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Abstract
The non-Newtonian polytropic filtration equation with a convection term

vt = div(a(x)|v|α|∇v|p–2∇v) +
N∑

i=1

∂ai(v, x, t)
∂xi

is considered, where p > 1, α > 0, a(x) ≥ 0 with a(x)|x∈∂Ω = 0. This kind of equation is
degenerate on the boundary, the usual boundary value condition may be
overdetermined. Some conditions depending on a(x) and ai(·, x, t), which can take
place of the boundary value condition, are found. Moreover, how the nonlinear term
|v|α affects the stability of weak solutions is revealed.
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1 Introduction
Consider non-Newtonian polytropic filtration equation with a convection term

vt = div
(
a(x)|v|α|∇v|p–2∇v

)
+

N∑

i=1

∂ai(v, x, t)
∂xi

, (x, t) ∈ Ω × (0, T), (1.1)

with the initial-boundary value conditions

v|t=0 = v0(x), x ∈ Ω , (1.2)

v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T), (1.3)

where p > 1, α ≥ 0, a(x) ∈ C1(Ω), ai(s, x, t) ∈ C1(R × Ω × [0, T]) for every i = 1, 2, . . . , N ,
Ω ⊂R

N is a bounded domain with a smooth boundary ∂Ω . The equations like (1.1) arise
from a variety of diffusion phenomena, such as soil physics, fluid dynamics, combustion
theory and reaction chemistry, one can see [1–4] and the references therein. When α >
0, a(x) ≡ 1, the well-posedness problem of Eq. (1.1) has been studied thoroughly. Many
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scholars had been interested in the polytropic infiltration equations of the form

ut = div
(|u|r|∇u|p–2∇u

)
+ f (x, t, u,∇u),

or equivalently

ut = div
(∣∣∇um∣∣p–2∇um)

+ f (x, t, u,∇u).

To be more specific: If f (x, t, u,∇u) = 0, the Cauchy problem of this kind of equation can be
traced back to Gilding–Peletier [5]. Later, if the initial value u0(x) ∈ L1(RN ), the existence
and the uniqueness of weak solution were studied and ut ∈ L1(RN × (τ , T)) was proved for
any τ > 0 [6]. If the initial value u0(x) is just a measure, a similar problem was considered
in [7, 8]. A more general equation was studied in [9] based on a L1 initial value condition. If
f (x, t, u,∇u) is a source term, the Cauchy problem was studied in [10] etc. For the initial-
boundary value problem, when f (x, t, u,∇u) = 0 and u0(x) ∈ L∞(Ω), the well-posedness
problem was studied in [11, 12] etc. When f (x, t, u,∇u) = ∇A(u), by modifying the usual
Moser iteration and imposing some restrictions on the convection function A(s), the local
L∞-estimates were made and ut ∈ L2(RN ×(τ , T)) was proved, provided that u0(x) ∈ Lq(Ω)
with q ≥ 1 [13]. The large time behavior of solutions had been studied in [14–16] etc. The
extinction, positivity and the blow-up of solutions had been studied in [17, 18] etc. The fi-
nite speed propagation was studied in [19] provided that f (x, t, u,∇u) = – �β(x) ·∇uq is with
orientated convection. Of course, there are a great deal of papers to study various subjects
on these kinds of equations, for examples, one can refer to [20–26] and the references
therein.

If we regard Eq. (1.1) as the generalization of the heat conduction equation, then a(x)|v|α
has the meaning of nonlinear thermal conductivity depending on the temperature v =
v(x, t) [20]. If we consider Eq. (1.1) as the generalization of the reaction-diffusion equation,
a(x) is the diffusion coefficient [27]. When a(x) = d(x)β , α = 0 and ai ≡ 0 in Eq. (1.1), Yin–
Wang’s work [28] reveals that the uniqueness of the weak solution is independent of the
boundary value condition when β > p – 1. Moreover, they generalized [27]’s work to the
following equation:

∂u
∂t

– div
(
a(x)|∇u|p–2∇u

)
–

N∑

i=1

bi(x)Diu + c(x, t)u = f (x, t),

where a(x) ≥ 0, and divided the boundary ∂Ω into three parts: the non-degenerate part,
the weakly degenerate part and the strongly degenerate part. On the first two parts, the
boundary value condition can be imposed in the sense of the trace. While, in the strongly
degenerate part, the boundary value condition only can be explained in a much weaker
sense than the trace. Recently, using some ideas of [27], the existence and the uniqueness
of weak solution to some special cases of Eq. (1.1) had been studied by the author in [29–
31], where a(x) satisfies

a(x) > 0, x ∈ Ω , a(x) = 0, x ∈ ∂Ω . (1.4)
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We have found that the Dirichlet boundary condition (1.3) may be overdetermined. In-
stead, a partial boundary value condition

v(x, t) = 0, (x, t) ∈ Σp × (0, T), (1.5)

is required when the stability of weak solutions is discussed, where Σp ⊆ ∂Ω is a relatively
open subset of ∂Ω . The problem lies in that, by choosing different test functions, we only
can find the different Σp ⊂ ∂Ω in (1.5). From this we observe that how to find an exact
partial boundary Σp in (1.5) to match up with the nonlinear equations with the type (1.1)
seems almost impossible. In this paper, we may ponder about and tackle the problem from
another perspective. We are ready to find some conditions, which are related to a(x) and
ai(·, x, t), to take place of the boundary value condition (1.3) (or (1.5)). Technically, since α >
0, how the nonlinear term |v|α affects the stability of weak solutions is the main difficulty
we should overcome. Let us give the definition of weak solution.

Definition 1.1 A function u(x, t) is said to be a weak solution of Eq. (1.1) with the initial
value (1.2), if

v ∈ L∞(QT ),
∂v
∂t

∈ Lp′(
0, T ; W 1,p′

(Ω)
)
, a(x)|v|α|∇v|p ∈ L1(QT ),

and, for any function ϕ ∈ C1
0(QT ),

∫∫

QT

(
∂v
∂t

ϕ + a(x)|v|α|∇v|p–2∇v · ∇ϕ +
N∑

i=1

ai(v, x, t)ϕxi

)
dx dt = 0. (1.6)

The initial value (1.2) is satisfied in the sense of

lim
t→0

∫

Ω

∣∣v(x, t) – v0(x)
∣∣dx = 0. (1.7)

If v satisfies the boundary value condition (1.3) (or the partial boundary value condition
(1.5)) in the sense of the trace, then we say v is a weak solution of the initial-boundary
value problem of Eq. (1.1).

Here p′ = p
p–1 . By the parabolically regularized method, we can prove the following ex-

istence theorem.

Theorem 1.2 If p ≥ 2, a(x) ∈ C1(Ω) satisfies (1.4), ai(s, x, t) ∈ C1(R× Ω × [0, T]),

∂ai

∂xi
≤ 0,

0 ≤ v0 ∈ L∞(Ω), v0 ∈ W 1,p(Ω),

then Eq. (1.1) with the initial value (1.2) has a nonnegative solution v. Moreover, if we add
the additional condition

∫

Ω

a(x)–δ dx < ∞,
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where δ > 0 satisfied 1
δ

≤ p – 1, then the boundary value condition (1.3) (or the partial
boundary value condition (1.5)) is true in the sense of the trace.

We do not pay so much attention on the existence of the weak solution. Theorem 1.2 is
given for the completeness of the paper. Actually, when ai ≡ 0, i = 1, 2, . . . , N , only if p > 1,
the existence of weak solution with ∂v

∂t ∈ L2(QT ) had been proved in [30]. At the same
time, the existence of weak solution to Eq. (1.1) can be proved in the other sense [31].
Moreover, the condition v0 ∈ W 1,p(Ω) can be weaken to a(x)|∇v0|p ∈ L1(Ω). In addition,
if 1 < p ≤ 2 and ai(v, x, t) ≡ 0, how the degeneracy of a(x) on the boundary affects the
stability of weak solutions had first been studied in [30]. If ai(v, x, t) = ai(v), the stability of
a class of solutions satisfying

1
λ

(∫

Ω\Ωλ

a(x)
∣∣∇vm∣∣p dx

) 1
p′

≤ c, (1.8)

had been originally studied in [31], where m > 1 and Ωλ = {x ∈ Ω : a(x) > λ}. Different from
the method used in [30, 31], in order to prove the stability of weak solutions, we transfer
Eq. (1.1) to another type of equation. Let v = |u|β–1u,β = (p–1)

(α+p–1) , δ = βp–1. Then the main
equation (1.1) becomes

(|u|β–1u
)

t = δ div
(
a(x)|∇u|p–2∇u

)
+

N∑

i=1

∂bi(u, x, t)
∂xi

, (x, t) ∈ Ω × (0, T), (1.9)

and with the usual initial-boundary value conditions

u(x, 0) = u0(x), x ∈ Ω , (1.10)

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T), (1.11)

where u0(x) = |v0(x)|–1+ 1
β v0(x), bi(u, x, t) = ai(|u|β–1u, x, t).

A function u(x, t) is said to be a weak solution of Eq. (1.9) by that

u ∈ L∞(QT ),
∂|u|β–1u

∂t
∈ Lp′(

0, T ; W 1,p′
(Ω)

)
, a(x)|∇u|p ∈ L1(QT ).

A basic result of the stability is the following.

Theorem 1.3 Let a(x) satisfy (1.4), u(x, t) and v(x, t) be two solutions of the initial-
boundary value problem (1.9)–(1.11). If

∫

Ω

a(x)– 1
p–1 dx < ∞, (1.12)

then

∫

Ω

∣∣|u|β–1u – |v|β–1v
∣∣dx ≤

∫

Ω

∣∣|u0|β–1u0(x) – |v0|β–1v0(x)
∣∣dx. (1.13)
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Roughly speaking, if u(x, t) is a weak solution of Eq. (1.9) with the initial value (1.10),
if condition (1.12) is true, then

∫
Ω

|∇u|dx < ∞, and the boundary value condition (1.11)
can be imposed in the sense of the trace. Accordingly, similar as the usual evolutionary
p-Laplacian equation, we can prove Theorem 1.3.

The main aim of this paper is to find the other conditions to replace the boundary value
condition (1.11) (or equivalently, (1.3)). At first, even condition (1.12) is true and one can
impose the boundary value condition (1.11), we still hope the stability of weak solutions
can be obtained without the boundary value condition (1.11).

Theorem 1.4 Let a(x) satisfy (1.4), u(x, t) and v(x, t) be two solutions of Eq. (1.9) with the
initial values u0(x), v0(x), respectively, but without any boundary value condition. If

1
λ

(
λ

∫

Ω\Ωλ

|∇a|p dx
) 1

p
≤ c (1.14)

and either

|∇a| = 0, x ∈ ∂Ω , (1.15)

or

∫

Ω

a(x)– 1
p–1 dx < ∞, and bi(·, x, t) = 0, x ∈ ∂Ω , (1.16)

then the stability of the weak solutions is true in the sense of (1.13).

If there is not condition (1.12), then one cannot impose the boundary value condition
(1.11) generally. In this case, there is only way to go. We have to try to prove the stability
of weak solutions without any boundary value condition. The following theorem partially
achieves our goals.

Theorem 1.5 Let u(x, t), v(x, t) be two weak nonnegative solutions of Eq. (1.1) with the
initial values u0(x), v0(x), respectively. If a(x) satisfies (1.4), and

∫

Ω

a(x)–(p–1) dx < ∞, (1.17)

for every i,

∣∣ai(u, x, t) – ai(v, x, t)
∣∣ ≤ ca(x)

1
p
∣∣um – vm∣∣, (1.18)

and there is a function gi(x) such that

∣∣ai(·, x, t)
∣∣ ≤ cgi(x), (1.19)

∫

Ω

|∇a|
a

gi(x) dx ≤ c, (1.20)
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then the stability is true in the sense of that

∫

Ω

∣∣u(x, t) – v(x, t)
∣∣dx ≤ c

∫

Ω

∣∣u0(x) – v0(x)
∣∣dx, t ∈ [0, T). (1.21)

One can see that the condition
∫
Ω

a(x)– 1
p–1 dx < ∞ and the condition

∫
Ω

a(x)–(p–1) dx <
∞ cannot be true at the same time unless p = 2. This fact shows that Theorem 1.4 and
Theorem 1.5 complement each other.

At last, since the nonlinear convection term
∑N

i=1
∂ai(v,x,t)

∂xi
depends on the spatial variable

x, we will use some ideas in [29–31] to prove the stability of weak solutions based on the
partial boundary value condition.

Theorem 1.6 Let u(x, t) and v(x, t) be two solutions of Eq. (1.9) with the initial values u0(x),
v0(x), respectively. If a(x) satisfies (1.4), and there is a function hi(x) such that

∣∣bi(·, x, t)
∣∣ ≤ chi(x), i = 1, 2, . . . , N , (1.22)

the partial boundary value condition

u(x, t) = v(x, t) = 0, x ∈ Σp =

{
x ∈ ∂Ω :

N∑

i=1

hi(x)axi 
= 0

}
, (1.23)

is imposed, then the stability of the weak solutions is true in the sense of (1.13).

Here, we give a simple comment on Theorem 1.6. One can find that condition (1.12) does
not appear in this theorem. But, in general, under condition (1.12),

∫
Ω

|∇u|dx < ∞ is true,
and the partial boundary value condition (1.23) can be imposed in the sense of the trace.
Accordingly, we can say that condition (1.12) is hidden in condition (1.23). However, as
we have said before, we cannot judge whether the partial boundary value condition (1.23)
is the optimal one for Eq. (1.9) or not.

2 Existence of the weak solutions
The existence of weak solutions can be obtained by the parabolically regularized method.
Consider the approximate problem

uεt – ε div
(|∇uε|p–2∇uε

)
– div

(
a(x)|uε|α|∇uε|p–2∇uε

)
–

N∑

i=1

∂ai(uε , x, t)
∂xi

= 0, (x, t) ∈ Ω × (0, T), (2.1)

uε(x, t) = 0, (x, t) ∈ ∂Ω × (0, T), (2.2)

uε(x, 0) = uε0(x), x ∈ Ω . (2.3)

Here, 0 ≤ uε0 ∈ C∞
0 (Ω), ‖uε0‖L∞(Ω) ≤ ‖u0‖L∞(Ω), uε0 → u0(x) in W 1,p(Ω). It is well-known

that the above problem has a unique nonnegative solution uε ∈ L∞(0, T ; W 1,p
0 (Ω)) [20],

provided that ∂ai
∂xi

≤ 0.
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Proof of Theorem 1.2 By the maximum principle [20],

‖uε‖L∞(QT ) ≤ c, (2.4)

here and the after QT = Ω × (0, T).
Multiplying (2.1) by uε , by (2.4) and ai(s, x, t) ∈ C1(R× Ω × [0, T]), since

∫

Ω

∂ai(uε , x, t)
∂xi

uε dx = –
∫

Ω

ai(uε , x, t)uεxi dx

= –
∫

Ω

∂

∂xi

∫ uε

0
ai(s, x, t) ds dx +

∫

Ω

∫ uε

0

∂

∂xi
ai(s, x, t) ds dx

=
∫

Ω

∫ uε

0

∂

∂xi
ai(s, x, t) ds dx,

using the equality

1
2

∫

Ω

u2
ε dx + ε

∫∫

QT

|∇uε|p dx dt +
∫∫

QT

a(x)|uε|α|∇uε|p dx dt

=
1
2

∫

Ω

u2
0 dx +

N∑

i=1

∫∫

QT

ai(uε , x, t)uεxi dx dt

=
1
2

∫

Ω

u2
0 dx +

N∑

i=1

∫

Ω

∫ uε

0

∂

∂xi
ai(s, x, t) ds dx,

and by ai(s, x, t) ∈ C1(R× Ω × [0, T]) and (2.4), one has

∫

Ω

u2
ε dx + ε

∫∫

QT

|∇uε|p dx dt +
∫∫

QT

a(x)|uε|α|∇uε|p dx dt ≤ c, (2.5)

which implies

∫∫

QT

a(x)|uε|α|∇uε|p dx dt ≤ c, (2.6)

ε

∫∫

QT

|∇uε|p ≤ c. (2.7)

For any v ∈ Lp(0, T ; W 1,p
0 (Ω)), ‖v‖Lp(0,T ;W 1,p

0 (Ω)) = 1, using Young’s inequality, one has

∣∣∣∣
∫∫

QT

a(x)|uε|α|∇uε|p–2∇uε∇v dx dt
∣∣∣∣

≤ c
∫∫

QT

a(x)|uε|α
(|∇uε|p + |∇v|p)dx dt

≤ c
∫∫

QT

a(x)|uε|α|∇uε|p dx dt + c

≤ c, (2.8)
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and since ai(s, x, t) ∈ C1(R× Ω × [0, T]), |uε| ≤ c, one has
∣∣∣∣
∫∫

QT

ai(uε , x, t)vxi dx dt
∣∣∣∣ ≤ c + c‖v‖Lp(0,T ;W 1,p

0 (Ω)) ≤ c. (2.9)

Then

∣∣〈uεt , v〉∣∣ ≤ c
[
ε

∫∫

QT

|∇uε|p dx dt +
∫∫

QT

a(x)|uε|α|∇uε|p dx dt + 1
]

≤ c

and

‖uεt‖Lp′ (0,T ;W –1,p′ (Ω) ≤ c. (2.10)

Certainly, for any ϕ ∈ C1
0(Ω), 0 ≤ ϕ ≤ 1, one has

∥∥(ϕuε)t
∥∥

Lp′ (0,T ;W –1,p′ (Ω)) ≤ c,

which yields

∥∥(
ϕum

ε

)
t

∥∥
Lp′ (0,T ;W –1,p′ (Ω)) ≤ c. (2.11)

Here and afterwards, m = 1 + α
p–1 .

At the same time, since a(x) ∈ C1(Ω) and a(x)|x∈Ω > 0, (2.6) yields

∥∥ϕum
ε

∥∥
Lp′ (0,T ;W 1,p

0 (Ω)) ≤ c. (2.12)

For a fixed s such that s > N
2 +1, one has Hs

0(Ω) ↪→ W 1,p(Ω). Consequently, W –1,p′ (Ω) ↪→
H–s(Ω). As a result, one has

∥∥(
ϕum

ε

)
t

∥∥
Lp′ (0,T ;H–s(Ω)) ≤ c. (2.13)

Let u1ε = um
ε . Then, by (2.12)–(2.13), one has

‖ϕu1ε‖Lp′ (0,T ;W 1,p
0 (Ω)) ≤ c, (2.14)

∥∥(ϕu1ε)t
∥∥

Lp′ (0,T ;H–s(Ω)) ≤ c. (2.15)

Noticing that W 1,p
0 (Ω) ↪→ Lp(Ω) ↪→ H–s(Ω), one can employ Aubin’s compactness the-

orem in [32] to obtain ϕu1ε → ϕu1 strongly in Lp′ (0, T ; Lp(Ω)). Thus ϕu1ε → ϕu1 a.e. in
QT . In particular, due to the arbitraries of ϕ, u1ε → u1 a.e. in QT . Accordingly, uε → u a.e.
in QT .

Now, by (2.4) and (2.7), one has

u ∈ L∞(QT )

and

ε|∇uε|p–2∇uε ⇀ 0, in L
p

p–1 (QT ),
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uε ⇀ ∗u, in L∞(QT ),

ai(uε , x, t) → ai(u, x, t), a.e. in QT .

Moreover, by (2.6), there is a n-dimensional vector function
−→
ζ = (ζ1, . . . , ζn), |ζi| ∈

L
p

p–1 (QT ), such that

a(x)|uε|α|∇uε|p–2∇uε =
a(x)
mp–1

∣∣∇um
ε

∣∣p–2∇um ⇀ ζ , in L
p

p–1 (QT ).

At last, by a similar p-Laplacian to the usual evolutionary one, it is not difficult to prove
that

∫∫

QT

a(x)|u|α|∇u|p–2∇u · ∇ϕ dx dt

=
∫∫

QT

a(x)
mp–1

∣∣∇um∣∣p–2∇um · ∇ϕ dx dt

=
∫∫

QT

−→
ζ · ∇ϕ dx dt, (2.16)

for any given function ϕ ∈ C1
0(QT ). One can refer to [33] for the details. Also by [33], the

initial value (1.2) can be proved in the sense of (1.7). Then u is a nonnegative weak solution
of Eq. (1.1) with the initial value (1.2).

Lemma 2.1 ([30]) Let u be a solution of Eq. (1.1) with the initial value (1.2). For the con-
stants s, β satisfying s > αδ + 1, 1

δ
≤ p – 1, such that

∫
Ω

a–δ(x) dx < ∞, we have

∫

QT

∣∣∇us∣∣dx dt ≤ c.

By Lemma 2.1, the conclusion of Theorem 1.2 follows easily. �

3 The Proof of Theorem 1.3
Lemma 3.1 Let ut ∈ Lp′ (0, T ; W –1,p′ (Ω)). For any continuous function h(s), H(s) =∫ s

0 h(s) ds, a.e. t1, t2 ∈ (0, T),

∫ t2

t1

∫

Ω

h(u)ut dx dt =
[∫

Ω

(
H(u)(x, t2) – H(u)(x, t1)

)
dx

]
.

This is a minor generalized result of Lemma 2.2 in [34].

Proof of Theorem 1.3 If u(x, t), v(x, t) are two nonnegative solutions of Eq. (1.9) with the
same homogeneous boundary value and with the different initial values u0(x), v0(x), re-
spectively.

From the definition of the weak solution, for ϕ ∈ L∞(0, T ; W 1,p
0 (Ω)), one has

∫

Ω

ϕ
∂(|u|β–1u – |v|β–1v)

∂t
dx

+ δ

∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇ϕ dx
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+
∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
ϕxi dx

= 0. (3.1)

For small η > 0, let

Sη(s) =
∫ s

0
hη(τ ) dτ , hη(s) =

2
η

(
1 –

|s|
η

)

+
.

Obviously hη(s) ∈ C(R), and

∣∣Sη(s)
∣∣ ≤ 1; lim

η→0
Sη(s) = sign s, lim

η→0
sS′

η(s) = 0. (3.2)

Since u(x, t) and v(x, t) have the same homogeneous boundary value condition, by taking
the limit, one can choose ϕ = Sη(u – v) as the test function, then

∫

Ω

Sη(u – v)
∂(|u|β–1u – |v|β–1v)

∂t
dx

+ δ

∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇(u – v)S′
η(u – v) dx

= –
∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xi S

′
η(u – v) dx. (3.3)

In the first place, by Lemma 3.1, one has

lim
η→0

∫

Ω

Sη(u – v)
∂(|u|β–1u – |v|β–1v)

∂t
dx

=
∫

Ω

Sign(u – v)
∂(|u|β–1u – |v|β–1v)

∂t
dx

=
∫

Ω

Sign
(|u|β–1u – |v|β–1v

)∂(|u|β–1u – |v|β–1v)
∂t

dx

=
d
dt

∫

Ω

∣∣|u|β–1u – |v|β–1v
∣∣dx. (3.4)

In the second place,

∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇(u – v)S′
η(u – v) dx ≥ 0. (3.5)

Last but not least, by (1.12), using the Lebesgue dominated convergence theorem, from
(3.2), one has

lim
η→0

∣∣∣∣
∫

Ω

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xi S

′
η(u – v) dx

∣∣∣∣

≤ lim
η→0

(∫

Ω

∣∣[bi(u, x, t) – bi(v, x, t)
]
S′

η(u – v)a– 1
p
∣∣ p

p–1 dx
) p–1

p

·
(∫

Ω

a(x)
(|∇u|p + |∇v|p)dx

) 1
p

= 0. (3.6)
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At last, let η → 0 in (3.3). By (3.4)–(3.6), one has

d
dt

∥∥|u|β–1u – |v|β–1v
∥∥

L1(Ω) ≤ 0.

It implies that

∫

Ω

∣∣|u|β–1u – |v|β–1v
∣∣dx ≤

∫

Ω

∣∣|u0|β–1u0 – |v0|β–1v0
∣∣dx, ∀t ∈ [0, T). �

4 The Proofs of Theorem 1.4 and Theorem 1.6

Proof of Theorem 1.4 For a small positive constant λ > 0, let

Ωλ =
{

x ∈ Ω : a(x) > λ
}

, (4.1)

as before, and

φλ(x) =

⎧
⎨

⎩
1, if x ∈ Ωλ,
a(x)
λ

, x ∈ Ω \ Ωλ.
(4.2)

Now, by taking the limit, one can choose ϕ = φλ(x)χ[τ ,s]Sη(u – v), and integrate it over
QT , one has

∫ s

τ

∫

Ω

φλ(x)Sη(u – v)
∂(|u|β–1u – |v|β–1v)

∂t
dx dt

+ δ

∫ s

τ

∫

Ω

φλ(x)a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇(u – v)S′
η(u – v) dx dt

+ δ

∫ s

τ

∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇φλ(x)Sη(u – v) dx dt

+
∫ s

τ

∫

Ω

[
bi(u, x, t) – bi(v, x, t)

][
φλ(x)S′

η(u – v)(u – v)xi + Sη(u – v)φλxi (x)
]

dx dt

= 0. (4.3)

At first, one has
∫

Ω

φλ(x)a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇(u – v)S′
η(u – v) dx ≥ 0 (4.4)

and
∣∣∣∣
∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇φλ(x)Sη(u – v) dx
∣∣∣∣

≤
∫

Ω\Ωλ

a(x)
∣∣(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇φλ(x)Sη(u – v)
∣∣dx

≤
∫

Ω\Ωλ

a(x)
∣∣(|∇u|p–2∇u – |∇v|p–2∇v

)∣∣∣∣∇φλ(x)
∣∣dx

=
1
λ

∫

Ω\Ωλ

a(x)
∣∣(|∇u|p–2∇u – |∇v|p–2∇v

)∣∣∣∣∇a(x)
∣∣dx. (4.5)
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Since (1.14), for small enough λ > 0,

1
λ

(
λ

∫

Ω\Ωλ

|∇a|p dx
) 1

p
≤ c,

using the Hölder inequality, one has

∣∣∣∣
∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇φλ(x)Sη(u – v) dx
∣∣∣∣

≤ c
λ

[∫

Ω\Ωλ

a(x)|∇u|p–1|∇a|dx +
∫ s

τ

∫

Ω\Ωλ

a(x)|∇v|p–1|∇a|dx
]

≤ c
λ

(∫

Ω\Ωλ

a|∇a|p dx
) 1

p
(∫

Ω\Ωλ

a(x)|∇u|p dx
) p–1

p

+
c
λ

(∫

Ω\Ωλ

a(x)|∇a|p dx
) 1

p
(∫

Ω\Ωλ

a(x)|∇v|p dx
) p–1

p

≤ c
(∫

Ω\Ωλ

a(x)|∇u|p dx
) p–1

p
+ c

(∫

Ω\Ωλ

a(x)|∇v|p dx
) p–1

p
. (4.6)

Then

lim
λ→0

lim
η→0

∣∣∣∣
∫

Ω

a(x)
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇φλ(x)Sη(u – v) dx
∣∣∣∣ = 0. (4.7)

Secondly, for any given λ > 0, since a(x) > 0, x ∈ Ω and |∇u| ∈ Lp
loc(Ω), for the first part

of the fourth term on the left hand side of (4.3), one has

∣∣φλ

[
bi(u, x, t) – bi(v, x, t)

]
S′

η(u – v)(u – v)xi

∣∣ ≤ c(λ)|u – v|S′
η(u – v)

∣∣(u – v)xi

∣∣,

by the Lebesgue dominated convergence theorem, by (3.2), one has

lim
η→0

∣∣∣∣
∫

Ω

φλ

[
bi(u, x, t) – bi(v, x, t)

]
S′

η(u – v)(u – v)xi dx
∣∣∣∣ = 0.

Then

lim
λ→0

lim
η→0

∣∣∣∣
∫

Ω

φλ

[
bi(u, x, t) – bi(v, x, t)

]
S′

η(u – v)(u – v)xi dx
∣∣∣∣ = 0. (4.8)

Once more, for the second part of the fourth term on the left hand side of (4.3), one can
deal with it in two cases according to the conditions (1.15) and (1.16), respectively. In
detail, if |∇a| = 0, x ∈ ∂Ω , then

lim
λ→0

lim
η→0

∣∣∣∣
∫

Ω

φλxi

[
bi(u, x, t) – bi(v, x, t)

]
Sη(u – v) dx

∣∣∣∣

≤ c lim
λ→0

∫

Ω

∣∣φλxi

[
bi(u, x, t) – bi(v, x, t)

]∣∣dx

≤ lim
λ→0

c
λ

∫

Ω\Ωλ

|∇a|dx
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= c
∫

∂Ω

|∇a|dσ

= 0. (4.9)

If (1.16) is true, when x ∈ ∂Ω , bi(·, x, t) = 0 is reasonable (we would like to suggest that we
do not require u|x∈∂Ω = 0 here), then

lim
λ→0

lim
η→0

∣∣∣∣
∫

Ω

φλxi

[
bi(u, x, t) – bi(v, x, t)

]
Sη(u – v) dx

∣∣∣∣

≤ c lim
λ→0

∫

Ω

∣∣φλxi

[
bi(u, x, t) – bi(v, x, t)

]∣∣dx

≤ lim
λ→0

c
λ

∫

Ω\Ωλ

∣∣bi(u, x, t) – bi(v, x, t)
∣∣dx

= c
∫

∂Ω

∣∣bi(u, x, t) – bi(v, x, t)
∣∣dσ

= 0. (4.10)

Last but not least, for the first term of the left term of (4.3), one has

lim
η→0

lim
λ→0

∫ s

τ

∫

Ω

φλ(x)Sη(u – v)
∂(|u|β–1u – |v|β–1v)

∂t
dx dt

= lim
η→0

∫ s

τ

∫

Ω

Sη(u – v)
∂(|u|β–1u – |v|β–1v)

∂t
dx dt

=
∫ s

τ

∫

Ω

sign(u – v)
∂(|u|β–1u – |v|β–1v)

∂t
dx dt

=
∫ s

τ

∫

Ω

sign
(|u|β–1u – |v|β–1v

)∂(|u|β–1u – |v|β–1v)
∂t

dx dt

=
∫ s

τ

d
dt

∥∥|u|β–1u – |v|β–1v
∥∥

L1(Ω) dt. (4.11)

After letting λ → 0, let η → 0 in (4.3). By (4.4), (4.6)–(4.11), one has

∫

Ω

∣∣|u|β–1u(x, t) – |v|β–1v(x, t)
∣∣dx

≤
∫

Ω

∣∣|u0|β–1u0(x) – |v0|β–1v0(x)
∣∣dx. �

By a minor modification of the above proof, we can prove Theorem 1.6.

Proof of Theorem 1.6 Since
∫
Ω

a(x)– 1
p–1 dx < ∞, one can define the trace of weak solution

u on the boundary. Accordingly, the partial boundary value condition (1.23) is reasonable.
Now,

lim
λ→0

∣∣∣∣
∫

Ω

φλxi

[
bi(u, x, t) – bi(v, x, t)

]
Sη(u – v) dx

∣∣∣∣

≤ lim
λ→0

c
λ

∫

Ω\Ωλ

∣∣hi(x)axi

∣∣|u – v|dx
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= c
∫

∂Ω

|u – v|∣∣hi(x)axi

∣∣dσ

= 0. (4.12)

The rest of the proof Theorem 1.6 can be completed just in the same way as that of The-
orem 1.4. �

From the proofs of Theorem 1.4 and Theorem 1.6, we easily have the following corollary,
no matter whether

∫
Ω

a– 1
p–1 (x) dx < ∞ or not.

Corollary 4.1 Let u(x, t) and v(x, t) be two solutions of Eq. (1.9) with the initial values u0(x)
and v0(x), respectively, but without any boundary value condition. If a(x) satisfies (1.14),
bi(·, x, t) satisfies (1.22), and

|∇a|hi(x) = 0, i = 1, 2, . . . , N , x ∈ ∂Ω ,

then the stability of weak solutions is true in the sense of (1.13).

5 The Proof of Theorem 1.5
From (2.16), we see that (1.6) is equivalent to

∫∫

QT

(
∂u
∂t

ϕ +
a(x)
mp–1

∣∣∇um∣∣p–2∇um · ∇ϕ +
N∑

i=1

ai(u, x, t)ϕxi

)
dx dt = 0, (5.1)

with m = 1 + α
p–1 .

Proof of Theorem 1.5 Let u(x, t), v(x, t) be two solutions of Eq. (1.1) with the initial values
u0(x), v0(x). By taking the limit, one can choose Sη(a(um – vm)) as the test function;

∫

Ω

Sη

(
a
(
um – vm))∂(u – v)

∂t
dx

+
1

mp–1

∫

Ω

a2(x)
(∣∣∇um∣∣p–2∇um –

∣∣∇vm∣∣p–2∇vm)

· ∇(
um – vm)

S′
η

(
a
(
um – vm))

dx

+
∫

Ω

a(x)
(∣∣∇um∣∣p–2∇um –

∣∣∇vm∣∣p–2∇vm) · ∇a
(
um – vm)

S′
η

(
a
(
um – vm))

dx

+
∫

Ω

[
ai(u, x, t) – ai(v, x, t)

]
S′

η

(
a
(
um – vm))[

aβ
xi

(
um – vm)

+ a
(
um – vm)

xi

]
dx

= 0. (5.2)

As before, one has

lim
η→0

∫

Ω

Sη

(
a
(
um – vm))∂(u – v)

∂t
dx =

d
dt

∫

Ω

|u – v|dx, (5.3)
∫

Ω

a2(x)
(∣∣∇um∣∣p–2∇um –

∣∣∇vm∣∣p–2∇vm) · ∇(
um – vm)

S′
η

(
a
(
um – vm))

dx ≥ 0. (5.4)
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Since |∇a(x)| ≤ c in Ω , one has

∣∣∣∣
∫

Ω

a(x)
(
um – vm)

S′
η

(
a
(
um – vm))(∣∣∇um∣∣p–2∇um –

∣∣∇vm∣∣p–2∇vm) · ∇a dx
∣∣∣∣

≤ c
∫

Ω

∣∣a
(
um – vm)

S′
η

(
a
(
um – vm))(∣∣∇um∣∣p–2∇um –

∣∣∇vm∣∣p–2∇vm)∣∣dx (5.5)

and
∫

Ω

∣∣a
(
um – vm)

S′
η

(
a
(
um – vm))(∣∣∇um∣∣p–2∇um –

∣∣∇vm∣∣p–2∇vm)∣∣dx

=
∫

{Ω :a|um–vm|<η}

∣∣∣∣a
– p–1

p a
(
um – vm)

S′
η

(
a
(
um – vm))

· a
p–1

p
(∣∣∇um∣∣p–2∇um –

∣∣∇vm∣∣p–2∇vm)∣∣∣∣dx

≤
(∫

{Ω :a|u–v|<η}

∣∣a– p–1
p a

(
um – vm)

S′
η

(
a
(
um – vm))∣∣p dx

) 1
p

·
(∫

{Ω :a|u–v|<η}
a(x)

(∣∣∇um∣∣p +
∣∣∇vm∣∣p)dx

) p–1
p

. (5.6)

If {x ∈ Ω : um – vm = 0} has 0 measure, since (1.17)

∫

Ω

a(x)–(p–1) dx < ∞,

one has
∫

{Ω :a|um–vm|<η}

∣∣a– p–1
p a

(
um – vm)

S′
η

(
a
(
um – vm))∣∣p dx < ∞

and

lim
η→0

(∫

{Ω :a|um–vm|<η}
a(x)

(∣∣∇um∣∣p +
∣∣∇vm∣∣p)dx

) p–1
p

=
(∫

{Ω :|um–vm|=0}
a(x)

(∣∣∇um∣∣p +
∣∣∇vm∣∣p)dx

) p–1
p

= 0. (5.7)

If {x ∈ Ω : um – vm = 0} has a positive measure, obviously,

lim
η→0

(∫

{Ω :a|um–vm|<η}

∣∣a– p–1
p a

(
um – vm)

S′
η

(
a
(
um – vm))∣∣p dx

) 1
p

=
(∫

{Ω :|um–vm|=0}

∣∣a– p–1
p a

(
um – vm)

S′
η

(
a
(
um – vm))∣∣p dx

) 1
p

= 0. (5.8)
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In both cases, using Lebesgue’s dominated convergence theorem, by (3.2), one has

lim
η→0

∣∣∣∣
∫

Ω

a
(
um – vm)

S′
η

(
a
(
um – vm))(∣∣∇um∣∣p–2∇um –

∣∣∇vm∣∣p–2∇vm)
dx

∣∣∣∣ = 0. (5.9)

In addition, by (1.19) and (1.20), one has

∣∣∣∣
∫

Ω

[
ai(u, x, t) – ai(v, x, t)

]
axi

(
um – vm)

S′
η

(
a
(
um – vm))

dx
∣∣∣∣

≤ c
∫

Ω

gi(x)
|∇a|

a
a
(
um – vm)

S′
η

(
a
(
um – vm))

dx

→ 0, (5.10)

as η → 0.
Moreover, condition (1.18) yields

∣∣∣∣
∫

Ω

[
ai(u, x, t) – ai(v, x, t)

]
a
(
um – vm)

xi
S′

η

(
a
(
um – vm))

dx
∣∣∣∣

=
∣∣∣∣
∫

Ω

a1– 1
p
[
ai(u, x, t) – ai(v, x, t)

]
S′

η

(
a
(
um – vm))

a– 1
p
(
um – vm)

xi
dx

∣∣∣∣

≤ c
(∫

Ω

∣∣a
(
um – vm)

S′
η

(
a
(
um – vm))∣∣ p

p–1 dx
) p–1

p
(∫

Ω

a(x)
(∣∣∇um∣∣p +

∣∣∇vm∣∣)
) 1

p

→ 0, (5.11)

as η → 0.
Let η → 0 in (5.2). By (5.3)–(5.11), one has

∫

Ω

∣∣u(x, t) – v(x, t)
∣∣dx ≤ c

∫

Ω

∣∣u0(x) – v0(x)
∣∣dx, ∀t ∈ [0, T).

Theorem 1.5 is proved. �
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