Z(H , t, s) =
s

Hm
t,s

m∑

i=1

ln(i + t)
(i + t)s + ln

(
Hm

t,s
)
. (87)

Consider

qi = ψ(i; m, t, s) =
1

((i + t)sHm
t,s)

. (88)

The following results give bounds for the Zipf–Mandelbrot entropy.

Theorem 8 Suppose (A3) holds and q is the same as given in (88) by the Zipf–Mandelbrot
law with parameters m ∈ {1, 2, . . .}, t ≥ 0, s > 0. For n even, we have

S(q) = Z(H , t, s)

≤ –
m∑

i=1

( k–1∑

j=0

λj+1

((i + j + t)sHm
t,s)

)
ln

(
1

Hm
t,s

k–1∑

j=0

λj+1

((i + j + t)s)

)

–
n–1∑

w=1

(–1)w

w.(a)w

( m∑

i=1

1
((i + t)sHm

t,s)
((

(i + t)sHm
t,s

)
– a

)w
)

+
n–1∑

w=1

(–1)w

w.(a)w

( m∑

i=1

( k–1∑

j=0

λj+1

((i + j + t)sHm
t,s)

)(
1

∑k–1
j=0

λj+1
((i+j+t)sHm

t,s)

– a
)w

)
. (89)

Equation (89) holds in the opposite direction for n odd.

Proof Substituting this qi = 1
((i+t)sHm

t,s) in Corollary 2(b) gives the required result. Also note
that

∑m
i=1 qi = 1. Moreover, using the above qi in the Shannon entropy (80), we get the
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Mandelbrot entropy (87),

S(q) = –qi ln qi

= –
m∑

i=1

1
((i + t)sHm

t,s)
ln

1
((i + t)sHm

t,s)

=
–1
Hm

t,s

m∑

i=1

1
(i + t)s ln

1
(i + t)sHm

t,s

=
–1
Hm

t,s

m∑

i=1

1
(i + t)s

(
ln(1) – s ln(u + t) – ln

(
Hm

t,s
))

=
1

Hm
t,s

m∑

i=1

1
(i + t)s

(
s ln(i + t) + ln

(
Hm

t,s
))

=
s

Hm
t,s

m∑

i=1

ln(i + t)
(i + t)s + ln

(
Hm

t,s
)
. (90)

�

Corollary 4 Suppose (A3) holds and for t1, t2 ∈ [0,∞), s1, s2 > 0, let Hm
t1,s1 =

∑m
k=1

1
(k+t1)s1

and Hm
t2,s2 =

∑m
k=1

1
(k+t2)s2 . Now using qi = 1

(i+t1)s1 Hm
t1,s1

and pi = 1
(i+t2)s2 Hm

t2,s2
in Corollary 3(b),

with n even, we have

D(q ‖ p) =
m∑

i=1

1
(i + t1)s1 Hm

t1,s1

ln

( (i + t2)s2 Hm
t2,s2

(i + t1)s1 Hm
t1,s1

)

≥
m∑

i=1

( k–1∑

j=0

λj+1

(i + j + t1)s1 Hm
t1,s1

)
ln

(∑k–1
j=0 λj+1

1
(i+j+t1)s1 Hm

t1,s1∑k–1
j=0 λj+1

1
(i+j+t2)s2 Hm

t2,s2

)

+
n–1∑

w=1

(–1)w

w.(a)w

( m∑

i=1

1
(i + t1)s1 Hm

t1,s1

( (i + t1)s1 Hm
t1,s1

(i + t2)s2 Hm
t2,s2

– a
)w

)

–
n–1∑

w=1

(–1)w

w.(a)w

·
( m∑

i=1

( k–1∑

j=0

λj+1

(i + j + t1)s1 Hm
t1,s1

)(∑k–1
j=0 λj+1

1
(i+j+t2)s2 Hm

t2,s2∑k–1
j=0 λj+1

1
(i+j+t1)s1 Hm

t1,s1

– a
)w

)
. (91)

If n is odd, (91) holds in the reverse direction.

5 Concluding remarks
New upper bounds for Grïss and Ostrowski type inequalities can be formulated (see [2]) as
a direct application of the results obtained by Dragomir et al. in [4] from new generalized
inequalities for n-convex functions obtained in the first section. We can also construct
several functionals from the inequalities introduced in Theorem 1 and give mean value
theorems of Lagrange and Cauchy type for n-convex functions. Moreover, considering the
n-exponentially method introduced by Pečarić et al. in [11] and [21] (see also [3]), we can
establish a novel collection of non-trivial examples of functions which are n-exponentially
and exponentially convex. Finally we can also construct monotonic Cauchy means.
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