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1 Introduction
Cellular neural networks (CNNs), which were originally proposed by Chua and Yang in [1,
2], have been widely used in signal processing, pattern recognition, associative memory;,
combinatorial optimization, intelligent robot control, and other new fields of application
are constantly being discovered. In the past 30 years, many authors have considered the
existence, uniqueness and stability of equilibrium points ([3]), periodic solutions ([4, 5]),
almost periodic solutions ([6, 7]), pseudo-almost periodic solutions ([8, 9]) and weighted
pseudo-almost periodic solutions ([10, 11]) of CNNs. In addition, as is well known, for
artificial neural network systems and theoretical ecosystems, the dynamic behavior of the
systems is the focus of great concern and interest. Stability, periodicity and almost peri-
odicity are important dynamic characteristics of the systems. Therefore, these behaviors
of neural network systems and ecosystems have been extensively studied (see [12-24]).
In addition, we know that weighted pseudo-almost periodicity is an extension of pseudo-
almost periodicity and pseudo-almost periodicity. However, to the best of our knowledge,
the results of weighted pseudo-almost periodic solutions for CNNss are still rare.

On the one hand, synchronization is a common phenomenon in real world systems. This
means that two or more systems are mutually regulated to reach a common dynamic be-
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havior. Since Pecora and Carrol in [25] introduced the concept of drive—response synchro-
nization for coupled chaotic systems, chaos synchronization has become a hot research
topic due to its potential applications in secure communication, automatic control, biolog-
ical systems, information science ([26, 27]). Also, the synchronization of neural networks
has been the focus of scientific research and has been widely studied (see [28—34]).

On the other hand, it is well known that a quaternion consists of a real and three imagi-
nary parts [35]. The three imaginary units i, j and k obey Hamilton’s multiplication rules:

ij=—ji=k ~ jk=-ki=i,  ki=-ik=}, 2= =k*=ijk=-1.

The skew field of a quaternion is denoted by H := {h = A% + ik’ + jW + khX}, where
W R W K e R.

In recent years, quaternion-valued neural networks, which can be seen as a generic ex-
tension of complex-valued neural networks or real-valued neural networks, have been
found many practical applications and have been widely concerned [36, 37]. Since the ap-
plication of neural networks depends on their dynamics, some papers have been devoted
to the study of the dynamical behaviors for quaternion-valued neural networks ([38—43]).
However, up to now, there are still no results about weighted pseudo-almost periodic so-
lutions and synchronization of QVCNN:Ss. Therefore, it is very important and necessary to
study the weighted pseudo-almost periodicity and synchronization of QVCNNs.

Motivated by the above discussion, in this paper, we consider the following delayed
QVCNN:

%,(8) = =cp(Oxp(8) + Y apg@fy(x4(8) + Y g0y (4 ( — pg (1)) +Jp(2), (1)

q=1 q=1

where p € {1,2,...,n} := S, n corresponds to the number of units in the neural network;
x,(t) is the state of the pth neuron at time ¢; ¢, (¢) > 0 is the self-feedback connection weight;
apq(t), bpge(t) represent the connection weight and the delay connection weight between
cell p and ¢ at time ¢, respectively; /,(¢) is an external input on the pth unit at time ; f; and
g, are activation functions; 7,,(t) represents the transmission delay at time ¢.

The initial value is given by

%p(s) = @p(s), sel-1,0l,peS,

where T = max,, ges{Sup,cp |75 ()1}, @p(s) = (p}f(s) + i(p119(3) + jgoé(s) + k(,o}ﬂ< (s) is a continuous
function.

This paper is organized as follows: In Sect. 2, we introduce some definitions, preliminary
lemmas. In Sect. 3, we establish some sufficient conditions for the existence of weighted
pseudo-almost periodic solutions of (1). In Sect. 4, global exponential synchronization is
investigated. In Sect. 5, we give an example to demonstrate the feasibility of our results.
This paper ends with a brief conclusion in Sect. 6.

2 Preliminaries
Let BC(R,R") be the set of all bounded and continuous functions from R to R”.

Definition 1 ([44, 45]) A function f € BC(R,R") is said to be almost periodic if, for any
€ >0, it is possible to find a real number [ = /(¢) > 0, for any interval with length I(¢), there
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exists a number t = 7(€) in this interval such that |[f(¢ + ) — f(£)| < € for all £ € R. The
collection of such functions will be denoted by AP(R, R”).

Let W denote the collection of functions (weights) v : R — (0, +00), which are locally
integrable over R such that v > 0 almost everywhere. If v € W and for r > 0, we set Q, :=

[=r,7] and
v(Qy) ::/ v(x) dx.
QV
Let
Weo = [v ceW: inﬂgv(x) =g > O,rlinolov(Q,) = oo}.

Definition 2 ([46]) Fix v € W. A continuous function f € BC(R, X) is called weighted
pseudo-almost periodic if it can be written as f = g + h with g € AP(R,X) and % €
PAPy(R, X, v), where the space PAPy(R, X, v) is defined by

.1
PAPy(R, X, v) = {geBC(R,X):VILTOU(—Qr)/Qr ||g(t)“v(t)dt:0}.

The collection of all weighted pseudo-almost periodic functions f : R — R” will be de-
noted by PAP(R,R", v).

Lemma 1 ([47]) If f,g € PAP(R,R,v), then f + g,fg € PAP(R,R,v); if f € PAP(R,R,v),
g€ AP(R,R), then fg € PAP(R, R, v).

Lemma 2 ([47]) Fix v € W.. Suppose that, for any s € R,

v(t+5s)

m <0
ltl—o0 V(£

Then PAPy(R, X, v) is translation-invariant.

Denote
- — v(t+s)
Wi :{veWoo:VseR,t}gnoo 0 <oo}.

Lemma 3 ([10]) Iff € C(R,R) satisfies the Lipschitz condition, ¢ € PAP(R,R,v) and § €
C(R,R), then f(p(t — 5(t))) € PAP(R,R, v).

Definition 3 Fix v € W,.. Let f = fR + if! + jf/ + kf : R — H where f': R — R,/ €
{R,I,],K} := T. f is said to be weighted pseudo-almost periodic if, for every [ € T, f* is
weighted pseudo-almost periodic. The collection of such functions will be denoted by
PAP(R,H, v).

Let x, = x; + ix,, + jx/ + kxly € H, where xfi :R— R,l € T. Then f,(x,) and g,(x,) of (1)
can be expressed as
Saloeg) = £ (8, xl, a, 20) + if, (o, ), ], L)

AR A A
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) = 8 ) )

+ jg) (o, oy ) + kg (a8,
wheref/,g/ :R* > R,q€S,l€T.

According to Hamilton rules, system (1) can be transformed into the following system:

n

(xg)/(t) = —cp(t)xﬁ(t) + Z(aﬁq(s)ﬁf{t,x} - a;,q(s)fql{t,x}

q=1
n

- af,q(s)fq]{t,x} - aﬁq(s)qu{t,x}) + Z(bgq(s)gg{t, T,%}

gq=1
= b, ()gi{t,T,x} — b, ()gh{t, T, x)
- by, (s)gi {t, T,x}) + I (2)

2 o, (xR (1) + FX(t,4(0)) +J5(8), q €S,

(1) (£) = —cp(B)ach (£) + Z(agq(s)f;{t,x} +a, ()X {t,x}

q=1
n

+ a () {t,x} — ay, (s)f) {5, %)) + Z(bﬁq(s)g{]{t, 7,x}

g=1
+ by, (5)gy (6, T, %) + b, () {t, T, %)
- by (s)g){t, T,x}) + T, ()

A

= cp(t)xjg(t) + Fé(t,x(t)) +]1£(t), qges,

() (@) = —c, () + Y (ap ()] (£, %) + @b ($)f X {t, %}

q=1
n

- al, ()f; {6 x) + ay (s)f}{t, %)) + Z(bﬁq(s)gg{t, 7, %}

g=1
+ b;,q(s)gg{t, T,x} — b;q(s)gf{t, T,%}
+ bfq(s)gf]{t, t,x}) +]1]7(t)

A

= cp(t)x{g(t) + F; (t,x(t)) +]1£(t), qes,

(xf)/(t) = —cp(t)xllf(t) + Z(dﬁq(s)ff{t,x} + aﬁfq(s)qu{t,x}

q=1
n

+al, () {t,x) - a, ()1 {tx)) + Y (b ()gh {t, 7,x)

g=1
+BX ()gh it T,x) + b (s)ghit, T, x}
- b;;q(s)g;{tr T:x}) +]1£<(t)

A

2 ¢, () () + Fyy (6,x(8)) + ], (8), g €S,

where

Syt ) £ £ (x5 (0), 4 (8), ) (2), 25 (8)),
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8at 7,0} = gg (g (£ = 1 (0)), 0 (£ = T (), ) (£ = Tpg (1)) 55 (£ = Tg (1)))-
That is, system (1) is decomposed into the following system:

(1) (&) = —cp(B)acl () + EL (£, 2(8)) + TL(0), ©)
where p € S, [ € T. The initial condition associated with (2) is of the form

x;(s) = (pjg(s), se[-1,0,peS,leT.

Remark1 Ifx = (xR, x5, ... af,ab b, al, o, o, K KL 6)T s a solution of sys-

R

tem (2), then z = (z1,22,...,2,)7 is a solution of (1), where Zp = X5 + i), + jx) + kx{f,p €S,

and vice versa.

For the convenience, in the following, we introduce the following notation:

f* = suplf(
teR

where f : R — R is a bounded function.
Throughout the paper, we assume that the following conditions hold:
(Hp) For p,q €S, ¢, € C(R,R") with ¢, = infrer cy(t) >0, apg, bpy € PAP(R,H, 1), Tpy €
AP(R,R"), for fixed v € W, and J, € PAP(R, H).
(H,) Functions fql, gfi € C(R%,R) and, for any xfl, yfz € R, there exist positive constants L}
and Lfg such that

O AP ) AL )
< L8V ]+ L1 = L =]+ L
€405 7)€ )

S R R Y

andfl( 0) 0, whereqe S, leT.
(H3) p= maxpeg{cg (A, +By)} <1, whereforp e S,

Ap= Z(“Z +a;; +a{,; +af(;)(Lf +L} +L} +L}<),

By =D (bpq + by + by + By ) (Lg + L+ Ly + L),
gq=1

3 The existence of weighted pseudo-almost periodic solutions
In this section, we will study the existence and global exponential stability of weighted
pseudo-almost periodic solutions of system (2).

Let

B = {go: (gof,...,gof,go{,...,gafl,(p{,...,goi,gof,...,
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¢£<)T = (01,02 pn) € PAP(R, R, v)}

with the norm ||¢|lp = max,es{max;cr{sup;.r |g01’,(t)|}}, then B is a Banach space.
Let

@) = ((¢°)1 s r () 0, (9°)] @), .., (€0 (2),

(@)1 (@°)(0, ()} () (#°) 5 (0)

where (q)o)é,(t) = f_too e’fst”ﬂ(”)d”]},(s) ds, pe€ S, Il € T and « is a constant satisfying «
ll°]5.

v

Lemma 4 Fix v € W, Suppose that assumptions (H,) and (H,) hold. For each ¢ =

@R, 0”0l ol @l @, o, )T € B, define a nonlinear operator ® as follows:

R R I I ] 90] K K\T
(gol,...,(pn,<p1,...,<pn,<p1,..., 01 ,...,(pn)

= ()3 (), (6N (60 ) (620 (@) (69),)

where

¢ t
(xw); (t) = / e haWiQleds, 2L =F(tLe®)+]\t), peSleT,

—00

then @ maps B into itself.

Proof Let ¢ € B. By (H,) and Lemma 3, we havefq’[txp] € PAP(R,R,v) and by (H;) and
Lemma 3, we have gfl[t,r,go] € PAP(R,RR,v). Hence, from Lemma 1, we obtain .(21[7 €
PAPR,R,v)forallp € S,/ € T. Consequently, .Q}é can be written as .Q}lg = -Q,fn + .(21172,
2}, € AP(R,R), 2}, € PAP(R, R, v). Hence,

)= [

—00

where

t
e*fstcp(u)dugll,l(S)dS + / e*fstcp(u)dugéz(s)ds

-00

=0, +O)), peSleT.
First, we will prove that @1171 € AP(R,R) forallp e S, [ e T. For every € > 0, since .Qllﬂ, ¢y €
AP(R,R), it is possible to find a real number [ = [(¢) > 0, for each interval with length
I(€), there exists a number 7 = t(¢) in this interval such that |.Qlil(t +7T) - .Qlil(t)| <€ and
ley(t +7) — cp(t)] <€, then

|6}, (t+1) - 0,(2)|

t+1 t
+T t
= / ek CP(“)d”SZIf,l(s) ds— / ek Cl’(")duﬂll,l(s) ds

o¢] —00

t t
= / et CP(”)d”Q;I (s+1)ds— / ek CP(”)d”.Q[lﬂ(s) ds
—00

—00

¢ t+T ¢ 't
= f e Joir CP(”)d”Q£1(S +7)ds— / e b C"(”)d“-Qzlﬂl(S +7)ds
— -0

o¢]
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t ¢ !
. / e K r0Ql (51 1) ds— / ek Al (s)ds
—00 o
t
=< / ‘e_fst:rf cp(u)du _ e_fstc"(u)du| ‘9;1(5 + r)| ds
—00

t
+ / e k| ol (54 1) 2l ()| ds. 3)

By (e s d")[ =—c,(t)e I epw 4« we have

t+T

|e oz Cp(u)du _ e—f:cp(u)du|

( - J§ eplu S(i;TC ”)d”)|0:t|

= |-
‘ |: e Ji ool d”( sefrrcp(”)d”);de

+ / ( fgtcp(u)du);e—fﬁ;r cp(u)du dei”
t

/ ¢~ Jo pw du (cp(0 +7) —cp(0))e - et eplu) du d@‘

t

C

5/ e ff’cp”)d”’c 0+1)—cy(0 |d(9<—e JS epluydug (4)
£ P

Since [21171 € AP(R,R), it is a uniformly continuous and bounded function. Denote G(¢) :=
f_too |.Ql’,1(s)| ds and substitute (4) into (3), we have

@5, (t+ 1) - 0,,(8)] < —(c, +IGlB),

()2

which implies that ©, € AP(R,R), pe S, [ T.
Next, forp e S, e T, set

U f
p_V(Qr) 5

To prove that @Il,z € PAPy(R, R, v), we only need to show that lim,_, o, Aé =0,pe S, leT.

t
/ e i epl)du .Q[lgz (s)ds|v(t)dt.

By a similar argument as that in the proof of Lemma 3.4 in [47], one can see that (9}72 €
PAPy(R,R,v),p €S, € T. Therefore, we have (x“’)ll, € PAP(R,R,v), that is, ® maps B into
itself. This completes the proof. g

Remark 2 1t is easy to check that, forp e S, [ e T,

t
l — [Fep(u)du
(x“’)p(t):/ e Js od .Qé(s)ds
—00
satisfy the following equations:

(x)'(0) =~ () + QL) peSleT.

Page 7 of 23
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Theorem 1 Assume that (H,)—(Hs) hold, then system (2) has a unique weighted pseudo-

almost periodic solution in B* = {p|p € B, ¢ — ¢°|Ip < il

Proof For any ¢ € B, by Lemma 4, @ maps B into itself. Obviously,

¢ t
/ e—fs cp(u)du][i(s) dS‘}
00
Iy
< max {max{ }} =K.
1<p=<m| leT | C_
12
< LK

Hence, for all ¢ € B* = {plp € B, ¢ — ¢°||p < {5}, we have

0 _
"1z = fl‘;‘fn{sggf?g

lells <o = ¢° [+ 6"l <
Next, we show that @ maps B* into itself. In fact, for any ¢ € B*, by (H;), we have

R
sup|(@¢), (1) - (¢°), (0]

n

/ e i et du [Xz(ﬂffq(S)fq’e [t, 0] - &), ()}t 0]

g=1

= sup
teR

@, )t 9] - as (S)F [ ¢) + ) (bh (e[, T, ¢]
g=1

LGt T,0] - B (g6, T, 9] - b(sg’(trw)}

n

- / ) e—ffcwd"[ (e, @It o1 + Ol

teR J - g=1

el @Il + ool + (0 ekie .o
gq=1

5,0 2116 7. 01] + [8,6)] |2 7 0] + Ib{,fq(s)||g§[t,r,so]l)} ds

n

t
t + +
< — J5 cp(u)du R I J K
_sup/ooe s E (apq+ozpq+apq+apq)

teR J - g=1

n
R, 1. 4] . K R I )t K
><(Lf+Lf+Lf+Lf)||¢||B+Z(bpq+bpq+b;q+bpq)
gq=1

X (L + Ly + L, +L§<)||¢||B} ds

1

pu (Ap +By)llplls, pe€S. -

=
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Similarly, we can obtain

1
su£|(q>¢);,(t) ~ (¢°),0)] < —(Ay+ B¢l peSi=L]K. )
te p

It follows from (5) and (6) that

pK
|29 - ¢ < pligls < =

which implies that @ ¢ € B*. So, the mapping @ is a self mapping from B* to B*. Finally, we
prove that @ is a contraction mapping. In fact, in view of (Hy), for any ¢, € B, we have
sup|(@)(1) - (@)R(0)|
teR

n

t t
/ e_fsC“"”"[Z(aﬁq<s)<ﬁ{t,w}—fwa

q=1

= sup
teR

- a;,q(s)(ﬁ;{t, ¥} _fql{t’ w}) - ﬂ;q(s)(ﬁq]{t» v} _fq]{t» 1»[/})

—ay () (1L 0} — 116 V))) + (b, (5) (gh it T )

g=1
—gfj{t’ T, 1ﬁ}) - bllgq(s)(gé{tr T, (/7} _g;{tr T, w})
- b;q(s)(gé{tr T, 90} _gé{tr T, 1ﬂ}) - bgq(s)(g;({t’ T, §0}

—gé<{t,‘r,l/f})):| ds

n

t t
<sup [ el [Z(iaﬁquww{w} A

teR g=1

+ ’a;q(s)quI{t:(p} __ﬁ;{t’ W}’ + ’ﬂéq(s)uf?{{tﬂp} —_];/{t, W}’

+lal @10} - £ v ) + Y (155, 6)| g5 (T 0)

gq=1
_g:;{t, 7, W}| + |b;7q(S)| |g;{t’ T, (0} _g;{t’ T, lﬁ}|
+ |b[,7q(s)| |g£{t7 T g{)} _gé{); T 1ﬂ}| + ’bgq(5)| |g5{t¢ T (/7}

—g(f{t, T, w}|)i| ds

t n
t + + + +
< — J5 ep(w)du R I J K
< sup/ e (apq tlp, + Apy + apq)
teR J-o00 g=1

x (Lf +Lf +L}{ + L) llp - ¥le + Z(bjj; + h;;
g=1

+ b+ by V(LS + Ly + L, +L§)||¢—1//||B] ds

=<

5| -

(Ap+Bp)le - Vllz, pES. 7)
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Similarly, we can get

sup|(@ )y (6) - (@Y)5(8)] < L4, +Blg -Vl peSi=LIK ®)

teR c,

From (7) and (8), we obtain

Pe - @Yl < plle -Vl

Since (H3), @ isa contraction mapping. Hence, @ hasa fixed pointin B*. That s, system (2)
has a unique weighted pseudo-almost periodic solution in B*. This completes the proof. [J

4 Global exponential synchronization
In this section, we consider system (1) as the drive system and design a response system as

() = =) + 3 (O (3 (0)

q=1

+ Y by (g (£ = Tq (1)) + Jp(®) + 1p(2), 9)

gq=1

where p € S, u,(t) is a controlled input.
Let signals e, (£) = y,(£) — x,(£), then we can obtain the following error system:

e,(t) = —cp(t)e,(t) + Zapq(t (f,(74(0) = £ (%,(®))) Zb (D)

gq=1

X (24 (74 (t = g (D)) = g4 (%4 (t = g (®)))) + (), P ES. (10)

In order to realize the weighted pseudo-almost periodic synchronization of the drive—

response system, we design the following state-feedback controller:

uy(t) = —d, (tep(t)+2ppq(t)h (e4(8)) + quq Oy (eq(t - 0pg(®)), peS. (1)

q=1 q=1

The initial condition of (9) is
J’p(S) = 1/fp(S), IS [_E¢O]:p € S’

where & = max{t,0}, 0 = max,  es{SUp,cr Opg(6)}, Yp(s) = 1//5(s) + il//;(S) +j¢£(s) + kwlf(s)
is a continuous function.
System (10) can be decomposed into the following real-valued system:

n

(€)' () = —(cp(®) + dp(®) e () + Y _(ap, (O (X 1Ly} fFit.x))

gq=1

- ay, () (11t} —f1{t,x}) — @, () (] {t, 5} - f1 {2, x})

Page 10 of 23
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n

— S () - N8 x)) + (08,05 (8.)

q=1

- g4 {t,x)) = b, (O(gy .9} - gyit, %)) - b, (D () £, 9}
- it x}) - by, (6) (g {9} - g5 {1, %))

+ Y (P (NS 1L €} - ph (Lt e} = pl (O {2, €}
gq=1

n

—p;fq(t)hg{t, e}) + Z(qﬁq(t)izg{t,a, e} — qéq(t)ljzé{t,a, e}
g=1
- q;q(t)}_zé{t, o,e} — qfq(t);l{;{t, o,e}),

n

() (8) = —(cp(®) + dp(®)) el (£) + Y " (an, (D) (£ 1t} — £ £, %)
g=1
+ab Oy} —£2 8 x}) + al (0 (16 9} - £ {1t 2))

n

- “1115q(t)(fq]{t’y} —f;{t,x})) + Z(bﬁq(t)(g;{t,y}

q=1

—gall{t,x}) + b;q(t)(gg{t,y} —gf;{t,x}) + bzloq(t)(grlz({t’y}

- g {tx}) - BX (6) (g1t 9} - g1t %))

+ Y (or, Ot e} + pp, (Ot e} + Pl (Oh (€}
gq=1

—pifq(t)h{]{t, e}) + Z(ng(t)ﬁ;{t,o,e} + qf,q(t)itg{t,o,e}
g=1
+ qllgq(t)ljzf{t, o,e} — q}[fq(t)/:l{]{t, o,e}),

n

(€)' (&) = ~(cp(t) + () el (1) + > (an, (&) (£ {t. 3} —f) 1t %))
g=1
+ @, (8) (11t 7} =1 8,%}) — al (O (f (8,0} = £ {t,x})

n

+ay (8 (FHt ) —f1Ex))) + > (b5, (0 (g) (.9

q=1

- g){t,x}) + b, (8) (g5 {8, 9} — g5 (&, x}) — bl (D) (g5 {6, )
- gy {t,x)) + by (8) (gh {6, 9} — g {8, %))

+ Y (PR Ot e} + pl (Ot e} - pl (OHK (e}
gq=1

+p§q(t)hfl{t,e}) + Z(qﬁq(t)izé{t,a,e} + q{,q(t)}_lf;{t,a,e}

gq=1

- g, (O (t,0,e} + g (DKL {1, 0, €}),

Page 11 of 23
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n

(€) (&) = ~(cp®) + dp(®) X () + D (R, (O (£X(t, 9} — X (2, x})

q=1

+ an (D)6 y} = [ {6 x}) + a, () ({3} - f1{t, %))

- a4, () (1.9} = f1162))) + D (B0 (g5 (6.9

g=1
- g (e, x)) + by, (0) (g5 {8, 9} — gy (t,x}) + b, (6) (&) (. )
- g){t,x)) - b, (8)(gh{t, v} - gL, x}))

+ Y (ph (OH At e} + pi (OhSt e} + pl, () {2, €}

n

~ DOt e}) + > (g (RN (t, 0, e} + g (DRt 0 €)

q=1

+ q;q(t)ljt]q{t, o,e} — qi,q(t)izg{t, o,e}),

where 1! {t, e} £ i, (e (), €} (1), €] (£), €X (1)), M. {t, 0, €} £ B (€R (£ — 0,pq (1)), €L (£ = 0 (1)), €] (£ —
qu(t)),ef;(t —0p))spgeS,leT.

Definition 4 Systems (9) and (1) are globally exponentially synchronized, if there exist
positive constants M and A such that

ly@®) - x@®) | <Mlly - ¢lloe™, >0,

where x = (&8,..., a8, al,. . xl o, xl, &K, xK) and y = 08,980

¥, 95, ..., ¥%) are solutions of the corresponding real-valued systems of (1) and (9) with

initial values ¢ = (gof,...,(pf,(p{,...,(pfl,go{,...,go{l,wf, LK)y and = (YRR ul L
1 1//{, el K, UK, respectively,

|y(2) = x(0)| =pg513§T{|yé(t)| - Lo v =ello =pg§§T{§gﬂg|wﬁ(t)| - Isof,(t)l}.

Theorem 2 Let (H)—(Hs) hold. Suppose further that
(Hs) Forp,q € S,d, € AP(R,R*), ppgsqpq € PAP(R,H), 0,4 € AP(R,R*).
(Hs) Functions hl hl € C(R%Y, R), for any xé, yé € R, there exist positive constants L ,L%
such that forq €S leT,

[ O 5 o) = L (] )|

< Liilyg =g | + Lilyg = x| + Ll = 2] + Lo - g ]
L (v, s 3 ) = I (o e 0, )|

= Lilyg — g | + L log — | + Lylyg — g | + Loy -5 |

(Hg) There exists a positive constant A such that

1 1
-c, —d; +A,+ aBpe“ +P, + BQPeM <0, peSs,
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P, = Z(p[[f; +pllj; + p; +p§;)(Lﬁf + L+ L), +Ly),

gq=1
= (G + @y * Gy + g ) (L + L + L+ 1)-
g=1

Then (1) has a unique weighted pseudo-almost periodic solution. Moreover, (1) and (9) are
globally exponentially synchronized.

Proof By (10), for any ¢ >0, [ € T, we have

D¢,

—(c; + d;)|e§,(t){ + Z(ﬂﬁq + aII,; + a{,q aIIf{;)(Lf{es(t)‘
g=1
O]+ Lf leg 0]) + 3 (bpy +bpq + by
q=1
+ bf;)(Lg\ef;(t - qu(t))‘ + Lﬁefz(t - qu(t))‘ + Lé‘e{z(t - tpq(t))’

n

+L§’e{1<(t_ qu(t))D + Z(ppq +ppq + pq +P§;)(L5‘e§(t)‘
gq=1

+ Lile )] + Ly ey )] + Li e O]) + D (apy + dpy + iy
gq=1
+ )(LR|3 (t—0pg®)] +L1|e (t—0pg(0))|

+ Lf;i"i;(t - qu(t))| + Lf—f|e§(t - qu(t)) |)

+L}‘e{1(t)‘ + f|

Construct a Lyapunov function as follows:
V(E) = VRO + Vi) + V() + VE(@),

where

ViR =Y (le@)]e +a,), LeT,
p=1

1 - + + + + t
Bt D0y 4y by 8i) [ (2leko)
g1 t—Tpq(t)
+L1|e )| +L[|e](s)| LK|eK(s)|) (+7) ds

1 N T
e v ) [ @)

ﬂ g=1 t—0opq(t

+ L;—l|efz(s)| + L%\eg(s)i + L§|elq<(s)|)ek(“”) ds, pesS.
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Computing the upper right derivative of V(¢) along the solutions of (10), we have

D*VER(¢t)

- 1 " + + + +
< Z )»e”|e§(t)| + e“D*}ef(t)| e Z(bﬁq + bfaq + bII,q + bffq)

p=1 gq=1

X (L§|e§(t){ +L‘é|ef](t)| + L£|e{1(t)| +L§|e§(t){)ek(“’)
1 - + + + +
T a Z(bgq + b117q * b{?q + bfﬂ(q )(Lf(ef(’f - rpq(t))|
P

+ L£|e;(t — Tpg(1))| + Lé|e;(t — Tp(0))] + L§|e{;(t — Tp4(0)])

n

1 + + "
« e*(t—qu(’)”)(l - Tléq(t)) + B Z(qﬁq + qllﬂq * ql{?q * p(q )

g=1
X (L§|e§(t)’ +Lf—4|efl(t)‘ +L§l|e{1(t)| +L§‘e§(t)|)e’\<””)
1< qR+ qﬁ qﬁ qK+ R|oF
_EXI:( pg Y pg t dpg t pq)( Zl| q(t_apq(t))|
P

+ Lﬂelq(t - apq(t))| + L:-’|ef1(t - apq(t)”

+ Lg |e§ (£ = 0pq(0)) |)ew_”1’q(t)“’)(1 - G;;q(t))

n

<Z A—c, - M|€R(t)| Z(“§q+“pq+“{7q+a§q)
gq=1

x (LR [eR(0)] + LHeL(0)] + L} eh(0)] + LK X (0)])

IO ¢+ by (LI )

+ Lyleq (£ = tpq ()| + Lile (¢ = 1 (8)) | + L [eg (£ = () |)
+ Z D+ Dy + Py + Dy ) (LE|eR(0)] + Li|eL(2)]

+ Lileg®] + Lileg Q) + 3 _(ah + o * g + G )

q=1

x (Ly € (= 0pg(0)] + Lj €5 = 0 ()| + L{; CAEEMO)]
1 - + + + +
+ Lﬂefj(t — 0p4(2)) ’)e’\t e Z(bﬁq + bfaq + b;q + bffq )
g=1

X (L§|ef (@) + Lyleho)] + Lilef )] + LE [ef @)
=D (b + g + By + g ) (L e (£ = 150 0) |
g=1

+ Lfg|e;(t - qu(t))| + Lé’e{](t - qu(t))| + L?\elq((t - qu(t)) |)3M
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1 n
5 2 v a1+ 2 o)
q=1
n
+ Ll ] + Lilef ) = 3 (g, + 0 + 2 + 43y)

g=1

x (Lff!eff(t - qu(t))| + L%’e;(t - qu(t))| + L§,|e{1(t - qu(t))|

+ Lg |e§ (£ — 0pq(0)) |)e’”}

n

<Z{ |eR(t| Z(u§q+a +zz] +a )

gq=1
x (Lfleq )] + Lileg(0)] + Lylep(o)] + LF|eg (0)]) + QZ(@’Z
B+ b+ B ) (LR R (D) + LL[el ()] + L[l o)
+LK|eK(t)| prq +p1061+ Pq+ppq)(Llh?|elq€(t)|

ALAG] +L2‘e{1(t)] + Ly X (1))
N li(qk* e g+ ) (LEE @) + L)
:3 rq rq rq pq hl™q hl™q

gq=1
+ L|el(6)] + L [ek (8)] )€ pe

n
<Z A—c,—d,)+ (a§q+aé +a] +a )(Lf+L}
gq=1
n

+L}+L}<)+§Z<b§;+b2;+b2;+b§;)(L§+Lé
gq=1

K KSR gl
+L]+L “+Z pq+ppq e Pog ) (L + L,

g=1
1 " + + + +
+L2+L§,<)+ EZ(qﬁq +q117q+q1],q+qfq)(L§+Lﬁ-l
gq=1

+ Lﬁ-l + Lg)eMr }e“ e
- Z{(A —c,—dy) + A, + éBpe” +P,+ %Qpek" }e’”“ e®)]. (12)
p=1

Performing a similar calculation, we can obtain

n
1
DY) < Z{(x —c —d)) + A, + aBpexr +P,
e (13)

+%Qpem}e}‘t”e(t) , 1=L],K

Page 15 of 23
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In view of (Hg), (12) and (13), we have
D*V(t) <0.

Hence, V' (t) < V(0) forall £ > 0.
On the other hand, we have

- 1 - + + + +
0 = S0 L 30 )
p=1 gq=1
0
<[ S]] L)
~Tpq

n

1 + + +
+ L§|e§(s)|)e’\(s”) ds + 5 Z(qﬁq + q}',q + qi,q
g=1

0

ra) [ RCLATREEA

0-0pq

+ Li—l |e{1(s)| + L§|e§(s)‘)e'\(”") ds}

- 1 d + + + +
< Z{“ 5 2 + U+ by 4 b ) (L + Ly
p=1

gq=1

(e“—l) 1 " + + + +

J ., 7K

+Lg+Lg) A +Ez(q§q+qfﬂq+q;q+qfq)
q=1

(e -1)

R_ 7l 7] 1K
X (Ll; +L;l+L;-l+L;1)T

}nw—wno

n AT ] ‘o _q
=Z{1+(6M )g, . o )Qp}nw—wno.
p=1

Similarly, we can get

n AT vy
V’(O)sZ{u(e Dp,, ¢ 1)Qp}||1/f—<pllo, I=LJ.K.

p=1 B2
It is obvious that

||y(t) —x(t)||e“ = ||e(t) ||e” <V(@), t=>0.

Hence, we have

|y(6) - ()| < V)™ < V(0)e™ < Ml — plloe™,
where
n AT _ A0
M= {1_'_(600\ 1)Bp+(e B 1)Qp}>1

t>0,

Page 16 of 23
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Therefore, system (1) and system (9) are globally exponentially synchronized. This com-

pletes the proof. d

5 A numerical example

In this section, we give two numerical examples to illustrate the effectiveness of our results.

Example 1 Consider the following drive system:

2 2
%,(8) = —cp(Oxp(8) + Y apg@fy(x4(8) + Y g0y (04 ( — pg (1)) +Jp(2), (14)

g=1 gq=1
where p = 1,2, v(£) = €, and the coefficients are as follows:

R 1] - [ -1

+ lksin(xj +x +xK),
4 2

Ja(xg)

1 R, Lok, L I
8(xg) = Jarctanx’ + Zisinx" + Z/tanh(xq +),

a()=4+ |sin(«/§t) +cost

.l =7-2cosV2t, 1) = %(1 +sin2f),
an(t) = arp(t) = 0.2sin(v/2£) + 0.1i(sin(v/2¢) + cost) + 0.1k cos(+/7¢),

a1 (£) = ax(f) = 0.1sin(v/5¢) + 0.3j sin ¢t + 0.2k(sin £ + cos /3¢),

b11(8) = bia(t) = 0.5cos(v/7¢) + 0.4k (cos(+/3t) + sinv/2(2)),

by1(t) = bay(t) = 0.3 + 0.4i sin(+/3t) + 0.3jsin v/2¢ + 0.1k,

Ji(®) = 2(sin £ + cos(2¢)) + i2sin(v/5¢) + j2 cos(v/7t) + k(1.9 cos /3t + 0.1e7"),

Jo(t) = 1.9cos /3¢ +0.1e™ + i2sint + j(1.9cos £ +0.1e™) + k2(sin(+/3¢) + sin).

By a simple computation, for p = 1,2, [ € T, we have

and
I+t
K =max{i_,]i_} ==,
aq oo 2
1 1
0= max{ —(A; +By), —(Ay + Bz)} =max{0.85,0.92} =0.92 < 1.
a G

So, all the assumptions of Theorem 1 is satisfied. Therefore, by Theorem 1, we see that

(14) has a unique weighted pseudo-almost periodic solution (see Fig. 1).
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X (1), p

XM — — —x}()

x (), p=1,2.
Ky pe
xp(t), p=1,2.

Figure 1 The states of four parts of x; (t) and x(t)

Example 2 Consider the following drive system:

2 2
x,(8) = —cp (), (£) + Zapq(t)fq (x,(8)) + Z Bpg (g, (%4 (£ = Tpg(£))) +J(2)

q=1 q=1

and the response system

2
Pp(8) = =cpO7p(0) + D apg(0)f; (34(2))

gq=1

2
+ prq(t)gq(yq(t - qu(t))) +Jp(t) + up(2),

gq=1

where p=1,2,

,(£) = prq(t quq a(eq(t = 0pg(1)))-

Consider the weight v(¢) =

1 1, 1 1
Solxg) = gtanhxf; + gz|xf1 +o + k| +is sinal + §k|x§},

1 . 1 1, 1, 1 .
(%) = - sm(xs + Exé) + ;z|xf1 +ay |+ §/tanhx{; + ;ksmx{l,

1 1 1 1
hqleg) = gtanheI; + gi|ef; +efl +e{] +e{;| + g}'singe[q< + gksinel,

1

itq(eq) = ;sin(e; + 6{1) + —i|e{1 + eK| + ljtanh(eg + qu() + —ksin’ e/

1
7 18 7

el!l and the coefficients are taken as follows:

q’

(15)

(16)

(17)
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an(t) =0. l(cos(2t) +sin(2¢) +j + k sin( «/_t))

ap(t) =0. 1(s1n (v/2¢) + cos(2¢) +]smt+kc0s(«/_t )

a» () =0. 1(cos «/—t )+ l(sm \/_t) + cos t))

ax(t) = 0.1(sint + icos(v/3t) + ksm(«/—t))

by1(¢) = 0.1(sint + cos(+/2t) + jcos® t + kcos(2t)),

b12(t) = 0. l(sm(x/—t) + k(cos(2t) + sin x/—t))

by (t) = 0. 1(s1n (2t) + j sin( (v/5t) + k cos(3t))

by(t) =0.1(icost +sint + ksin(v/31)),

p11(8) =0.1 +i0.1cost +k(0.09cos £ + 0.01e”"),

p12(8) = 0.1cos(v/3¢) +i(0.09sin £ + 0.01e”) +jcos®¢,
po1(t) = 0.09sin(v/2¢) + 0.01e™ + 0.1 cos t + 0.1k,

paa(t) = i0.1sin(3t) + k(0.09(sin(x/§t) +cos(21)) + 0.01e7),
qu1(¢) = i0.1sin /3¢ +j0.1 cos v/2¢ + k(0.09 + 0.01e™"),
q12(t) = 0.1 cos(2¢t) + i(0.09cos ¢ +0.01e") + j0.1sin* £),
21 (£) = 0.1(sin(v/2) + cos(4t)) + k0.1sin,

g (t) = 0.09 cos(v/2¢) + 0.01e~* + i0.1sin+/2¢ + k0.1 sin(3¢),
c1(t) = 2sin(v/2¢) + 4, () = 5 —2cos(v/3t),

di(t) = (sin(\/it) +cos t) +5, ds(£) = 6 — 2 cos(v/5¢),
J1() =0.9sin £ + 0.1e™ + icos(v/3t) + jsin(v/3t) + k cos(2¢),

Jo(t) =sint + i(sin t+ cos(«/it)) +j(0.9 cost + O.Ie_t) + k sin(2t),

1 1

m1(t) = = T(t) = - To1(t) = = Tya(t) = v
(t) = ~lcost| (1) (1) = — (t) = . |sin(27)]
= ~|cost|, - = = —|sin .

o1 9 012 021 10 022 3

By a simple computation, for p =1,2,/ € T, we have

and

1
=2, ¢, =3, di =d, =4, r:z,
. 3 7
A
= -, = 1, = -, = -,
o ]p o 2 B 3
L’—Ll—l Ll—Ll—l A =112 By ~0.5714 P; =0.96
= h—g, ¢ =L, ;; 1=41.15 1~ VY. » 1 =479
Q; ~ 0.6857, Ay ~ 0.6857, B, ~ 0.6857, P, ~ 0.5714, Q, ~ 0.5714,
I+ +
1
K= max{ 1 ]L} =-,
< 2
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IIXQ. 3

xJ(t), p=1,2.
=1,2.

xS0, p

0 20 40 60 80 100
t t

Figure 2 The states of four parts of x; (t) and x(t)

v — — =R

05 05

(1), p=1,2
o
(t), p=1,2

R
Yo

y!
p

o
o

0 20 40 60 80 100 0 20 40 60 80 100

yKo — — —vKo

1,2.

®), p=

K
Yp

0 20 40 60 80 100

t

Figure 3 The states of four parts of y; (t) and y,(t)

1 1
0= max{ —(A1 +By), —(Ay + Bz)} = max{0.8457,0.4571} = 0.8457 < 1.
G )

Take A = 1, then we have
— — 1 AT 1 Ao
(A—ci—dy) + A1+ =B1e"" + Py + E(21e ~ -1.05374 <0,
o

1 1
(A—c; —dy) + Az + ;Bze“ +Py + EQzeM ~ -2.82898 < 0.
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1 T T T T T
el(t) elt) — — —ey(t) e el
o 4
I
Q
~\-’/C:.
(0] -
| | | | |
25 30 35 40 45 50
t
Figure 4 Synchronization

So, all the assumptions of Theorem 2 are satisfied. So by Theorem 2, system (15) has a
unique weighted pseudo-almost periodic solution and system (15) and (16) are globally

exponentially synchronized (see Figs. 2—4).

6 Conclusion

In this work, we studied the existence of weighted pseudo-almost periodic solutions of
delayed QVCNNs. Moreover, when the drive system has a unique weighted pseudo-
almost periodic solution, we investigated global exponential synchronization of the drive—
response structure of delayed QVCNNs with weighted pseudo-almost periodic coeffi-
cients. The approach of this paper can be used to study the problem of the weighted
pseudo-almost periodic solutions and synchronization for other types of neural networks.
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