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Abstract
In the presented paper, Levinson’s inequality for the 3-convex function is generalized
by using two Green functions. Čebyšev-, Grüss- and Ostrowski-type new bounds are
found for the functionals involving data points of two types. Moreover, the main
results are applied to information theory via the f -divergence, the Rényi divergence,
the Rényi entropy, the Shannon entropy and the Zipf–Mandelbrot law.
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1 Introduction and preliminaries
In [12], Ky Fan’s inequality is generalized by Levinson for 3-convex functions as follows.

Theorem A Let f : I = (0, 2α) →R with f (3)(t) ≥ 0. Let xk ∈ (0,α) and pk > 0. Then

J1(f ) ≥ 0, (1)

where

J1
(
f (·)) =

1
Pn

n∑

ρ=1

pρ f (2α – xρ) – f

(
1

Pn

n∑

ρ=1

pρ(2α – xρ)

)

–
1

Pn

n∑

ρ=1

pρ f (xρ)

+ f

(
1

Pn

n∑

ρ=1

pρxρ

)

. (2)

Working with the various differences, the assumptions of differentiability on f can be weak-
ened.

In [18], Popoviciu noted that (1) is valid on (0, 2a) for 3-convex functions, while in [2],
Bullen gave a different proof of Popoviciu’s result and also the converse of (1).

Theorem B
(a) Let f : I = [a, b] →R be a 3-convex function and xn, yn ∈ [a, b] for n = 1, 2, . . . , k such

that

max{x1 . . . xk} ≤ min{y1 . . . yk}, x1 + y1 = · · · = xk + yk , (3)
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and pn > 0. Then

J2(f ) ≥ 0, (4)

where

J2
(
f (·)) =

1
Pk

k∑

ρ=1

pρ f (yρ) – f

(
1

Pk

k∑

ρ=1

pρyρ

)

–
1

Pk

k∑

ρ=1

pρ f (xρ)

+ f

(
1

Pk

k∑

ρ=1

pρxρ

)

. (5)

(b) If f is continuous and pρ > 0, (4) holds for all xρ , yρ satisfying (3), then f is 3-convex.

In [17], Pečarić weakened the assumption (3) and proved that inequality (1) still holds,
i.e. the following result holds.

Theorem C Let f : I = [a, b] →R be a 3-convex function, pk > 0, and let for k = 1, . . . , n, xk ,
yk be such that xk + yk = 2c̆, xk + xn–k+1 ≤ 2c̆ and pk xk +pn–k+1xn–k+1

pk +pn–k+1
≤ c̆. Then (4) holds.

In [15], Mercer presented a notable work by replacing the condition of symmetric dis-
tribution of points xi and yi with symmetric variances of points xi and yi. The second
condition is a weaker condition.

Theorem D Let f be a 3-convex function on [a, b], pk be positive such that
∑n

k=1 pk = 1.
Also let xk , yk satisfy (3) and

n∑

ρ=1

pρ

(

xρ –
n∑

ρ=1

pρxρ

)2

=
n∑

ρ=1

pρ

(

yρ –
n∑

ρ=1

pρyρ

)2

. (6)

Then (1) holds.

On the other hand the error function eF (t) can be represented in terms of the Green
function GF ,n(t, s) of the boundary value problem

z(n)(t) = 0,

z(i)(a1) = 0, 0 ≤ i ≤ p,

z(i)(a2) = 0, p + 1 ≤ i ≤ n – 1,

eF (t) =
∫ a2

a1

GF ,n(t, s)f (n)(s) ds, t ∈ [a, b],

where

GF ,n(t, s) =
1

(n – 1)!

⎧
⎨

⎩

∑p
i=0( n–1

i )(t – a1)i(a1 – s)n–i–1, a1 ≤ s ≤ t;

–
∑n–1

i=p+1( n–1
i )(t – a1)i(a1 – s)n–i–1, t ≤ s ≤ a2.

(7)

The following result holds in [1].
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Theorem E Let f ∈ Cn[a, b], and let PF be its ‘two-point right focal’ interpolating polyno-
mial. Then, for a ≤ a1 < a2 ≤ b and 0 ≤ p ≤ n – 2,

f (t) = PF (t) + eF (t)

=
p∑

i=0

(t – a1)i

i!
f (i)(a1)

+
n–p–2∑

j=0

( j∑

i=0

(t – a1)p+1+i(a1 – a2)j–i

(p + 1 + i)!(j – i)!

)

f (p+1+j)(a2)

+
∫ a2

a1

GF ,n(t, s)f (n)(s) ds, (8)

where GF ,n(t, s) is the Green function, defined by (7).

Let f ∈ Cn[a, b], and let PF be its ‘two-point right focal’ interpolating polynomial for
a ≤ a1 < a2 ≤ b. Then, for n = 3 and p = 0, (8) becomes

f (t) = f (a1) + (t – a1)f (1)(a2) + (t – a1)(a1 – a2)f (2)(a2) +
(t – a1)2

2
f (2)(a2)

+
∫ a2

a1

G1(t, s)f (3)(s) ds, (9)

where

G1(t, s) =

⎧
⎨

⎩
(a1 – s)2, a1 ≤ s ≤ t;

–(t – a1)(a1 – s) + 1
2 (t – a1)2, t ≤ s ≤ a2.

(10)

For n = 3 and p = 1, (8) becomes

f (t) = f (a1) + (t – a1)f (1)(a2) +
(t – a1)2

2
f (2)(a2) +

∫ a2

a1

G2(t, s)f (3)(s) ds, (11)

where

G2(t, s) =

⎧
⎨

⎩

1
2 (a1 – s)2 + (t – a1)(a1 – s), a1 ≤ s ≤ t;

– 1
2 (t – a1)2, t ≤ s ≤ a2.

(12)

The presented work is organized as follows: in Sect. 2, Levinson’s inequality for the 3-
convex function is generalized by using two Green functions defined by (10) and (12). In
Sect. 3, Čebyšev-, Grüss- and Ostrowski-type new bounds are found for the functionals
involving data points of two types. In Sect. 4, the main results are applied to information
theory via the f -divergence, the Rényi divergence, the Rényi entropy, the Shannon entropy
and the Zipf–Mandelbrot law.

2 Main results
First we give an identity involving Jensen’s difference of two different data points. Then we
give equivalent form of identity by using Green function defined by (10) and (12).
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Theorem 1 Let f ∈ C3[ζ1, ζ2] such that f : I = [ζ1, ζ2] → R, (p1, . . . , pn) ∈ R
n, (q1, . . . , qm) ∈

R
m such that

∑n
ρ=1 pρ = 1 and

∑m
�=1 q� = 1. Also let xρ , y� ,

∑n
ρ=1 pρxρ ,

∑m
�=1 q�y� ∈ I . Then

J
(
f (·)) =

1
2

[ m∑

�=1

q�y2
� –

( m∑

�=1

q�y�

)2

–
n∑

ρ=1

pρx2
ρ +

( m∑

ρ=1

pρxρ

)2]

f (2)(ζ2)

+
∫ ζ2

ζ1

J
(
Gk(·, s)

)
f (3)(s) ds, (13)

where

J
(
f (·)) =

m∑

�=1

q�f (y�) – f

( m∑

�=1

q�y�

)

–
n∑

ρ=1

pρ f (xρ) + f

( n∑

ρ=1

pρxρ

)

(14)

and

J
(
Gk(·, s)

)
=

m∑

�=1

q�Gk(y�, s) – Gk

( m∑

�=1

q�y� , s

)

–
n∑

ρ=1

pρGk(xρ , s) + Gk

( n∑

ρ=1

pρxρ , s

)

,

(15)

for Gk(·, s) (k = 1, 2) defined in (10) and (12), respectively.

Proof (i) For k = 1.
Using (9) in (14), we have

J
(
f (·)) =

m∑

�=1

q�

[
f (ζ1) + (y� – ζ1)f (1)(ζ2) + (y� – ζ1)(ζ1 – ζ2)f (2)(ζ2)

+
(y� – ζ1)2

2
f (2)(ζ2) +

∫ ζ2

ζ1

G1(y� , s)f (3)(s) ds
]

–

[

f (ζ1) +

( m∑

�=1

q�y� – ζ1

)

f (1)(ζ2) +

( m∑

�=1

q�y� – ζ1

)

(ζ1 – ζ2)f (2)(ζ2)

+
(
∑m

�=1 q�y� – ζ1)2

2
f (2)(ζ2) +

∫ ζ2

ζ1

G1

( m∑

�=1

q�y� , s

)

f (3)(s) ds

]

–
n∑

ρ=1

pρ

[
f (ζ1) + (xρ – ζ1)f (1)(ζ2) + (xρ – ζ1)(ζ1 – ζ2)f (2)(ζ2)

+
(xρ – ζ1)2

2
f (2)(ζ2) +

∫ ζ2

ζ1

G1(xρ , s)f (3)(s) ds
]

+

[

f (ζ1) +

( n∑

ρ=1

pρxρ – ζ1

)

f (1)(ζ2) +

( n∑

ρ=1

pρxρ – ζ1

)

(ζ1 – ζ2)f (2)(ζ2)

+
(
∑n

ρ=1 pρxρ – ζ1)2

2
f (2)(ζ2) +

∫ ζ2

ζ1

G1

( n∑

ρ=1

pρxρ , s

)

f (3)(s) ds

]

,
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J
(
f (·)) = f (ζ1) +

( m∑

�=1

q�y� – ζ1

)

f (1)(ζ2) +

( m∑

�=1

q�y� – ζ1

)

(ζ1 – ζ2)f (2)(ζ2)

+
(
∑m

�=1 q�y2
� – 2ζ1

∑m
�=1 q�y� + ζ 2

1 )f (2)(ζ2)
2

+
m∑

i=1

q�

∫ ζ2

ζ1

G1(y�, s)f (3)(s) ds

– f (ζ1) –

( m∑

�=1

q�y� – ζ1

)

f (1)(ζ2) –

( m∑

�=1

q�y� – ζ1

)

(ζ1 – ζ2)f (2)(ζ2)

–
((
∑m

�=1 q�y�)2 – 2ζ1
∑m

�=1 q�y� + ζ 2
1 )f (2)(ζ2)

2

–
∫ ζ2

ζ1

G1

( m∑

�=1

q�y� , s

)

f (3)(s) ds

– f (ζ1) –

( n∑

ρ=1

pρxρ – ζ1

)

f (1)(ζ2) –

( n∑

ρ=1

pρxρ – ζ1

)

(ζ1 – ζ2)f (2)(ζ2)

–
(
∑n

ρ=1 pρx2
ρ – 2ζ1

∑n
ρ=1 pρxρ + ζ 2

1 )f (2)(ζ2)
2

–
n∑

ρ=1

pρ

∫ ζ2

ζ1

G1(xρ , s)f (3)(s) ds

+ f (ζ1) +

( n∑

ρ=1

pρxρ – ζ1

)

f (1)(ζ2) +

( n∑

ρ=1

pρxρ – ζ1

)

(ζ1 – ζ2)f (2)(ζ2)

+
((
∑n

ρ=1 pρxρ)2 – 2ζ1
∑n

ρ=1 pρxρ + ζ 2
1 )f (2)(ζ2)

2

+
∫ ζ2

ζ1

G1

( n∑

ρ=1

pρxρ , s

)

f (3)(s) ds,

J
(
f (·)) =

1
2

[ m∑

�=1

q�y2
� –

( m∑

�=1

q�y�

)2

–
n∑

ρ=1

pρx2
ρ +

( n∑

ρ=1

pρxρ

)2]

f (2)(ζ2)

+
m∑

�=1

q�

∫ ζ2

ζ1

G1(y�, s)f (3)(s) ds –
∫ ζ2

ζ1

G1

( m∑

�=1

q�y� , s

)

f (3)(s) ds

–
n∑

ρ=1

pρ

∫ ζ2

ζ1

G1(xρ , s)f (3)(s) ds +
∫ ζ2

ζ1

G1

( n∑

ρ=1

pρxρ , s

)

f (3)(s) ds.

After rearranging, we have (13).
(ii) For k = 2.
Using (11) in (14) and following similar steps as in the proof of (i), we get (13). �

Corollary 1 Let f ∈ C3[0, 2α] such that f : I = [0, 2α] → R, x1, . . . , xn ∈ (0,α), (p1, . . . , pn)
∈R

n such that
∑n

ρ=1 pρ = 1. Also let xρ ,
∑n

ρ=1 pρ(2α – xρ),
∑n

ρ=1 pρxρ ∈ I . Then

J
(
f (·)) =

∫ ζ2

ζ1

J
(
Gk(·, s)

)
f (3)(s) ds, 0 ≤ ζ1 < ζ2 ≤ 2α, (16)

where J(f (·)) and J(G(·, s)) are defined in (14) and (15), respectively.
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Proof Choosing I = [0, 2α], y� = (2α – xρ), x1, . . . , xn ∈ (0,α), pρ = q� and m = n, in Theo-
rem 1, after simplification we get (16). �

Theorem 2 Let f : I = [ζ1, ζ2] → R be a 3-convex function. Also let (p1, . . . , pn) ∈ R
n,

(q1, . . . , qm) ∈ R
m be such that

∑n
ρ=1 pρ = 1 and

∑m
�=1 q� = 1 and xρ , y� ,

∑n
ρ=1 pρxρ ,

∑m
�=1 q�y� ∈ I .
If

[ m∑

�=1

q�y2
� –

( m∑

�=1

q�y�

)2

–
n∑

ρ=1

pρx2
ρ +

( n∑

ρ=1

pρxρ

)2]

f (2)(ζ2) ≥ 0, (17)

then the following statements are equivalent:
For f ∈ C3[ζ1, ζ2]

n∑

ρ=1

pρ f (xρ) – f

( n∑

ρ=1

pρxρ

)

≤
m∑

�=1

q�f (y�) – f

( m∑

�=1

q�y�

)

. (18)

For all s ∈ I

n∑

ρ=1

pρGk(xρ , s) – Gk

( n∑

ρ=1

pρxρ , s

)

≤
m∑

�=1

q�Gk(y�, s) – Gk

( m∑

�=1

q�y� , s

)

, (19)

where Gk(·, s) are defined by (10) and (12) for k = 1, 2, respectively.

Proof (18) ⇒ (19): Let (18) is valid. Then as the function Gk(·, s) (s ∈ I) is also continuous
and 3-convex, it follows that also for this function (18) holds, i.e. (19) is valid.

(19) ⇒ (18): If f is 3-convex, then without loss of generality, we can suppose that there
exists the third derivative of f . Let f ∈ C3[ζ1, ζ2] be a 3-convex function and (19) holds.
Then we can represent the function f in the form (9). Now by means of some simple
calculations we can write

m∑

�=1

q�f (y�) – f

( m∑

�=1

q�y�

)

–
n∑

ρ=1

pρ f (xρ) + f

( n∑

ρ=1

pρxρ

)

=
1
2

[ m∑

�=1

q�y2
� –

( m∑

�=1

q�y�

)2

–
n∑

ρ=1

pρx2
ρ +

( n∑

ρ=1

pρxρ

)2]

f (2)(ζ2)

+
∫ ζ2

ζ1

⎛

⎝
m∑

�=1

q�Gk(y� , s)

– Gk

( m∑

�=1

q�(y�, s)

)

–
n∑

ρ=1

pρGk(xρ , s) + Gk

( n∑

ρ=1

pρxρ , s

)⎞

⎠ f (3)(s) ds.

By the convexity of f , we have f (3)(s) ≥ 0 for all s ∈ I . Hence, if for every s ∈ I , (19) is
valid then it follows that, for every 3-convex function f : I →R, with f ∈ C3[ζ1, ζ2], (18) is
valid. �
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Remark 1 If the expression

m∑

�=1

q�y2
� –

( m∑

�=1

q�y�

)2

–
n∑

ρ=1

pρx2
ρ +

( n∑

ρ=1

pρxρ

)2

and f (2)(ζ2) have different signs in (17) then inequalities (18) and (19) are reversed.

Next we have results about generalization of Bullen’s type inequality (for real weights)
given in [2] (see also [11, 16]).

Corollary 2 Let f : I = [ζ1, ζ2] → R be a 3-convex function and f ∈ C3[ζ1, ζ2], x1, . . . , xn,
y1, . . . , ym ∈ I such that

max{x1, . . . , xn} ≤ min{y1, . . . , ym} (20)

and

x1 + y1 = · · · = xn + ym. (21)

Also let (p1, . . . , pn) ∈ R
n, (q1, . . . , qm) ∈ R

m such that
∑n

ρ=1 pρ = 1 and
∑m

�=1 q� = 1 and xρ ,
y� ,

∑n
ρ=1 pρxρ ,

∑m
�=1 q�y� ∈ I . If (17) holds, then (18) and (19) are equivalent.

Proof By choosing xρ and y� such that conditions (20) and (21) hold in Theorem 2, we get
required result. �

Remark 2 If pρ = q� are positive and xρ , y� satisfy (20) and (21), then inequality (18) re-
duces to Bullen’s inequality given in [16, p. 32, Theorem 2] for m = n.

Next we have generalized form (for real weights) of Bullen’s type inequality given in [17]
(see also [16]).

Corollary 3 Let f : I = [ζ1, ζ2] →R be a 3-convex function and f ∈ C3[ζ1, ζ2], (p1, . . . , pn) ∈
R

n, (q1, . . . , qm) ∈ R
m such that

∑n
ρ=1 pρ = 1 and

∑m
�=1 q� = 1. Also let x1, . . . , xn and

y1, . . . , ym ∈ I such that xρ + y� = 2c and for ρ = 1, . . . , nxρ + xn–ρ+1 and pρxρ+pn–ρ+1xn–ρ+1
pρ+pn–ρ+1

≤ c.
If (17) holds, then (18) and (19) are equivalent.

Proof Using Theorem 2 with the conditions given in the statement we get the required
result. �

Remark 3 In Theorem 2, if m = n, pρ = q� are positive, xρ + y� = 2c, xρ + xn–ρ+1 and
pρxρ+pn–ρ+1xn–ρ+1

pρ+pn–ρ+1
≤ c. Then (18) reduces to generalized form of Bullen’s inequality defined

in [16, p. 32, Theorem 4].

In [15], Mercer made a notable work by replacing the condition (21) of symmetric dis-
tribution of points xρ and y� with symmetric variances of points xρ and y� for ρ = 1, . . . , n
and � = 1, . . . , m.

So in the next result we use Mercer’s condition (6), but for ρ = � and m = n.
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Corollary 4 Let f : I = [ζ1, ζ1] → R be 3-convex function and f ∈ C3[ζ1, ζ2], pρ , qρ are
positive such that

∑n
ρ=1 pρ = 1 and

∑n
ρ=1 qρ = 1. Also let xρ , yρ satisfy (20) and

n∑

ρ=1

pρ

(

xρ –
n∑

ρ=1

pρxρ

)2

=
n∑

ρ=1

pρ

(

yρ –
n∑

ρ=1

qρyρ

)2

. (22)

If (17) holds, then (18) and (19) are equivalent.

Proof For positive weights, using (6) and (20) in Theorem 2, we get required result. �

Next we have results that lean on the generalization of Levinson’s type inequality given
in [12] (see also [16]).

Corollary 5 Let f : I = [0, 2α] → R be a 3-convex function and f ∈ C3[0, 2α], x1, . . . , xn ∈
(0,α), (p1, . . . , pn) ∈R

n and
∑n

ρ=1 pρ = 1. Also let xρ ,
∑n

ρ=1 pρ(2α –xρ),
∑n

ρ=1 pρxρ ∈ I . Then
the following are equivalent:

n∑

ρ=1

pρ f (xρ) – f

( n∑

ρ=1

pρxρ

)

≤
n∑

ρ=1

pρ f (2α – xρ) – f

( n∑

ρ=1

pρ(2α – xρ)

)

. (23)

For all s ∈ I

n∑

ρ=1

pρGk(xρ , s) – Gk

( n∑

ρ=1

pρxρ , s

)

≤
n∑

ρ=1

pρGk(2α – xρ , s)

– Gk

( n∑

ρ=1

pρ(2α – xρ), s

)

, (24)

where Gk(·, s) is defined in (10) and (12) for k = 1, 2, respectively.

Proof If I = [0, 2α], (x1, . . . , xn) ∈ (0,α), pρ = q� , m = n and y� = (2α – xρ) in Theorem 2
with 0 ≤ ζ1 < ζ2 ≤ 2α we get required result. �

Remark 4 In Corollary 5 if pρ are positive then inequality (23) reduces to Levinson’s in-
equality given in [16, p. 32, Theorem 1].

3 New bounds for Levinson’s type functionals
Consider the Čebyšev functional for two Lebesgue integrable functions f1, f2 : [ζ1, ζ2] →R,

Θ(f1, f2) =
1

ζ2 – ζ1

∫ ζ2

ζ1

f1(x)f2(x) dx

–
1

ζ2 – ζ1

∫ ζ2

ζ1

f1(x) dx · 1
ζ2 – ζ1

∫ ζ2

ζ1

f2(x) dx, (25)

where the integrals are assumed to exist.
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Theorem F ([3]) Let f1 : [ζ1, ζ2] →R be a Lebesgue integrable function and f2 : [ζ1, ζ2] →R

be an absolutely continuous function with (·, –ζ1)(·, –ζ2)[f ′
2]2 ∈ L[ζ1, ζ2]. Then

∣
∣Θ(f1, f2)

∣
∣ ≤ 1√

2
[
Θ(f1, f1)

] 1
2 1√

ζ2 – ζ1

(∫ ζ2

ζ1

(t – ζ1)(ζ2 – t)
[
f ′
2(t)

]2 dt
) 1

2
. (26)

1√
2 is the best possible.

Theorem G ([3]) Let f1 : [ζ1, ζ2] →R be an absolutely continuous with f ′
1 ∈ L∞[ζ1, ζ2] and

let f2 : [ζ1, ζ2] →R is monotonic non-decreasing on [ζ1, ζ2]. Then

∣
∣Θ(f1, f2)

∣
∣ ≤ 1

2(ζ2 – ζ1)
∥
∥f ′∥∥∞

∫ ζ2

ζ1

(t – ζ1)(ζ2 – t)
[
f ′
2(t)

]2 df2(t). (27)

1
2 is the best possible.

In the next result we construct the Čebyšev-type bound for our functional defined in
(5).

Theorem 3 Let f ∈ C3[ζ1, ζ2] such that f : I = [ζ1, ζ2] →R and f (3)(·) is absolutely continu-
ous with (· – ζ1)(ζ2 – ·)[f (4)]2 ∈ L[ζ1, ζ2]. Also let (p1, . . . , pn) ∈R

n, (q1, . . . , qm) ∈R
m be such

that
∑n

ρ=1 pρ = 1,
∑m

�=1 q� = 1, xρ , y� ,
∑n

ρ=1 pρxρ ,
∑m

�=1 q�y� ∈ I . Then

J
(
f (·)) =

1
2

[ m∑

�=1

q�y2
� –

( m∑

�=1

q�y�

)2

–
n∑

ρ=1

pρx2
ρ +

( m∑

�=1

pρxρ

)2]

f (2)(ζ2)

+
f (2)(ζ2) – f (2)(ζ1)

(ζ2 – ζ1)

∫ ζ2

ζ1

J
(
Gk(·, s)

)
f (3)(s) ds + R3(ζ1, ζ2; f ), (28)

where J(f (·)), J(Gk(·, s)) are defined in (14) and (15), respectively, and the remainder
R3(ζ1, ζ2; f ) satisfies the bound

∣∣R3(ζ1, ζ2; f )
∣∣ ≤ ζ2 – ζ1√

2
[
Θ

(
J
(
Gk(·, s)

)
, J

(
Gk(·, s)

))] 1
2 ×

1√
ζ2 – ζ1

(∫ ζ2

ζ1

(s – ζ1)(ζ2 – s)
[
f (4)(s)

]2 ds
) 1

2
, (29)

for Gk(·, s) (k = 1, 2) defined in (10) and (12), respectively.

Proof Setting f1 
→ J(Gk(·, s)) and f2 
→ f (3) in Theorem F, we get

∣
∣∣
∣

1
ζ2 – ζ1

∫ ζ2

ζ1

J
(
Gk(·, s)

)
f (3)(s) ds –

1
ζ2 – ζ1

∫ ζ2

ζ1

J
(
Gk(·, s)

)
ds · 1

ζ2 – ζ1

∫ ζ2

ζ1

f (3)(s) ds
∣
∣∣
∣

≤ 1√
2
[
Θ

(
J
(
Gk(·, s)

)
, J

(
Gk(·, s)

))] 1
2 1√

ζ2 – ζ1

(∫ ζ2

ζ1

(s – ζ1)(ζ2 – s)
[
f (4)(s)

]2 ds
) 1

2
,
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∣∣
∣∣

1
ζ2 – ζ1

∫ ζ2

ζ1

J
(
Gk(·, s)

)
f (3)(s) ds –

f (2)(ζ2) – f (2)(ζ1)
(ζ2 – ζ1)2

∫ ζ2

ζ1

J
(
Gk(·, s)

)
ds

∣∣
∣∣

≤ 1√
2
[
Θ

(
J
(
Gk(·, s)

)
, J

(
Gk(·, s)

))] 1
2 1√

ζ2 – ζ1

(∫ ζ2

ζ1

(s – ζ1)(ζ2 – s)
[
f (4)(s)

]2 ds
) 1

2
.

Multiplying (ζ2 – ζ1) on both sides of the above inequality and using the estimation (29),
we get

∫ ζ2

ζ1

J
(
Gk(·, s)

)
f (3) ds =

f (2)(ζ2) – f (2)(ζ1)
(ζ2 – ζ1)

∫ ζ2

ζ1

J
(
Gk(·, s)

)
ds + R3(ζ1, ζ1; f ).

Using the identity (13), we get (28). �

In the next result bounds of Grüss-type inequalities are estimated.

Theorem 4 Let f ∈ C3[ζ1, ζ2] such that f : I = [ζ1, ζ2] → R, f (3)(·) is absolutely continu-
ous and f (4)(·) ≥ 0 a.e. on [ζ1, ζ2]. Also let (p1, . . . , pn) ∈ R

n, (q1, . . . , qm) ∈ R
m be such that

∑n
ρ=1 pρ = 1,

∑m
�=1 q� = 1, xρ , y� ,

∑n
ρ=1 pρxρ ,

∑m
�=1 q�y� ∈ I . Then identity (28) holds, where

the remainder satisfies the estimation

∣∣R3(ζ1, ζ2; f )
∣∣ ≤ (ζ2 – ζ1)

∥∥J
(
Gk(·, s)

)′∥∥∞

[
f (2)(ζ2) + f (2)(ζ1)

2
–

f (2)(ζ2) – f (2)(ζ1)
ζ2 – ζ1

]
. (30)

Proof Setting f1 
→ J(Gk(·, s)) and f2 
→ f (3) in Theorem G, we get

∣∣∣
∣

1
ζ2 – ζ1

∫ ζ2

ζ1

J
(
Gk(·, s)

)
)f (3)(s) ds –

1
ζ2 – ζ1

∫ ζ2

ζ1

J
(
Gk(·, s)

)
ds · 1

ζ2 – ζ1

∫ ζ2

ζ1

f (3)(s) ds
∣∣∣
∣

≤ 1
2
∥
∥J

(
Gk(·, s)

)′∥∥∞
1

ζ2 – ζ1

∫ ζ2

ζ1

(s – ζ1)(ζ2 – s)
[
f (4)(s)

]2 ds. (31)

Since

∫ ζ2

ζ1

(s – ζ1)(ζ2 – s)
[
f (4)(s)

]2 ds

=
∫ ζ2

ζ1

[2s – ζ1 – ζ2]f 3(s) ds

= (ζ2 – ζ1)
[
f (2)(ζ2) + f (2)(ζ1)

]
– 2

(
f (2)(ζ2) – f (2)(ζ1)

)
, (32)

using (13), (31) and (32), we have (28). �

Ostrowski-type bounds for newly constructed functional defined in (5).

Theorem 5 Let f ∈ C3[ζ1, ζ2] such that f : I = [ζ1, ζ2] →R and f (2)(·) is absolutely continu-
ous. Also let (p1, . . . , pn) ∈ R

n, (q1, . . . , qm) ∈ R
m such that

∑n
ρ=1 pρ = 1,

∑m
�=1 q� = 1, xρ , y� ,

∑n
ρ=1 pρxρ ,

∑m
�=1 q�y� ∈ I . Also let (r, s) is a pair of conjugate exponents that is 1 ≤ r, s,≤ ∞,
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1
r + 1

s = 1. If |f (3)|r : [ζ1, ζ2] →R be Riemann integrable function, then

∣
∣∣
∣∣
J
(
f (·)) –

1
2

[ m∑

�=1

q�y2
� –

( m∑

�=1

q�y�

)2

–
n∑

ρ=1

pρx2
ρ +

( m∑

�=1

pρxρ

)2]

f (2)(ζ2)

∣
∣∣
∣∣

≤ ∥∥f (3)∥∥
r

(∫ ζ2

ζ1

∣∣J
(
Gk(·, s)

)
ds

∣∣s
) 1

s
. (33)

Proof Rearrange identity (13) in such a way

∣∣
∣∣
∣
J
(
f (·)) –

1
2

( m∑

�=1

q�y2
� –

( m∑

�=1

q�y�

)2

–
n∑

ρ=1

pρx2
ρ +

( m∑

ρ=1

pρxρ

)2)

f (2)(ζ2)

∣∣
∣∣
∣

≤
∫ ζ2

ζ1

J
(
Gk(·, s)

)
f (3)(s) ds. (34)

Employing the classical Hölder inequality for the R.H.S. of (34) yields (33). �

4 Application to information theory
The idea of the Shannon entropy is the focal point of data hypothesis, now and then al-
luded to as the measure of uncertainty. The entropy of a random variable is characterized
regarding its probability distribution and can be shown to be a decent measure of ran-
domness or uncertainty. The Shannon entropy permits one to evaluate the normal least
number of bits expected to encode a series of images dependent on the letters in order
size and the recurrence of the symbols.

Divergences between probability distributions have become familiar with a measure of
the difference between them. A variety of sorts of divergences exist, for instance the f -
difference (particularly, the Kullback–Leibler divergence, the Hellinger distance and the
total variation distance), the Rényi divergence, the Jensen–Shannon divergence, and so
forth (see [13, 21]). There are a lot of papers managing inequalities and entropies, see,
e.g., [8, 10, 20] and the references therein. The Jensen inequality assumes a crucial role in a
part of these inequalities. In any case, Jensen’s inequality deals with one sort of information
focus and Levinson’s inequality manages two type information points.

The Zipf law is one of the central laws in data science, and it has been utilized in lin-
guistics. Zipf in 1932 found that we can tally how frequently each word shows up in the
content. So on the off chance that we rank (r) word as per the recurrence of word event
(f ), at that point the result of these two numbers is a steady (C) : C = r × f . Aside from the
utilization of this law in data science and linguistics, the Zipf law is utilized in city popu-
lation, sun powered flare power, site traffic, earthquack magnitude, the span of moon pits,
and so forth. In financial aspects this distribution is known as the Pareto law, which ana-
lyzes the distribution of the wealthiest individuals in the community [6, p. 125]. These two
laws are equivalent in the mathematical sense, yet they are involved in different contexts
[7, p. 294].

4.1 Csiszár divergence
In [4, 5] Csiszár gave the following definition.
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Definition 1 Let f be a convex function fromR
+ toR

+. Let r̃, k̃ ∈R
n
+ be such that

∑n
s=1 rs =

1 and
∑n

s=1 qs = 1. Then the f -divergence functional is defined by

If (r̃, k̃) :=
n∑

s=1

qsf
(

rs

qs

)
.

By defining the following:

f (0) := lim
x→0+

f (x); 0f
(

0
0

)
:= 0; 0f

(
a
0

)
:= lim

x→0+
xf

(
a
0

)
, a > 0,

he stated that nonnegative probability distributions can also be used.
Using the definition of f -divergence functional, Horv́ath et al. [9] gave the following

functional.

Definition 2 Let I be an interval contained in R and f : I → R be a function. Also let
r̃ = (r1, . . . , rn) ∈R

n and k̃ = (k1, . . . , kn) ∈ (0,∞)n be such that

rs

ks
∈ I, s = 1, . . . , n.

Then

Îf (r̃, k̃) :=
n∑

s=1

ksf
(

rs

ks

)
.

Theorem 6 Let r̃ = (r1, . . . , rn), k̃ = (k1, . . . , kn) be in (0,∞)n and w̃ = (w1, . . . , wm), t̃ =
(t1, . . . , tm) are in (0,∞)m such that

rs

ks
∈ I, s = 1, . . . , n,

and

wu

tu
∈ I, u = 1, . . . , m.

If

[
1

∑m
u=1 tu

m∑

u=1

(wu)2

tu
–

( m∑

u=1

wu∑m
u=1 tu

)2

–
1

∑n
v=1 kv

n∑

v=1

(rv)2

kv

+

( n∑

v=1

rv∑n
v=1 kv

)2]

f (2)(ζ2) ≥ 0, (35)

then the following are equivalent.
(i) For every continuous 3-convex function f : I →R,

Jf̂ (r, w, k, t) ≥ 0. (36)
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(ii)

JGk (r, w, k, t) ≥ 0, (37)

where

Jf̂ (r, w, k, t) =
1

∑m
u=1 tu

Îf (w̃, t̃) – f

( m∑

u=1

wu∑m
u=1 tu

)

–
1

∑n
v=1 kv

Îf (r̃, k̃)

+ f

( n∑

v=1

rv∑n
v=1 kv

)

. (38)

Proof Using pv = kv∑n
v=1 kv

, xv = rv
kv

, qu = tu∑m
u=1 tu

and yu = wu
tu

in Theorem 2, we get the re-
quired results. �

4.2 Shannon entropy
Definition 3 (See [9]) The Shannon entropy of a positive probability distribution r̃ =
(r1, . . . , rn) is defined by

S := –
n∑

v=1

rv log(rv). (39)

Corollary 6 Let r̃ = (r1, . . . , rn) and w̃ = (w1, . . . , wm) be probability distributions, k̃ =
(k1, . . . , kn) be in (0,∞)n and t̃ = (t1, . . . , tm) be in (0,∞)m. If

[
1

∑m
u=1 tu

m∑

u=1

(wu)2

tu
–

( m∑

u=1

wu∑m
u=1 tu

)2

–
1

∑n
v=1 kv

n∑

v=1

(rv)2

kv

+

( n∑

v=1

rv∑n
v=1 kv

)2]

≥ 0 (40)

and

JGk (r, w, k, t) ≤ 0, (41)

then

Js(r, w, k, t) ≤ 0, (42)

where

Js(r, w, k, t) =
1

∑m
u=1 tu

[

S̃ +
m∑

u=1

wu log(tu)

]

+

[ m∑

u=1

wu∑m
u=1 tu

log

( m∑

u=1

wu∑m
u=1 tu

)]

–
1

∑n
v=1 kv

[

S –
n∑

v=1

rv log(kv)

]

–

[ n∑

v=1

rv∑n
v=1 kv

log

( n∑

v=1

rv∑n
v=1 kv

)]

; (43)
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S is defined in (39) and

S̃ := –
m∑

u=1

wu log(wu).

If the base of the log is less than 1, then (42) and (41) hold in reverse direction.

Proof The function f (x) 
→ –x log(x) is 3-convex for a base of the log is greater than 1. So
using f (x) := –x log(x) in (35) and (36), we get the required results by Remark 1. �

4.3 Rényi divergence and entropy
The Rényi divergence and the Rényi entropy are given in [19].

Definition 4 Let r̃, q̃ ∈R
n
+ be such that

∑n
1 ri = 1 and

∑n
1 qi = 1, and let δ ≥ 0, δ �= 1.

(a) The Rényi divergence of order δ is defined by

Dδ(r̃, q̃) :=
1

δ – 1
log

( n∑

i=1

qi

(
ri

qi

)δ
)

. (44)

(b) The Rényi entropy of order δ of r̃ is defined by

Hδ(r̃) :=
1

1 – δ
log

( n∑

i=1

rδ
i

)

. (45)

These definitions also hold for non-negative probability distributions.

Theorem 7 Let r̃ = (r1, . . . , rn), k̃ = (k1, . . . , kn) ∈ R
n
+, w̃ = (w1, . . . , wm), t̃ = (t1, . . . , tm) ∈ R

m
+

be such that
∑n

1 rv = 1,
∑n

1 kv = 1,
∑m

1 wu = 1 and
∑m

1 tu = 1.
If either 1 < δ and the base of the log is greater than 1 or δ ∈ [0, 1) and the base of the log

is less than 1, and if

[ m∑

u=1

(tu)2

wu

(
wu

tu

)2δ

–

( m∑

u=1

tu

(
wu

tu

)δ
)2

–
n∑

v=1

(kv)2

rv

(
rv

kv

)2δ

+

( n∑

v=1

kv

(
rv

kv

)δ
)2]

≥ 0 (46)

and

n∑

v=1

rvGk

((
rv

kv

)δ–1

, s
)

– Gk

( n∑

v=1

rv

(
rv

kv

)δ–1

, s

)

≥
m∑

u=1

wuGk

((
wu

tu

)δ–1

, s
)

– Gk

( m∑

u=1

wu

(
wu

tu

)δ–1

, s

)

, (47)

then

n∑

v=1

rv log

(
rv

kv

)
– Dδ(r̃, k̃) ≥

m∑

u=1

wu log

(
wu

tu

)
– Dδ(w̃, t̃). (48)
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If either 1 < δ and the base of the log is greater than 1 or δ ∈ [0, 1) and the base of the log is
less than 1, then (47) and (48) hold in reverse direction.

Proof The proof is only for the case when δ ∈ [0, 1) and the base of the log is greater than
1 and similarly the remaining cases are simple to prove.

Choosing I = (0,∞) f = log so f (2)(x) is negative and f (3)(x) is positive, therefore f is
3-convex. So using f = log and the substitutions

pv := rv, xv :=
(

rv

kv

)δ–1

, v = 1, . . . , n,

and

qu := wu, yu :=
(

wu

tu

)δ–1

, u = 1, . . . , m,

in the reverse of inequality (18) (by Remark 1), we have

(δ – 1)
n∑

v=1

rv log

(
rv

kv

)
– log

( n∑

v=1

kv

(
rv

kv

)δ
)

≥ (δ – 1)
m∑

u=1

wu log

(
wu

tu

)

– log

( m∑

u=1

tu

(
wu

tu

)δ
)

. (49)

Dividing (49) with (δ – 1) and using

Dδ(r̃, k̃) =
1

δ – 1
log

( n∑

v=1

kv

(
rv

kv

)δ
)

,

Dδ(w̃, t̃) =
1

δ – 1
log

( m∑

u=1

tu

(
wu

tu

)δ
)

,

we get (48). �

Corollary 7 Let r̃ = (r1, . . . , rn) ∈ R
n
+, w̃ = (w1, . . . , wm) ∈ R

m
+ be such that

∑n
1 rv = 1 and

∑m
1 wu = 1.
Also let

[ m∑

u=1

1
m2wu

(mwu)2δ –

( m∑

u=1

1
m

(mwu)δ
)2

–
n∑

v=1

1
n2rv

(nrv)2δ

+

( n∑

v=1

1
n

(nrv)δ
)2

≥ 0 (50)

and

n∑

v=1

rvGk
(
(nrv)δ–1, s

)
– Gk

( n∑

v=1

rv(nrv)δ–1, s

)

≥
m∑

u=1

wuGk
(
(mwu)δ–1, s

)

– Gk

( m∑

u=1

wu(mwu)δ–1, s

)

. (51)
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If 1 < δ and the base of the log is greater than 1, then

n∑

v=1

rv log(rv) + Hδ(r̃) ≥
m∑

u=1

wu log(wu) + Hδ(w̃). (52)

The reverse inequality holds in (51) and (52) if the base of the log is less than 1.

Proof Suppose k̃ = ( 1
n , . . . , 1

n ) and t̃ = ( 1
m , . . . , 1

m ). Then from (44), we have

Dδ(r̃, k̃) =
1

δ – 1
log

( n∑

v=1

nδ–1rδ
v

)

= log(n) +
1

δ – 1
log

( n∑

v=1

rδ
v

)

and

Dδ(w̃, t̃) =
1

δ – 1
log

( m∑

u=1

mδ–1wδ
u

)

= log(m) +
1

δ – 1
log

( m∑

u=1

wδ
u

)

.

This implies

Hδ(r̃) = log(n) – Dδ

(
r̃,

1
n

)
(53)

and

Hδ(w̃) = log(m) – Dδ

(
w̃,

1
m

)
. (54)

It follows from Theorem 7, k̃ = 1
n , t̃ = 1

m , (53) and (54), that

n∑

v=1

rv log(nrv) – log(n) + Hδ(r̃) ≥
m∑

u=1

wu log(mwu) – log(m) + Hδ(w̃). (55)

After some simple calculations we get (52). �

4.4 Zipf–Mandelbrot law
In [14] the authors gave some contribution in analyzing the Zipf–Mandelbrot law which
is defined as follows.

Definition 5 Zipf–Mandelbrot law is a discrete probability distribution depending on the
three parameters: N ∈ {1, 2, . . . , }, φ ∈ [0,∞) and t > 0, and is defined by

f (s;N ,φ, t) :=
1

(s + φ)tHN ,φ,t
, s = 1, . . . ,N ,

where

HN ,φ,t =
N∑

ν=1

1
(ν + φ)t .
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For all values of N if the total mass of the law is taken, then, for 0 ≤ φ, 1 < t, s ∈ N , the
density function of the Zipf–Mandelbrot law becomes

f (s;φ, t) =
1

(s + φ)tHφ,t
,

where

Hφ,t =
∞∑

ν=1

1
(ν + φ)t .

For φ = 0, the Zipf–Mandelbrot law becomes the Zipf law.

Theorem 8 Let r̃ and w̃ be the Zipf–Mandelbrot laws.
If (50) and (51) hold for rv = 1

(v+k)vHN ,k,v
, wu = 1

(u+w)uHN ,w,u
, and if the base of the log is

greater than 1, then

n∑

v=1

1
(v + k)vHN ,k,v

log

(
1

(v + k)vHN ,k,v

)
+

1
1 – δ

log

(
1

Hδ
N ,k,v

n∑

v=1

1
(v + k)δv

)

≥
m∑

u=1

1
(u + w)uHN ,w,u

log

(
1

(u + w)uHN ,w,u

)

+
1

1 – δ
log

(
1

Hδ
N ,w,u

m∑

u=1

1
(u + w)δu

)

. (56)

The inequality is reversed in (51) and (56) if the base of the log is less than 1.

Proof The proof is similar to Corollary 7; by using Definition 5 and the hypothesis given
in the statement we get the required result. �
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