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Abstract
A new notion of frames, called the relay fusion frames, for Hilbert spaces has been
introduced by the authors. It provides a mathematical framework for applications that
require the transmission of signals over long distances or need to expand the
coverage of wireless networks. The technique described in this paper is not only a
natural technique suitable for the applications of relay communication systems, but
also can be regarded as a natural generalization of fusion frames or even g-frames. We
transfer some common properties in general frames and fusion frames to relay fusion
frames with the definition of the relay fusion frames and their operators. In particular,
besides canonical duality, we obtain two new dualities of the relay fusion frames.
Moreover, we prove that relay fusion frames are stable under small perturbations.
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1 Introduction
The notion of frames for Hilbert spaces was first introduced by Duffin and Shaeffer [9] in
1952 for investigating some deep problems in non-harmonics Fourier series, and popular-
ized from then on. Frames were developed as a powerful tool in signal processing, coding
theory, communication theory, sampling theory and many other fields.

Fusion frames (frame of subspaces) arose naturally as a generalization of frames. They
are collections of closed subspaces and weights that allow the reconstruction of each ele-
ment of a Hilbert space from packets of coefficients. Fusion frames are very useful in areas
such as sensor networks, neurology, distributing sensing, parallel processing and packet
encoding, among others.

1.1 Background of research
In the study of application aspects of frame and fusion frame theory one of the most im-
portant concepts is the signal processing. However, the conditions to transmission signals
in “classical frame theory” are very restrictive—the long distance between transmitters
and receivers is possible. This makes it hard to transmit signals and this is the reason that
one might look for a more flexible tool.

In applications, an input signal is converted into the data vectors. In an ideal setting,
these data vectors can be transmitted directly to the data receiver and the signal can be
reconstructed by the receiver using frame and dual frame elements. However, in real im-
plementations, sometimes the data vectors cannot be received directly by the receiver,
such as relay communication [12, 20], distributed sensor relay system [23], cooperative
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communication [18], satellite communication [17], microwave communication [16], and
ultrashort wave communication [15].

When using microwave and ultrashort wave to transmit signals, if the distance between
two terminals exceeds the visual distance, the signals attenuate quickly and the quality
cannot be guaranteed. If a number of relay stations are set up between two terminals,
the relay stations will transmit the signals from the previous station after amplification,
shaping and carrier frequency conversion to the next station, which can extend the com-
munication distance and maintain good communication quality, and at the same time help
small power equipment to expand the signals, providing a new network mode. This mode
can realize the amplification and continuation of network signals and solve the problem
of distance for network construction.

In virtue of the role of relay stations, microwave communication transmits signals hun-
dreds or even thousands of kilometers away. They can be used to improve services in part
of the main coverage area where poor signals are received due to geographical constraints.
The receiving and transmitting radius of the relay stations covers a large area.

A company hopes to connect all the networks of its nearby production plants, work-
shops, management centers, so as to facilitate resource sharing, unified management and
maximize the use of information. In university campuses, independent intranets in teach-
ing buildings, student dormitories and computing centers also need to be set up together
to facilitate the access of students and teachers to campus networks, and so on. When the
local area networks need to be connected are too far apart and the signals are weak, we
need to use wireless relay technology to connect and build the network to achieve wireless
bridging between the local area networks.

Under these circumstances, the applications cannot be modeled naturally by the tra-
ditional frame systems. In order to deal with these applications of frame new methods
have to be developed. A relay fusion frame theory with local frame system is therefore in
demand.

Relay fusion frames are such tools. A relay fusion frame for a vector space equipped
with an inner product can also process signals, but the distance between transmitters and
receivers is not required. In this paper, we present relay fusion frames theory in Hilbert
spaces.

Relay fusion frame system is a device that can receive and transmit signals over a long
distance. It provides a mathematical model for applications requiring long distance trans-
mission of signals. From this point of view, the traditional frame theory can be regarded as
a system with “real-time communication” function without involving the relay technique,
while the relay fusion frame theory can be thought of as a system with “relay communica-
tion” function.

The advantage of the relay fusion frame system is that it utilizes relay technique to relay
signals from one relay point to the next relay point, and forming a new network cover-
age area, thus constituting multiple relay coverage modes, and ultimately achieving the
purpose of extending the coverage of the network. The relay mode networking method is
extremely versatile. Nowadays, the network has begun to be widely used. In many places,
because the site is large or has obstacles, the network coverage of the wireless device does
not reach the distance we need or is hindered in the middle. At this time, if we use the relay
mode to connect to the wireless network, we can meet the networking requirements.
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1.2 Related approaches
In view of the relationships between fusion frames and distributed processing proposed
by Cazassa, Kutyniok and Li in the fundamental paper [5], we can also establish the con-
nection between the relay fusion frames and the distributed sensor relay systems and the
cooperative communications in a similar way. But in our approaches, we hope to adopt a
more intuitive way to introduce the relay fusion frame based on frame and fusion frame
theory. We remark that besides applications, relay fusion frames for Hilbert spaces or Ba-
nach spaces are interesting and natural objects to study from both pure and applied math-
ematics of the theory point of view, so our work is not trivial.

1.3 Contents
The paper is organized as follows. In Sect. 2 we recall frames, fusion frames and their
operators. In Sect. 3 we introduce the definition of relay fusion frames. We will show that
a relay fusion frame behaves as a generalization of fusion frames or even g-frames, which
also provide an associated analysis and synthesis operator, a frame operator and a dual
object. Particularly, in addition to canonical dual, we give two new dualities of the relay
fusion frames. We end this section with the Q-dual relay fusion frames of relay fusion
frames. In Sect. 4 we study the relay fusion frame systems and we also get some useful
results about it. Finally, in Sect. 5 we prove that relay fusion frames are stable under small
perturbations.

2 Preliminaries
In this section we briefly recall the definitions of frames and fusion frames and their opera-
tors. For more information about the theory and applications of frames and fusion frames
we refer to [2, 6, 11] and [1, 4, 10, 19], respectively. First, let us introduce some notations.

2.1 Notation
Let H and K be separable complex Hilbert spaces and let B(H , K) be the space of all the
bounded linear operators from H to K (if H = K we write B(H)). I,Ji and every Kij will
denote generic countable (or finite) index sets. We use IH to denote the identity operator
on H .

If W ⊆ H and V ⊆ K are subspaces, then we let πW ∈ B(H) and τV ∈ B(K) denote the
orthogonal projections onto the subspaces W and V , respectively.

2.2 Frames
Definition 1 A sequence F = {fi}i∈I of elements in H is said to be a frame for H if there
exist constants α,β > 0 such that

α‖f ‖2 ≤
∑

i∈I

∣∣〈f , fi〉
∣∣2 ≤ β‖f ‖2, ∀f ∈ H . (1)

The numbers α,β are called frame bounds. A frame F is tight if we can choose α = β as
frame bounds. Provided (1) holds with α = β = 1, we call F a Parseval frame.

Definition 2 Let F be a frame for H.
(i) The frame transform or analysis operator of F is

TF : H 	→ �2(I), TF (f ) =
{〈f , fi〉

}
i∈I.
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(ii) The adjoint of TF is given by

T∗
F : �2(I) 	→ H , T∗

F
({ci}i∈I

)
=

∑

i∈I
cifi.

T∗
F is called the pre-frame operator or the synthesis operator of F .

(iii) The frame operator of F is

SF = T∗
FTF : H 	→ H , SF (f ) =

∑

i∈I
〈f , fi〉fi.

Definition 3 Let F = {fi}i∈I and F̃ = {̃fi}i∈I be frames for H. Then F̃ is said to be a dual
frame of F if the following reconstruction formula holds:

f =
∑

i∈I
〈f , fi〉̃fi, ∀f ∈ H ,

or, equivalently,

T ∗̃
FTF = IH .

We call {S–1
F fi}i∈I the canonical dual frame of F .

2.3 Fusion frames
Definition 4 Let {Wi}i∈I be a sequence of closed subspaces of H, and let {vi}i∈I ∈ l∞(I)
such that vi > 0 for every i ∈ I. The sequence {(Wi, vi)}i∈I is said to be a fusion frame for H
if there exist numbers 0 < α ≤ β < ∞ such that

α‖f ‖2 ≤
∑

i∈I
v2

i
∥∥πWi (f )

∥∥2 ≤ β‖f ‖2, ∀f ∈ H .

We call α and β the fusion frame bounds. A fusion frame {(Wi, vi)}i∈I is called a tight
fusion frame if the constants α and β can be chosen so that α = β . If α = β = 1 we say that
it is a Parseval fusion frame.

Definition 5 Let {(Wi, vi)}i∈I be a fusion frame for H and let

(∑

i∈I
⊕Wi

)

�2
=

{
{fi}i∈I|fi ∈ Wi(∀i ∈ I),

∑

i∈I
‖fi‖2 < ∞

}
.

(i) The analysis operator of {(Wi, vi)}i∈I is defined by

TW : H 	→
(∑

i∈I
⊕Wi

)

�2
with TW (f ) =

{
viπWi (f )

}
i∈I.

(ii) The synthesis operator of {(Wi, vi)}i∈I is defined by

T∗
W :

(∑

i∈I
⊕Wi

)

�2
	→ H with T∗

W
({fi}i∈I

)
=

∑

i∈I
vifi.
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(iii) The operator

SW : H 	→ H , SW (f ) = T∗
WTW (f ) =

∑

i∈I
v2

i πWi (f ).

is called the fusion frame operator of {(Wi, vi)}i∈I.

3 Relay fusion frames
In this section, we first introduce the definition of relay fusion frames and then we will
show that it also provide an associated analysis and synthesis operator, a frame operator
and a dual object.

3.1 Definition and basic properties of relay fusion frames and their operators
Definition 6 Let {Ki}i∈I be a sequence of separable Hilbert spaces and {Wi}i∈I be a family
of closed subspaces in H and let {Vij}j∈Ji be a family of closed subspaces in Ki for each i ∈ I.
Let {vij}i∈I,j∈Ji be a family of weights, i.e. vij > 0 for each i ∈ I, j ∈ Ji, and let Λi ∈ B(H , Ki) for
each i ∈ I. Then {(Wi, Vij,Λi, vij)}i∈I,j∈Ji is said to be a relay fusion frame, or simply r-fusion
frame, if there exist constants 0 < α ≤ β < ∞ such that

α‖f ‖2 ≤
∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2 ≤ β‖f ‖2, ∀f ∈ H . (2)

We call α and β the r-fusion frame bounds.

The family {(Wi, Vij,Λi, vij)}i∈I,j∈Ji is called an α-tight r-fusion frame, if the constants α

and β can be chosen so that α = β , a Parseval r-fusion frame provided that α = β = 1. If
{(Wi, Vij,Λi, vij)}i∈I,j∈Ji satisfies the second inequality in Eq. (2), then it is said to be a Bessel
r-fusion sequence in H with Bessel r-fusion bound β .

If we take Ki = H , Vij = Wi,Λi = IH and vij = wi for all i ∈ I, j ∈ Ji, then we get from Def-
inition 6 the fusion frame {(Wi, wi)}i∈I for H and thus r-fusion frame can be viewed as a
generalization of fusion frame.

Similarly, let Wi = H , Vij = Ki and vij = 1 for all i ∈ I, j ∈ Ji, then inequality (2) can be
restated as the following form which is, as defined in [21], the g-frames:

α‖f ‖2 ≤
∑

i∈I

∥∥Λi(f )
∥∥2 ≤ β‖f ‖2, ∀f ∈ H .

Consequently, g-frames can be thought of as a special class of r-fusion frames. The special
case, where Ki = C, i ∈ I, gives rise to the classical frames.

The representation space employed in classical frame theory and fusion frame theory
equal �2(I) and (

∑
i∈I ⊕Wi)�2 , respectively. However, in r-fusion frame theory an input

signal f ∈ H is represented by the collection of vector coefficients that can be thought of
as to represent the projection onto each subspace of local relay spaces Ki, i ∈ I. Hence, the
representation space employed in this framework defined by

(∑

i∈I

∑

j∈Ji

⊕Vij

)

�2
=

{
{fij}i∈I,j∈Ji |fij ∈ Vij and

∑

i∈I

∑

j∈Ji

‖fij‖2 < ∞
}

,
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with inner product given by

〈{fij}i∈I,j∈Ji , {gij}i∈I,j∈Ji

〉
=

∑

i∈I

∑

j∈Ji

〈fij, gij〉,

with respect to the pointwise operations is a Hilbert space.
We can give an intuitive explanation about r-fusion frames. Let us assume that we want

to transmit the wireless signal f belonging to a vector space W from a transmitter X to a
receiver Y . If the distance between X and Y is too far, the wireless signal f will come to
nothing before reaching the receiver Y . However, in the case we set up a relay station Z
between X and Y , this situation will clear away. By transmitting from the relay stations,
the restriction that the ordinary receiver and the transmitter cannot be connected due to
the distance can be solved.

In the sequel, we will denote {(Wi, Vij,Λi, vij)}i∈I,j∈Ji by R, simply. We abbreviate r-fusion
frame to RFF.

Before define the analysis operator for an RFF, we state the following lemma, which is
analogous to Lemma 3.9 in [4].

Lemma 3.1 Let R be a Bessel r-fusion sequence in H with Bessel bound β . Then, for each
sequence {fij}i∈I,j∈Ji with {fij} ∈ Vij for all i ∈ I, j ∈ Ji, the series

∑
i∈I

∑
j∈Ji

vijπWiΛ
∗
i fij con-

verges unconditionally.

Proof Let L and M be fixed finite subsets of I and Ji, respectively. Let

f = {fij}i∈I,j∈Ji ∈
(∑

i∈I

∑

j∈Ji

⊕Vij

)

�2
and g =

∑

i∈L

∑

j∈M
vijπWiΛ

∗
i fij.

Then we have

‖g‖ =
∥∥∥∥
∑

i∈L

∑

j∈M
vijπWiΛ

∗
i fij

∥∥∥∥

= sup
h∈H,‖h‖=1

∣∣∣∣

〈∑

i∈L

∑

j∈M
vijπWiΛ

∗
i fij, h

〉∣∣∣∣

= sup
h∈H,‖h‖=1

∣∣∣∣
∑

i∈L

∑

j∈M

〈
fij, vijτVijΛiπWi (h)

〉∣∣∣∣

≤ sup
h∈H,‖h‖=1

(∑

i∈L

∑

j∈M
v2

ij
∥∥τVijΛiπWi (h)

∥∥2
) 1

2 ·
(∑

i∈I

∑

j∈Ji

‖fij‖2
) 1

2

≤ √
β‖f ‖,

and it follows that
∑

i∈I
∑

j∈Ji
vijπWiΛ

∗
i fij converges unconditionally (see [8], page 44). �

Definition 7 Let R be an RFF for H. Then the analysis operator for R is defined by

TR : H 	→
(∑

i∈I

∑

j∈Ji

⊕Vij

)

�2
with TR(f ) =

{
vijτVijΛiπWi (f )

}
i∈I,j∈Ji

,∀f ∈ H .

We call the adjoint T∗
R of the analysis operator the synthesis operator of R.
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Proposition 3.2 Let R be an RFF for H. Then

T∗
R(f ) =

∑

i∈I

∑

j∈Ji

vijπWiΛ
∗
i fij, ∀f = {fij}i∈I,j∈Ji ∈

(∑

i∈I

∑

j∈Ji

⊕Vij

)

�2
.

Proof Let g ∈ H and f = {fij}i∈I,j∈Ji ∈ (
∑

i∈I
∑

j∈Ji
⊕Vij)�2 . Then we compute

〈
TR(g), f

〉
=

〈{
vijτVijΛiπWi (g)

}
i∈I,j∈Ji

, {fij}i∈I,j∈Ji

〉

=
∑

i∈I

∑

j∈Ji

〈
g, vijπWiΛ

∗
i (fij)

〉
=

〈
g, T∗

R(f )
〉
.

�

In an analogous way as in frame and fusion frame theory we can give the following well-
known relations between an RFF and the associated analysis and synthesis operator.

Theorem 3.3 The following assertions are equivalent:
(i) R is an RFF for H.

(ii) The analysis operator TR is injective and has closed range.
(iii) The synthesis operator T∗

R is bounded, linear and surjective.

Proof (i) ⇒ (ii) For all f ∈ H , we have

∥∥TR(f )
∥∥2 =

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2 ≥ α‖f ‖2,

which implies that TR is injective and has closed range.
(ii) ⇒ (i) This is obvious.
(ii) ⇔ (iii) This follows immediately from the operator-theoretics results of Hilbert

spaces. �

By composing TR and T∗
R, we obtain the frame operator for R.

Definition 8 Let R be an RFF for H. Then the frame operator SR for R is defined by

SR(f ) = T∗
RTR(f ) =

∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i τVijΛiπWi (f ), ∀f ∈ H .

To prove Proposition 3.5 we need the following theorem that gives the relation between
a Bessel r-fusion sequence and the synthesis operator T∗

R.

Theorem 3.4 R is a Bessel r-fusion sequence in H with bound β if and only if the map

({fij}i∈I,j∈Ji

) 	→
∑

i∈I

∑

j∈Ji

vijπWiΛ
∗
i fij

is a well-defined bounded operator from (
∑

i∈I
∑

j∈Ji
⊕Vij)�2 to H and its norm is less than

or equal to
√

β .
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Proof First assume thatR is a Bessel r-fusion sequence for H with bound β . By Lemma 3.1,
the series

∑
i∈I

∑
j∈Ji

vijπWiΛ
∗
i fij is convergent. Thus T∗

R({fij}i∈I,j∈Ji ) is well defined. A sim-
ple calculation as in Lemma 3.1 shows that T∗

R is bounded and that ‖T∗
R‖ ≤ √

β .
For the opposite implication, suppose that T∗

R is well defined and that ‖T∗
R‖ ≤ √

β . Then

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2

=
∑

i∈I

∑

j∈Ji

v2
ij
〈
πWiΛ

∗
i τVijΛiπWi (f ), f

〉

=
〈
T∗
R

({
vijτVijΛiπWi (f )

}
i∈I,j∈Ji

)
, f

〉

≤
(∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2
) 1

2 ∥∥T∗
R

∥∥‖f ‖.

Now solving for (
∑

i∈I
∑

j∈Ji
v2

ij‖τVijΛiπWi (f )‖2) 1
2 yields

(∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2
) 1

2 ≤ ∥∥T∗
R

∥∥‖f ‖ ≤ √
β‖f ‖.

�

Given an RFF, Proposition 3.5 states some of the important properties of frame operator
SR.

Proposition 3.5 Let R be an RFF with frame bounds α and β . Then the frame operator
for R is a bounded, positive, self-adjoint, invertible operator on H with αIH ≤ SR ≤ βIH .

Proof SR is bounded as a composition of two bounded operators. By Theorem 3.4,

‖SR‖ =
∥∥T∗

RTR
∥∥ =

∥∥T∗
R

∥∥2 ≤ β .

Since S∗
R = (T∗

RTR)∗ = T∗
RTR = SR, the operator SR is self-adjoint. The inequality (2)

means that

α‖f ‖2 ≤ 〈
SR(f ), f

〉 ≤ β‖f ‖2, ∀f ∈ H .

This shows that αIH ≤ SR ≤ βIH and hence SR is a positive, invertible operator on H . �

Proposition 3.6 LetR be an RFF for H with frame operator SR, we have then, for all f ∈ H ,

f =
∑

i∈I

∑

j∈Ji

v2
ijS

–1
RπWiΛ

∗
i τVijΛiπWi (f ) =

∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i τVijΛiπWi S

–1
R (f ).

Proof Since SR is invertible, for all f ∈ H we have

f = S–1
RSR(f ) =

∑

i∈I

∑

j∈Ji

v2
ijS

–1
RπWiΛ

∗
i τVijΛiπWi (f )

= SRS–1
R (f ) =

∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i τVijΛiπWi S

–1
R (f ).

�
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The following theorem gives a sufficient condition such that two Bessel r-fusion se-
quence become RFFs in terms of their analysis operators.

Theorem 3.7 Let R1 = {(Wi, Vij,Λi, vij)}i∈I,j∈Ji and R2 = {(W ′
i , V ′

ij,Λ′
i, v′

ij)}i∈I,j∈Ji be two
Bessel r-fusion sequence for H with bounds β1 and β2, respectively. Let TR1 and TR2 be
their analysis operators such that T∗

R2
TR1 = IH . Then both R1 and R2 are RFFs.

Proof For all f ∈ H , we have

‖f ‖4 =
(〈

TR1 (f ), TR2 (f )
〉)2

≤ ∥∥TR1 (f )
∥∥2∥∥TR2 (f )

∥∥2

=
(∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2
)(∑

i∈I

∑

j∈Ji

v′2
ij

∥∥τV ′
ij
Λ′

iπW ′
i
(f )

∥∥2
)

≤
(∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2
)

β2‖f ‖2.

This yields

1
β2

‖f ‖2 ≤
∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2.

Similarly we obtain a lower bound for R2. �

3.2 Duality of relay fusion frames
To define the dual frames for RFFs, we need the following technical lemma.

Lemma 3.8 (see [10]) Let A ∈ B(H) and V ⊆ H be a closed subspace. Then

πV A∗ = πV A∗πAV .

3.2.1 Global relay dual of relay fusion frames
Let R = {(Wi, Vij,Λi, vij)}i∈I,j∈Ji be an RFF for H. We consider global relay space K =
(
∑

i∈I ⊕Ki)�2 and let FK be a frame for K, where every Ki is local relay space. We use
SFK to denote the frame operator for K. Let V ij = S–1

FK
Vij and Λi = S–1

FK
τVijΛi. We now

prove that R = {(Wi, V ij,Λi, vij)}i∈I,j∈Ji is an RFF for H and we call R the global relay dual
RFF of R.

Theorem 3.9 Let R be an RFF for H. Then R is an RFF for H and, for all f ∈ H ,

f =
∑

i∈I

∑

j∈Ji

v2
ijS

–1
RπWiΛ

∗
i ΛiπWi (f ) =

∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i ΛiπWi S

–1
R (f ).

Proof We first prove the upper bound. For each f ∈ H , we have

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τS–1

FK
Vij

S–1
FKτVijΛiπWi (f )

∥∥2 =
∑

i∈I

∑

j∈Ji

v2
ij
∥∥S–1

FKτVijΛiπWi (f )
∥∥2
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≤ ∥∥S–1
FK

∥∥2
β‖f ‖2.

Now we obtain a lower bound for R. We compute

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τS–1

FK
Vij

S–1
FKτVijΛiπWi (f )

∥∥2 =
∑

i∈I

∑

j∈Ji

v2
ij
∥∥S–1

FKτVijΛiπWi (f )
∥∥2

≥
∑

i∈I

∑

j∈Ji

v2
ij

1
‖SFK‖2

∥∥τVijΛiπWi (f )
∥∥2

≥ α

‖SFK‖2 ‖f ‖2.

Further, since SR̃ is invertible, for all f ∈ H we have

f = S–1
RSR(f ) = SRS–1

R (f )

=
∑

i∈I

∑

j∈Ji

v2
ijS

–1
RπWiΛ

∗
i τV ijΛiπWi (f )

=
∑

i∈I

∑

j∈Ji

v2
ijS

–1
RπWiΛ

∗
i τVij S

–1
i τS–1

i Vij
S–1

i τVijΛiπWi (f )

=
∑

i∈I

∑

j∈Ji

v2
ijS

–1
RπWiΛ

∗
i ΛiπWi (f )

=
∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i ΛiπWi S

–1
R (f ).

�

3.2.2 Local relay dual of relay fusion frames
Let Ṽij = S–1

i Vij and Λ̃i = S–1
i τVijΛi, where Si denote the frame operators with respect to

Ki for each i ∈ I and we call every Si local relay frame operator. We now prove that R̃ =
{(Wi, Ṽij, Λ̃i, vij)}i∈I,j∈Ji is also an RFF for H and we call R̃ the local relay dual RFF of R.

Theorem 3.10 Let R be an RFF for H. Then R̃ is an RFF for H and, for all f ∈ H ,

f =
∑

i∈I

∑

j∈Ji

v2
ijS

–1
R̃πWiΛ̃

∗
i Λ̃iπWi (f ) =

∑

i∈I

∑

j∈Ji

v2
ijπWiΛ̃

∗
i Λ̃iπWi S

–1
R̃ (f ).

Proof It is easy to show that, for all f ∈ H ,

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τS–1

i Vij
S–1

i τVijΛiπWi (f )
∥∥2 =

∑

i∈I

∑

j∈Ji

v2
ij
∥∥S–1

i τVijΛiπWi (f )
∥∥2

≤ max
i∈I

{∥∥S–1
i

∥∥2
β
}‖f ‖2.

Now we obtain a lower bound for R̃. We compute

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τS–1

i Vij
S–1

i τVijΛiπWi (f )
∥∥2 =

∑

i∈I

∑

j∈Ji

v2
ij
∥∥S–1

i τVijΛiπWi (f )
∥∥2

≥
∑

i∈I

∑

j∈Ji

v2
ij

1
‖Si‖2

∥∥τVijΛiπWi (f )
∥∥2
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≥ min
i∈I

{
α

‖Si‖2

}
‖f ‖2.

Further, since SR̃ is invertible, for all f ∈ H we have

f = S–1
R̃SR̃(f ) = SR̃S–1

R̃ (f )

=
∑

i∈I

∑

j∈Ji

v2
ijS

–1
R̃πWiΛ̃

∗
i τṼijΛ̃iπWi (f )

=
∑

i∈I

∑

j∈Ji

v2
ijS

–1
R̃πWiΛ

∗
i τVij S

–1
i τS–1

i Vij
S–1

i τVijΛiπWi (f )

=
∑

i∈I

∑

j∈Ji

v2
ijS

–1
R̃πWiΛ̃

∗
i Λ̃iπWi (f )

=
∑

i∈I

∑

j∈Ji

v2
ijπWiΛ̃

∗
i Λ̃iπWi S

–1
R̃ (f ).

�

Remark 3.11 Recall that there are always many different frames for global relay space K
and local relay space Ki, respectively. For this reason, the global relay dual RFF R and local
relay dual RFF R̃ are not unique.

3.2.3 Canonical dual of relay fusion frames
Now let Ŵi = S–1

RWi and Λ̂i = ΛiπWi S–1
R , where SR is the frame operator for R. We prove

that R̂ = {(Ŵi, Vij, Λ̂i, vij)}i∈I,j∈Ji is also an RFF for H and we call R̂ the canonical dual RFF
of R for H .

Theorem 3.12 Let R be an RFF for H. Then R̂ is an RFF for H.

Proof For all f ∈ H , we have

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi S

–1
RπS–1

RWi
(f )

∥∥2 =
∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi S

–1
R (f )

∥∥2

≤ ∥∥S–1
R

∥∥2
β‖f ‖2.

Now we obtain a lower bound for R̂. We compute

‖f ‖4 =
∣∣∣∣

〈∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i τVijΛiπWi S

–1
R (f ), f

〉∣∣∣∣
2

=
∣∣∣∣
∑

i∈I

∑

j∈Ji

v2
ij
〈
τVijΛiπWi S

–1
R (f ), τVijΛiπWi f

〉∣∣∣∣
2

≤
(∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi S

–1
RπS–1

RWi
(f )

∥∥2
)(∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2
)

≤
(∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi S

–1
RπS–1

RWi
(f )

∥∥2
)

β‖f ‖2,
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which implies that

1
β

‖f ‖2 ≤
∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi S

–1
RπS–1

RWi
(f )

∥∥2.
�

Theorem 3.13 Let R be an RFF for H with frame operator SR and let R̂ be the canonical
dual RFF of R with frame operator SR̂. Then SRSR̂ = IH and T∗

RTR̂ = IH and, for all f ∈ H ,

f =
∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i τVijΛ̂iπŴi (f ) =

∑

i∈I

∑

j∈Ji

v2
ijπŴiΛ̂

∗
i τVijΛiπWi (f ).

Proof For all f ∈ H , we obtain

SRSR̂(f ) = SR
∑

i∈I

∑

j∈Ji

v2
ijπS–1

RWi
S–1
RπWiΛ

∗
i τVijΛiπWi S

–1
RπS–1

RWi
(f )

= SR
∑

i∈I

∑

j∈Ji

v2
ijS

–1
RπWiΛ

∗
i τVijΛiπWi S

–1
R (f )

=
∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i τVijΛiπWi S

–1
R (f )

= SRS–1
R (f )

= f

and

T∗
RTR̂(f ) = T∗

R
({

vijτVijΛiπWi S
–1
RπS–1

RWi
(f )

}
i∈I,j∈Ji

)

= T∗
R

({
vijτVijΛiπWi S

–1
R (f )

}
i∈I,j∈Ji

)

= T∗
RTRS–1

R (f )

= f .

The last assertion of the theorem follows from the previous steps of the proof. �

Moreover, the canonical dual RFFs give rise to expansion coefficients with the minimal
norm.

Theorem 3.14 Let R be an RFF with canonical dual RFF R̂. Then, for any gij ∈ Vij satis-
fying f =

∑
i∈I

∑
j∈Ji

v2
ijπWiΛ

∗
i gij, we have

∑

i∈I

∑

j∈Ji

‖gij‖2 =
∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛ̂iπŴi (f )

∥∥2 +
∑

i∈I

∑

j∈Ji

∥∥gij – v2
ijτVijΛ̂iπŴi (f )

∥∥2.

Proof We compute

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛ̂iπŴi (f )

∥∥2 =
〈
SR̂(f ), f

〉

=
〈
f , S–1

R (f )
〉
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=
∑

i∈I

∑

j∈Ji

v2
ij
〈
πWiΛ

∗
i gij, S–1

R (f )
〉

=
∑

i∈I

∑

j∈Ji

v2
ij
〈
gij, τVijΛiπWi S

–1
R (f )

〉

=
∑

i∈I

∑

j∈Ji

v2
ij
〈
gij, τVijΛ̂iπŴi (f )

〉

=
∑

i∈I

∑

j∈Ji

v2
ij
〈
τVijΛ̂iπŴi (f ), gij

〉
,

which finishes the proof. �

Example 3.15 In classical frame theory we can always construction a Parseval frame by
applying S– 1

2
F , where SF denote the frame operator of frame F . For the situation of RFFs

is similarly. In fact, for all f ∈ H ,

‖f ‖2 =
〈
S– 1

2
R SRS– 1

2
R (f ), f

〉
=

〈∑

i∈I

∑

j∈Ji

v2
ijS

– 1
2

R πWiΛ
∗
i τVijΛiπWi S

– 1
2

R (f ), f
〉

=
∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi S

– 1
2

R (f )
∥∥2

=
∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi S

– 1
2

R π
S

– 1
2

R Wi
(f )

∥∥2;

therefore, {(S– 1
2

R Wi, Vij,ΛiπWi S
– 1

2
R , vij)}i∈I,j∈Ji is a Parseval RFF for H .

Example 3.16 We introduce atomic resolutions of an operator R on H . Let R be an RFF
for H. Suppose that R̂ is the canonical dual RFF of R. Then from Theorem 3.13, we have
for all f ∈ H

f =
∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i τVijΛ̂iπŴi (f ) =

∑

i∈I

∑

j∈Ji

v2
ijπŴiΛ̂

∗
i τVijΛiπWi (f ).

This implies that

IH =
∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i τVijΛ̂iπŴi =

∑

i∈I

∑

j∈Ji

v2
ijπŴiΛ̂

∗
i τVijΛiπWi ,

and the series are convergent in the weak* sense. Let R ∈ B(H). As can be seen from the
discussion above

R =
∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i τVijΛ̂iπŴi R =

∑

i∈I

∑

j∈Ji

v2
ijπŴiΛ̂

∗
i τVijΛiπWi R

=
∑

i∈I

∑

j∈Ji

v2
ijRπWiΛ

∗
i τVijΛ̂iπŴi =

∑

i∈I

∑

j∈Ji

v2
ijRπŴiΛ̂

∗
i τVijΛiπWi .
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3.3 Q-dual relay fusion frames
The concept of Q-dual fusion frames for finite-dimensional Hilbert spaces and any separa-
ble Hilbert spaces were introduced in [13, 14], respectively. In this subsection we transfer
some definitions and results of Q-dual fusion frames to the situation of RFFs. For more
information about Q-dual fusion frames, we refer to [13, 14].

Throughout this subsection, the symbols KV ,KU ,RV ,RU , and LTRV
refer, respectively,

to the spaces (
∑

i∈I
∑

j∈Ji
⊕Vij)�2 , (

∑
i∈I

∑
j∈Ji

⊕Uij)�2 , the families {(Wi, Vij,Λi, vij)}i∈I,j∈Ji ,
{(Mi, Uij,Γi, uij)}i∈I,j∈Ji and the collection of bounded left inverses of TRV .

In analogy with the fusion frame case (see [14], Definition 3.1, 3.3), we introduce the
following terminology.

Definition 9 Let RV and RU be two RFFs for H. If there exists Q ∈ B(KV ,KU ) such that

T∗
RU

QTRV = IH ,

then RU is said to be a Q-dual RFF of RV .

Definition 10 Let P(m,n) : KV 	→KU , P(m,n){fij}i∈I,j∈Ji = {δ{(m,n),(i,j)}fij}i∈I,j∈Ji , where δ{(m,n),(i,j)}
is the Kronecker delta. If Q in Definition 9 satisfies

QP(m,n)KV = P(m,n)KU ,

we say that Q is component preserving and RU is a component preserving dual RFF of
RV .

To simplify the exposition, we just formulate the following results which are analogous
to Lemma 3.4, 3.5 of [14] with the proofs carrying over with small changes, so we omit
them.

Lemma 3.17 Let RV be an RFF for H. If RU is a component preserving dual RFF of RV ,
then U(m,n) = AP(m,n)KV , for each i ∈ I, j ∈ Ji, where A ∈LTRV

.

Theorem 3.18 Let RV be an RFF for H, A ∈ LTRV
and U(m,n) = AP(m,n)KV , for each i ∈

I, j ∈ Ji. If RU is a Bessel r-fusion sequence and

QA : KV 	→KU , QA{fij}i∈I,j∈Ji =
{

1
uij

AP(m,n){fij}i∈I,j∈Ji

}

m∈I,n∈Ji

is a well-defined bounded operator, then RU is a QA-component preserving the dual RFF
of RV .

Remark 3.19 As discussed in [14], Remark 3.6, 3.10, we can always find the conditions for
RU being a Bessel r-fusion sequence and for QA being a well defined bounded operator. In
particular, the hypotheses RU to be a Bessel r-fusion sequence and QA to be a well-defined
bounded operator cannot be avoided.
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4 Relay fusion frame systems
We begin this section by defining relay fusion frame systems. The use of RFFs permit
furthermore local processing in each of the subspaces of relay spaces. For this purpose, it
is useful to have a set of relay local frames for its subspaces.

Definition 11 Let R be a r-fusion frame for H, and let Fij = {fijk}k∈Kij be a frame for Vij for
each i ∈ I, j ∈ Ji. Then we call Fij the r-local frame with respect to H and {R,F = {Fij}} a
r-fusion frame system for H. α and β are the associated r-fusion frame bounds if they are
the fusion frame bounds for R, and λ and μ are the r-local frame bounds if these are the
common frame bounds for the r-local frame Fij. A collection of dual frames F̃ij = {̃fijk}k∈Kij

for each i ∈ I, j ∈ Ji associated with the r-local frames will be called r-local dual frames.

The next theorem generalizes a result of Cazassa and Kutyniok [4] to the situation of
RFFs.

Theorem 4.1 Let {fijk}k∈Kij be a r-local frame with frame bounds λk and μk and let
{eijk}k∈Kij be an orthonormal basis for subspaces Vij for each i ∈ I, j ∈ Ji. Suppose that
0 < λ = infk∈Kij λk ≤ supk∈Kij μk = μ < +∞. Then the following statements are equivalent:

(i) R be an RFF for H.
(ii) {vijπWiΛ

∗
i eijk}i∈I,j∈Ji ,k∈Kij is a frame for H.

(iii) {vijπWiΛ
∗
i fijk}i∈I,j∈Ji ,k∈Kij is a frame for H.

In particular, if {R,F} is an RFF system for H with RFF bounds α and β , then
{vijπWiΛ

∗
i fijk}i∈I,j∈Ji ,k∈Kij is a frame for H with frame bounds αλ and βμ. Also if

{vijπWiΛ
∗
i fijk}i∈I,j∈Ji ,k∈Kij is a frame for H with frame bounds α and β , then {R,F} is an

RFF system for H with RFF bounds α
μ

and β

λ
.

Proof (i) ⇔ (ii) Note that

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2 =
∑

i∈I

∑

j∈Ji

v2
ij

∥∥∥∥
∑

k∈Kij

〈
ΛiπWi (f ), eijk

〉
eijk

∥∥∥∥
2

=
∑

i∈I

∑

j∈Ji

v2
ij

∑

k∈Kij

∣∣〈ΛiπWi (f ), eijk
〉∣∣2

=
∑

i∈I

∑

j∈Ji

∑

k∈Kij

∣∣〈f , vijπWiΛ
∗
i (eijk)

〉∣∣2.

It follows that R is an RFF for H if and only if {vijπWiΛ
∗
i eijk}i∈I,j∈Ji ,k∈Kij is a frame for H .

(i) ⇔ (iii) By hypothesis, we obtain

λ
∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2 ≤
∑

i∈I

∑

j∈Ji

λkv2
ij
∥∥τVijΛiπWi (f )

∥∥2

≤
∑

i∈I

∑

j∈Ji

∑

k∈Kij

∣∣〈f , vijπWiΛ
∗
i (fijk)

〉∣∣2

≤ μ
∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2. (3)
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If R is an RFF for H with bounds α and β , then from the above calculations we have

αλ‖f ‖2 ≤
∑

i∈I

∑

j∈Ji

∑

k∈Kij

∣∣〈f , vijπWiΛ
∗
i (fijk)

〉∣∣2 ≤ βμ‖f ‖2.

Moreover, provided that {vijπWiΛ
∗
i fijk}i∈I,j∈Ji ,k∈Kij is a frame for H with frame bounds α and

β , again by applying (3) we have

α

μ
‖f ‖2 ≤

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2 ≤ β

λ
‖f ‖2.

�

Corollary 4.2 Let {fijk}k∈Kij be a Parseval r-local frame and let {eijk}k∈Kij be an orthonormal
basis for subspaces Vij for each i ∈ I, j ∈ Ji.. Then the following statements are equivalent:

(i) R is a Parseval RFF for H.
(ii) SR = IH .

(iii) {vijπWiΛ
∗
i eijk}i∈I,j∈Ji ,k∈Kij is a Parseval frame for H.

(iv) {vijπWiΛ
∗
i fijk}i∈I,j∈Ji ,k∈Kij is a Parseval frame for H.

Proof By Theorem 4.1 it only remains to see (i) ⇔ (ii). Applying Proposition 3.5, (i) implies
(ii). Now suppose that SR = IH . Then we have for all f ∈ H

‖f ‖2 =
〈
SR(f ), f

〉
=

〈∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i τVijΛiπWi (f ), f

〉

=
∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2.
�

The following proposition will show the relation between the frame operator for R and
the frame operator for the frame {vijπWiΛ

∗
i fijk}i∈I,j∈Ji ,k∈Kij .

Proposition 4.3 Let R be an RFF for H and {fijk}k∈Kij be a Parseval r-local frame. Then
the RFF operator SR equals the frame operator SvπΛ for the frame {vijπWiΛ

∗
i fijk}i∈I,j∈Ji ,k∈Kij ,

and, for all h ∈ H ,

h =
∑

i∈I

∑

j∈Ji

v2
ijS

–1
RπWiΛ

∗
i τVijΛiπWi (h)

=
∑

i∈I

∑

j∈Ji

∑

k∈Kij

〈
h, vijπWiΛ

∗
i fijk

〉
S–1

vπΛvijπWiΛ
∗
i fijk .

Proof Since {fijk}k∈Kij is a Parseval frame for Vij for each i ∈ I, j ∈ Ji,

τVijΛiπWi (h) =
∑

k∈Kij

〈
τVijΛiπWi (h), fijk

〉
fijk =

∑

k∈Kij

〈
ΛiπWi (h), fijk

〉
fijk .

Therefore,

SR(h) =
∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i τVijΛiπWi (h)
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=
∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i

∑

k∈Kij

〈
ΛiπWi (h), fijk

〉
fijk

=
∑

i∈I

∑

j∈Ji

∑

k∈Kij

〈
h, vijπWiΛ

∗
i fijk

〉
vijπWiΛ

∗
i fijk

= SvπΛ(h)

and

h =
∑

i∈I

∑

j∈Ji

v2
ijS

–1
RπWiΛ

∗
i τVijΛiπWi (h)

=
∑

i∈I

∑

j∈Ji

v2
ijS

–1
RπWiΛ

∗
i

∑

k∈Kij

〈
ΛiπWi (h), fijk

〉
fijk

=
∑

i∈I

∑

j∈Ji

∑

k∈Kij

〈
h, vijπWiΛ

∗
i fijk

〉
S–1

vπΛvijπWiΛ
∗
i fijk .

�

The following result gives another representation of the frame operator for R.

Proposition 4.4 Let {R,F} be an RFF system for H, and let F̃ij = {̃fijk}k∈Kij be associated
r-local dual frames. Then the associated RFF operator SR can be written as

SR =
∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i T ∗̃

Fij
TFijΛiπWi =

∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i T∗

Fij
TF̃ijΛiπWi .

Proof For each f ∈ H , we have

SR(f ) =
∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i τVijΛiπWi (f )

=
∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i

∑

k∈Kij

〈
ΛiπWi (f ), fijk

〉̃
fijk

=
∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i T ∗̃

Fij
TFijΛiπWi (f ).

Similarly,

SR(f ) =
∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i τVijΛiπWi (f )

=
∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i

∑

k∈Kij

〈
ΛiπWi (f ), f̃ijk

〉
fijk

=
∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i T∗

Fij
TF̃ijΛiπWi (f ).

�

The following theorem will provide accurate estimates for the RFF operators of an RFF
of the form {(AWi, Vij,Λi, vij)}i∈I,j∈Ji .

Theorem 4.5 Let R = {(Wi, Vij,Λi, vij)}i∈I,j∈Ji be an RFF for H with RFF operator SR and
let A ∈ B(H) be an invertible operator. Then RA = {(AWi, Vij,Λi, vij)}i∈I,j∈Ji is an RFF for H
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with RFF operator SRA satisfying

ASRA∗

‖A‖2 ≤ SRA ≤ ∥∥A–1∥∥2ASRA∗.

Proof For all f ∈ H , we have

〈
ASRA∗

‖A‖2 f , f
〉

=
1

‖A‖2

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi A

∗(f )
∥∥2

=
1

‖A‖2

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi A

∗πAWi (f )
∥∥2

≤ ‖A∗‖2

‖A‖2

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπAWi (f )

∥∥2

= 〈SRA f , f 〉.

Applying Lemma 3.8 to A–1 and AWi yields

πAWi = πAWi

(
A–1)∗

πWi A
∗.

Then

〈SRA f , f 〉 =
∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπAWi (f )

∥∥2

=
∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπAWi

(
A–1)∗

πWi A
∗(f )

∥∥2

≤ ∥∥(
A–1)∗∥∥2 ∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi A

∗(f )
∥∥2

=
∥∥(

A–1)∗∥∥2〈SRAA∗f , A∗f
〉

=
〈∥∥(

A–1)∗∥∥2ASRAA∗f , f
〉
. �

The following result can be regarded as a corollary of Theorem 4.5. Here we show it in
a different way.

Theorem 4.6 Let R = {(Wi, Vij,Λi, vij)}i∈I,j∈Ji be an RFF for H with RFF bounds α and β .
If A ∈ B(H) is an invertible operator, then RA = {(AWi, Vij,Λi, vij)}i∈I,j∈Ji is an RFF for H
with RFF bounds

α

‖A∗‖2‖(A∗)–1‖2 , β
∥∥A∗∥∥2∥∥(

A∗)–1∥∥2.

Proof By applying Lemma 3.8, we obtain

∥∥τVijΛiπWi A
∗(f )

∥∥ =
∥∥τVijΛiπWi A

∗πAWi (f )
∥∥ ≤ ∥∥A∗∥∥∥∥τVijΛiπAWi (f )

∥∥.
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Since A∗(f ) ∈ H and R is an RFF for H , we have

α
∥∥A∗(f )

∥∥2 ≤
∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi A

∗(f )
∥∥2 ≤ ∥∥A∗∥∥2 ∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπAWi (f )

∥∥2.

Due to A∗ being an invertible operator, we have

α

‖A∗‖2‖(A∗)–1‖2 ‖f ‖2 ≤
∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπAWi (f )

∥∥2.

In order to show the upper bound, notice that applying Lemma 3.8 to A–1 and AWi yields

πAWi = πAWi

(
A–1)∗

πWi A
∗.

Therefore

∥∥τVijΛiπAWi (f )
∥∥ ≤ ∥∥(

A–1)∗∥∥∥∥τVijΛiπWi A
∗(f )

∥∥.

Hence

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπAWi (f )

∥∥2 ≤ ∥∥(
A–1)∗∥∥2 ∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi A

∗(f )
∥∥2

≤ β
∥∥A∗∥∥2∥∥(

A∗)–1∥∥2‖f ‖2. �

Similarly, we have the following.

Theorem 4.7 Let R = {(Wi, Vij,Λi, vij)}i∈I,j∈Ji be an RFF for H with RFF bounds α and β .
If Bi ∈ B(Ki) are invertible operators for each i ∈ I, then RB = {(Wi, BiVij,Λi, vij)}i∈I,j∈Ji is
an RFF for H with RFF bounds

min
i∈I

{
α

‖Bi‖2‖B–1
i ‖2

}
, max

i∈I
{∥∥B∗

i
∥∥2∥∥(

B–1
i

)∗∥∥2
β
}

.

Proof For any f ∈ H , by Lemma 3.8 we have

∥∥BiτVijΛiπWi (f )
∥∥ =

∥∥τBiVij BiτVijΛiπWi (f )
∥∥ ≤ ‖Bi‖

∥∥τBiVijΛiπWi (f )
∥∥.

Then

1
‖Bi‖‖B–1

i ‖
∥∥τVijΛiπWi (f )

∥∥ ≤ ∥∥τBiVijΛiπWi (f )
∥∥.

It follows that

min
i∈I

{
α

‖Bi‖2‖B–1
i ‖2

}
‖f ‖2 ≤

∑

i∈I

∑

j∈Ji

v2
ij

‖Bi‖2‖B–1
i ‖2

∥∥τVijΛiπWi (f )
∥∥2

≤
∑

i∈I

∑

j∈Ji

v2
ij
∥∥τBiVijΛiπWi (f )

∥∥2.
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As in Theorem 4.6, we have

τBiVij = τBiVij

(
B–1

i
)∗

τVij B
∗
i .

Thus

∥∥τBiVijΛiπWi (f )
∥∥ =

∥∥τBiVij

(
B–1

i
)∗

τVij B
∗
i ΛiπWi (f )

∥∥

≤ ∥∥B∗
i
∥∥∥∥(

B–1
i

)∗∥∥∥∥τVijΛiπWi (f )
∥∥.

Hence

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τBiVijΛiπWi (f )

∥∥2 ≤
∑

i∈I

∑

j∈Ji

∥∥B∗
i
∥∥2∥∥(

B–1
i

)∗∥∥2v2
ij
∥∥τVijΛiπWi (f )

∥∥2

≤ max
i∈I

{∥∥B∗
i
∥∥2∥∥(

B–1
i

)∗∥∥2
β
}‖f ‖2. �

Specializing to A and {Bi}i∈I being the inverse RFF operator S–1
R and the inverse local

relay frame operators {S–1
i }i∈I, we obtain from Theorems 4.6 and 4.7 Corollaries 4.8 and

4.9, respectively.

Corollary 4.8 Let R = {(Wi, Vij,Λi, vij)}i∈I,j∈Ji be an RFF for H with RFF bounds α and β

and RFF operator SR. Then {(S–1
RWi, Vij,Λi, vij)}i∈I,j∈Ji is an RFF for H with RFF bounds α2

β

and β2

α
.

Corollary 4.9 Let R = {(Wi, Vij,Λi, vij)}i∈I,j∈Ji be an RFF for H with RFF bounds α and β

and relay local frame operator Si. Then {(Wi, S–1
i Vij,Λi, vij)}i∈I,j∈Ji is an RFF for H with RFF

bounds

min
i∈I

{
α

‖Si‖2‖S–1
i ‖2

}
, max

i∈I
{∥∥S∗

i
∥∥2∥∥(

S–1
i

)∗∥∥2
β
}

.

The following results show that {S–1
R vijπWiΛ

∗
i f̃ijk}i∈I,j∈Ji ,k∈Kij is a dual frame for the frame

{vijπWiΛ
∗
i fijk}i∈I,j∈Ji ,k∈Kij and a “dual” relation also holds.

Proposition 4.10 Let {R,F} be an RFF system for H with associated RFF operator SR,
common relay local frame bounds and relay local dual frames {f̃ijk}k∈Kij , i ∈ I, j ∈ Ji. Then
{S–1

R vijπWiΛ
∗
i f̃ijk}i∈I,j∈Ji ,k∈Kij is a dual frame for the frame {vijπWiΛ

∗
i fijk}i∈I,j∈Ji ,k∈Kij .

Proof For all f ∈ H , we have

∑

i∈I

∑

j∈Ji

∑

k∈Kij

〈
f , S–1

R vijπWiΛ
∗
i f̃ijk

〉
vijπWiΛ

∗
i fijk

=
∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i

∑

k∈Kij

〈
τVijΛiπWi S

–1
R (f ), f̃ijk

〉
fijk

=
∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i τVijΛiπWi S

–1
R (f )

= f . �
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Proposition 4.11 Let {R,F} be an RFF system for H with associated RFF operator SR,
common relay local frame bounds and relay local dual frames {f̃ijk}k∈Kij , i ∈ I, j ∈ Ji. Then
{vijπWiΛ

∗
i f̃ijk}i∈I,j∈Ji ,k∈Kij is a dual frame for the frame {S–1

R vijπWiΛ
∗
i fijk}i∈I,j∈Ji ,k∈Kij .

Proof Employing Proposition 4.10, we have for all f ∈ H

f =
∑

i∈I

∑

j∈Ji

∑

k∈Kij

〈
f , vijπWiΛ

∗
i fijk

〉
S–1
R vijπWiΛ

∗
i f̃ijk

= S–1
R

∑

i∈I

∑

j∈Ji

v2
ijπWiΛ

∗
i

∑

k∈Kij

〈
τVijΛiπWi (f ), f̃ijk

〉
fijk

=
∑

i∈I

∑

j∈Ji

∑

k∈Kij

〈
f , vijπWiΛ

∗
i f̃ijk

〉
S–1
R vijπWiΛ

∗
i fijk .

�

5 Perturbation of the relay fusion frames
The stability of frames is of great significance in practice, so many authors have carried out
extensive research on it, e.g., see [3, 6, 7, 22, 24]. In this section, we study the stability of
RFFs. Similar to ordinary frames, RFFs are stable under small perturbations. Specifically,
we have the following.

Theorem 5.1 Let R1 = {(Wi, Vij,Λi, vij)}i∈I,j∈Ji be an RFF for H with RFF bounds α and
β . Suppose that {Zij}j∈Ji is a family of closed subspaces in Ki for each i ∈ I and there exist
constants δ1, δ2, ε ≥ 0 such that max{δ1 + ε√

α
, δ2} < 1 and for all f ∈ H

(∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f ) – τZijΛiπWi (f )

∥∥2
) 1

2

≤ δ1

(∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2
) 1

2

+ δ2

(∑

i∈I

∑

j∈Ji

v2
ij
∥∥τZijΛiπWi (f )

∥∥2
) 1

2
+ ε‖f ‖. (4)

Then R2 = {(Wi, Zij,Λi, vij)}i∈I,j∈Ji is an RFF for H with RFF bounds

α

(1 – δ1 – ε√
α

1 + δ2

)2

, β

(1 + δ1 + ε√
β

1 – δ2

)2

.

Proof We first prove the lower bound. Since R1 is an RFF for H with bounds α and β ,
then, for each f ∈ H , we obtain

1
β

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2 ≤ ‖f ‖2 ≤ 1
α

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2.

By using (4) and the triangle inequality, we have

(∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2
) 1

2
–

(∑

i∈I

∑

j∈Ji

v2
ij
∥∥τZijΛiπWi (f )

∥∥2
) 1

2
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≤
(∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f ) – τZijΛiπWi (f )

∥∥2
) 1

2

≤
(

δ1 +
ε√
α

)(∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f )

∥∥2
) 1

2
+ δ2

(∑

i∈I

∑

j∈Ji

v2
ij
∥∥τZijΛiπWi (f )

∥∥2
) 1

2
.

Now solving for
∑

i∈I
∑

j∈Ji
v2

ij‖τZijΛiπWi (f )‖2 yields

α

(1 – δ1 – ε√
α

1 + δ2

)2

‖f ‖2 ≤
∑

i∈I

∑

j∈Ji

v2
ij
∥∥τZijΛiπWi (f )

∥∥2.

Similarly we can prove that

β

(1 + δ1 + ε√
β

1 – δ2

)2

‖f ‖2 ≥
∑

i∈I

∑

j∈Ji

v2
ij
∥∥τZijΛiπWi (f )

∥∥2.
�

The following is another version of perturbation of RFFs.

Theorem 5.2 Let R1 = {(Wi, Vij,Λi, vij)}i∈I,j∈Ji be an RFF for H with RFF bounds α and β .
Suppose that {Zij}j∈Ji is a family of closed subspaces in Ki for each i ∈ I and there exists a
constant 0 < δ < α such that

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τVijΛiπWi (f ) – τZijΛiπWi (f )

∥∥2 ≤ δ‖f ‖2, ∀f ∈ H . (5)

Then R2 = {(Wi, Zij,Λi, vij)}i∈I,j∈Ji is an RFF for H with RFF bounds

√
δ –

√
α,

√
δ +

√
β .

Proof By applying the triangle inequality, we obtain

∥∥{
vijτZijΛiπWi (f )

}
i∈I,j∈Ji

∥∥

≤ ∥∥{
vijτVijΛiπWi (f ) – vijτZijΛiπWi (f )

}
i∈I,j∈Ji

∥∥ +
∥∥{

vijτVijΛiπWi (f )
}

i∈I,j∈Ji

∥∥

≤ (
√

δ +
√

β)‖f ‖,

for all f ∈ H . Therefore

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τZijΛiπWi (f )

∥∥2 ≤ (
√

δ +
√

β)2‖f ‖2, ∀f ∈ H .

Similarly we have

∑

i∈I

∑

j∈Ji

v2
ij
∥∥τZijΛiπWi (f )

∥∥2 ≥ (
√

δ –
√

α)2‖f ‖2, ∀f ∈ H .
�

We remark that there also exist other forms of perturbation about the families of oper-
ators {Λi}i∈I and subspaces {Wi}i∈I of RFFs. These results are analogous to Theorem 5.1
and Theorem 5.2 with the proofs following similar lines, therefore we omit them.
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