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1 Introduction
In 1885, circulant matrix was first proposed by Muir, and he did some basic research.
Until 1950–1955, Good et al. began to study the inverse, determinants and characteristic
values of circulant matrices; these efforts have opened the door to study circulant matri-
ces. A circulant matrix is a kind of matrix with a special structure, which has been widely
used in algebra, geometry, signal processing and coding theory. In recent years, the cir-
culant matrix is still a topic of focus in the research of matrix theory. Especially, some
scholars studied the norms of r-circulant matrices and geometric circulant matrices with
some famous numbers and polynomials, for example, on the spectral norms of circulant
matrices, r-circulant matrices, geometric circulant matrices with Fibonacci number, Lu-
cas number, generalized Fibonacci and Lucas numbers, generalized k-Horadam numbers,
the biperiodic Fibonacci and Lucas numbers have been studied [1–13]. To the best of our
knowledge, no one has studied the upper and lower estimate problems for the spectral
norms involving trigonometric functions cos( kπ

n ), sin( kπ
n ) yet by using exponential sum.

A n × n r-circulant matrix Cr is defined by [8]

Cr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 c2 · · · cn–2 cn–1

rcn–1 c0 c1 · · · cn–3 cn–2

rcn–2 rcn–1 c0 · · · cn–4 cn–3
...

...
...

...
...

rc1 rc2 rc3 · · · rcn–1 c0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.
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Kızılateş and Tuglu [9] defined geometric circulant matrices by the form

Cr∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 c2 · · · cn–2 cn–1

rcn–1 c0 c1 · · · cn–3 cn–2

r2cn–2 rcn–1 c0 · · · cn–4 cn–3
...

...
...

...
...

rn–1c1 rn–2c2 rn–3c3 · · · rcn–1 c0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

Obviously, when the parameter satisfies r = 1, we can get the classical circulant matrix.
Inspired by [7], in this paper, we shall use identities of the trigonometric functions and
power sums of cos( kπ

n ), sin( kπ
n ) to study the norms of the r-circulant matrices

A = Circr

(
cos

0 · π
n

, cos
1 · π

n
, cos

2 · π
n

, . . . , cos
(n – 1) · π

n

)
,

B = Circr

(
sin

0 · π
n

, sin
1 · π

n
, sin

2 · π
n

, . . . , sin
(n – 1) · π

n

)
,

and then we obtain the norms of geometric circulant matrices

Pr∗ = Circr∗
(

cos
0 · π

n
, cos

1 · π
n

, cos
2 · π

n
, . . . , cos

(n – 1) · π
n

)
,

Rr∗ = Circr∗
(

sin
0 · π

n
, sin

1 · π
n

, sin
2 · π

n
, . . . , sin

(n – 1) · π
n

)
.

Then we get some interesting and concise results which are stated by the following theo-
rems.

Theorem 1 Let A = Cr(cos 0·π
n , cos 1·π

n , cos 2·π
n , . . . , cos (n–1)·π

n ) be an r-circulant matrix,
then we have

|r| ≥ 1,
√

2
2

≤ ‖A‖2 ≤
√

n
2
√

(n – 1)|r|2 + 1;

|r| < 1,
√

2
2

|r| ≤ ‖A‖2 ≤
√

2
2

n.

Theorem 2 Let B = Cr(sin 0·π
n , sin 1·π

n , sin 2·π
n , . . . , sin (n–1)·π

n ) be an r-circulant matrix, then
we have

|r| ≥ 1,
√

2
2

≤ ‖B‖2 ≤ |r|
√

n(n – 1)
2

;

|r| < 1,
√

2
2

|r| ≤ ‖B‖2 ≤
√

n(n – 1)
2

.

Theorem 3 Let Pr∗ = Cr∗ (cos 0·π
n , cos 1·π

n , cos 2·π
n , . . . , cos (n–1)·π

n ) be a geometric circulant
matrix, we have

|r| > 1,
√

2
2

≤ ‖Pr∗‖2 ≤
√

n
2

√
1 – |r|2n

1 – |r|2 ;
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|r| < 1, |r|n√N1 ≤ ‖Pr∗‖2 ≤
√

2
2

n,

where N1 = 1–r–2–r–2n+2

4 + 1–r–2n

2(1–r–2) .

Theorem 4 Let Rr∗ = Cr∗ (sin 0·π
n , sin 1·π

n , sin 2·π
n , . . . , sin (n–1)·π

n ) be a geometric circulant
matrix, we have

|r| > 1,
√

2
2

≤ ‖Rr∗‖2 ≤
√

n
2

√
|r|2 – |r|2n

1 – |r|2 ;

|r| < 1, |r|n√N2 ≤ ‖Rr∗‖2 ≤
√

n(n – 1)
2

,

where N2 = 1–r–2n

2(1–r–2) – 1–r–2–r–2n+2

4 .

2 Preliminaries
Definition 1 ([9]) Let any matrix A = (aij) ∈ Mm×n(C), the spectral norm and the Eu-
clidean norm of matrix A are defined by

‖A‖2 =
√

max
1≤i≤n

λi
(
AH A

)
, ‖A‖E =

( m∑
i=1

n∑
j=1

|aij|2
) 1

2

, respectively,

where the λi(AHA) are the eigenvalues of matrices AH A and AH is the conjugate transpose
of A.

The following important inequalities hold between the Euclidean norm and spectral
norm:

1√
n

‖A‖E ≤ ‖A‖2 ≤ ‖A‖E . (1)

Definition 2 ([9]) Let both A = (aij) and B = (bij) be m × n matrices, then the Hadamard
product of A and B is the m × n matrix of elementwise products, namely A ◦ B = (aijbij).

Then we have the following inequalities:

‖A ◦ B‖2 ≤ r1(A)C1(B), (2)

r1(A) = max
1≤i≤m

√√√√
n∑

j=1

|aij|2, C1(B) = max
1≤j≤n

√√√√
m∑

i=1

|bij|2.

Lemma 1 ([7]) For any positive integer n ≥ 2, we have

n–1∑
k=0

cos2
(

kπ

n

)
=

n–1∑
k=0

sin2
(

kπ

n

)
=

n
2

.

Lemma 2 For any positive integer n ≥ 2, we can get

n–1∑
k=0

r–2k cos2
(

kπ

n

)
=

1 – r–2n

2(1 – r–2)
+

1 – r–2 – r–2n+2

4
= N1,
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n–1∑
k=0

r–2k sin2
(

kπ

n

)
=

1 – r–2n

2(1 – r–2)
–

1 – r–2 – r–2n+2

4
= N2.

Proof By the properties of cos 2θ = 2 cos2 θ – 1 = 1 – 2 sin2 θ , eiθ = cos θ + i sin θ , we can
easily get cos θ = eiθ +e–iθ

2 ; let e(x) = e2π ix, note that e(1) = e(–1) = 1, using the properties of
the trigonometric sums

∑n–1
k=0 e( k

n ) = 0. Hence,

n–1∑
k=0

r–2k cos2
(

kπ

n

)
=

n–1∑
k=0

r–2k 1 + cos( 2kπ
n )

2

=
1 – r–2n

2(1 – r–2)
+

1
4

n–1∑
k=0

r–2k
(

e
(

k
n

)
+ e

(
–k
n

))
.

Taking

S1 =
n–1∑
k=0

r–2ke
(

k
n

)

= r–2·01 + r–2·1e
(

1
n

)
+ r–2·2e

(
2
n

)
+ · · · + r–2·(n–2)e

(
n – 2

n

)
+ r–2·(n–1)e

(
n – 1

n

)
,

e
(

1
n

)
S1 = r–2·0e

(
1
n

)
+ r–2·1e

(
2
n

)
+ r–2·2e

(
3
n

)
+ · · ·

+ r–2·(n–2)e
(

n – 1
n

)
+ r–2·(n–1)e(1).

Therefore,

(
1 – e

(
1
n

))
S1 = 1 + r–2

n–1∑
k=1

e
(

k
n

)
– r–2n+2 = 1 – r–2 – r–2n+2,

that is S1 =
∑n–1

k=0 r–2ke( k
n ) = 1–r–2–r–2n+2

1–e( 1
n )

, as the same time,
∑n–1

k=0 r–2ke( –k
n ) = 1–r–2–r–2n+2

1–e( –1
n )

.
So,

n–1∑
k=0

r–2k cos2
(

kπ

n

)
=

1 – r–2n

2(1 – r–2)
+

1 – r–2 – r–2n+2

4

(
1

1 – e( 1
n )

+
1

1 – e( –1
n )

)

=
1 – r–2n

2(1 – r–2)
+

1 – r–2 – r–2n+2

4
= N1.

Using the same methods, note that

S2 =
n–1∑
k=0

r–2k sin2
(

kπ

n

)
=

n–1∑
k=0

r–2k 1 – cos( 2kπ
n )

2

=
1
2

n–1∑
k=0

r–2k –
n–1∑
k=0

r–2k cos

(
2kπ

n

)

=
1 – r–2n

2(1 – r–2)
–

1 – r–2 – r–2n+2

4
= N2. �
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3 Proofs of theorems

Proof of Theorem 1 The matrix A = Cr(cos 0·π
n , cos 1·π

n , cos 2·π
n , . . . , cos (n–1)·π

n ) is of the fol-
lowing form:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cos 0·π
n cos 1·π

n cos 2·π
n · · · cos (n–1)·π

n
r cos (n–1)·π

n cos 0·π
n cos 1·π

n · · · cos (n–2)·π
n

r cos (n–2)·π
n r cos (n–1)·π

n cos 0·π
n · · · cos (n–3)·π

n
...

...
...

. . .
...

r cos 1·π
n r cos 2·π

n r cos 3·π
n · · · cos 0·π

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

(i) From |r| ≥ 1, using the definition of Euclidean norm and Lemma 1, we have

‖A‖2
E =

n–1∑
k=0

(n – k) cos2
(

k · π
n

)
+

n–1∑
k=1

k|r|2 cos2
(

k · π
n

)

≥
n–1∑
k=0

(n – k) cos2
(

k · π
n

)
+

n–1∑
k=1

k cos2
(

k · π
n

)

= n
n–1∑
k=0

cos2
(

k · π
n

)
=

n2

2
,

by (1), that is to say,

‖A‖2 ≥ 1√
n

‖A‖E ≥
√

2
2

.

Moreover, let the matrices E and F be defined by

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
r 1 1 · · · 1
r r 1 · · · 1
...

...
...

...
r r r · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

and

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cos 0·π
n cos 1·π

n cos 2·π
n · · · cos (n–1)·π

n
cos (n–1)·π

n cos 0·π
n cos 1·π

n · · · cos (n–2)·π
n

cos (n–2)·π
n cos (n–1)·π

n cos 0·π
n · · · cos (n–3)·π

n
...

...
...

. . .
...

cos 1·π
n cos 2·π

n cos 3·π
n · · · cos 0·π

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

,

then A = E ◦ F . So ‖A‖2 = ‖E ◦ F‖2 ≤ r1(E)C1(F),

r1(E) = max
1≤i≤n

√√√√
n∑

j=1

|eij|2 =
√

(n – 1)r2 + 1;
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c1(F) = max
1≤j≤n

√√√√
n∑

i=1

|fij|2 =

√√√√
n–1∑
k=0

cos2 k · π
n

=
√

n
2

.

Therefore, we have

‖A‖2 ≤
√

(n – 1)r2 + 1
√

n
2

.

Thus, we can obtain the inequality

√
2

2
≤ ‖A‖2 ≤

√
n
2
√

(n – 1)|r|2 + 1.

(ii) From |r| < 1,

‖A‖2
E =

n–1∑
k=0

(n – k) cos2
(

k · π
n

)
+

n–1∑
k=1

k|r|2 cos2
(

k · π
n

)

≥
n–1∑
k=0

(n – k)|r|2 cos2
(

k · π
n

)
+

n–1∑
k=1

k|r|2 cos2
(

k · π
n

)

= n|r|2
n–1∑
k=0

cos2
(

k · π
n

)
=

|r|2n2

2
,

we can get

‖A‖2 ≥ 1√
n

‖A‖E ≥
√

2
2

|r|.

Moreover, for the matrices E and F as mentioned above, A = E ◦F . So ‖A‖2 = ‖E ◦F‖2 ≤
r1(E)C1(F) =

√
2

2 n.
Therefore, we have

√
2

2 |r| ≤ ‖A‖2 ≤
√

2
2 n.

This proves Theorem 1. �

Now we prove Theorem 2.

Proof

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

sin 0·π
n sin 1·π

n sin 2·π
n · · · sin (n–1)·π

n
r sin (n–1)·π

n sin 0·π
n sin 1·π

n · · · sin (n–2)·π
n

r sin (n–2)·π
n r sin (n–1)·π

n sin 0·π
n · · · sin (n–3)·π

n
...

...
...

. . .
...

r sin 1·π
n r sin 2·π

n r sin 3·π
n · · · sin 0·π

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

(i) From |r| ≥ 1, using the definition of Euclidean norm and Lemma 1, we have

‖B‖2
E =

n–1∑
k=0

(n – k) sin2
(

k · π
n

)
+

n–1∑
k=1

k|r|2 sin2
(

k · π
n

)
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≥
n–1∑
k=0

(n – k) sin2
(

k · π
n

)
+

n–1∑
k=1

k sin2
(

k · π
n

)

= n
n–1∑
k=0

sin2
(

k · π
n

)
=

n2

2
,

that is,

‖B‖2 ≥ 1√
n

‖B‖E ≥
√

2
2

.

Moreover, let the matrices C and D be defined by

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

sin 0·π
n 1 1 · · · 1

r sin 0·π
n 1 · · · 1

r r sin 0·π
n · · · 1

...
...

...
...

r r r · · · sin 0·π
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

and

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

sin 0·π
n sin 1·π

n sin 2·π
n · · · sin (n–1)·π

n
sin (n–1)·π

n sin 0·π
n sin 1·π

n · · · sin (n–2)·π
n

sin (n–2)·π
n sin (n–1)·π

n sin 0·π
n · · · sin (n–3)·π

n
...

...
...

. . .
...

sin 1·π
n sin 2·π

n sin 3·π
n · · · sin 0·π

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

,

then B = C ◦ D. So ‖B‖2 = ‖C ◦ D‖2 ≤ r1(C)C1(D),

r1(C) = max
1≤i≤n

√√√√
n∑

j=1

|cij|2 =
√

(n – 1)r2;

c1(D) = max
1≤j≤n

√√√√
n∑

i=1

|dij|2 =

√√√√
n–1∑
k=0

sin2 k · π
n

=
√

n
2

.

Therefore, we have

‖B‖2 ≤ |r|
√

n(n – 1)
2

.

Thus, we can obtain

√
2

2
≤ ‖B‖2 ≤ |r|

√
n(n – 1)

2
.

(ii) From |r| < 1,

‖B‖2
E =

n–1∑
k=0

(n – k) sin2
(

k · π
n

)
+

n–1∑
k=1

k|r|2 sin2
(

k · π
n

)



Shi Journal of Inequalities and Applications        (2019) 2019:225 Page 8 of 10

≥
n–1∑
k=0

(n – k)|r|2 sin2
(

k · π
n

)
+

n–1∑
k=1

k|r|2 sin2
(

k · π
n

)

= n|r|2
n–1∑
k=0

sin2
(

k · π
n

)
=

|r|2n2

2
,

we can get

‖B‖2 ≥ 1√
n

‖B‖E ≥
√

2
2

|r|.

On the other hand, for the matrices C and D as mentioned above, B = C ◦ D. So ‖B‖2 =
‖C ◦ D‖2 ≤ r1(C)C1(D) =

√
n(n–1)

2 .

Therefore, we have
√

2
2 |r| ≤ ‖B‖2 ≤

√
n(n–1)

2 .
This proves Theorem 2. �

Now we prove Theorem 3 and Theorem 4.

Proof

Pr∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cos 0·π
n cos 1·π

n cos 2·π
n · · · cos (n–1)·π

n
r cos (n–1)·π

n cos 0·π
n cos 1·π

n · · · cos (n–2)·π
n

r2 cos (n–2)·π
n r cos (n–1)·π

n cos 0·π
n · · · cos (n–3)·π

n
...

...
...

. . .
...

rn–1 cos 1·π
n rn–2 cos 2·π

n rn–3 cos 3·π
n · · · cos 0·π

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

(i) On the one hand, |r| > 1 and by using the definition of Euclidean norm, we can obtain

‖Pr∗‖2
E =

n–1∑
k=0

(n – k) cos2
(

k · π
n

)
+

n–1∑
k=1

i
∣∣rn–k∣∣2

cos2
(

k · π
n

)

≥
n–1∑
k=0

(n – k) cos2
(

k · π
n

)
+

n–1∑
k=1

k cos2
(

k · π
n

)

= n
n–1∑
k=0

cos2
(

k · π
n

)
=

n2

2
.

That is,

‖Pr∗‖2 ≥ 1√
n

‖Pr∗‖E ≥
√

2
2

n.

On the other hand, let the matrices S and Q be represented by

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1 1
r 1 1 · · · 1 1
r2 r 1 · · · 1 1
...

...
...

...
...

rn–1 rn–2 rn–3 · · · r 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n
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and

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cos 0·π
n cos 1·π

n cos 2·π
n · · · cos (n–1)·π

n
cos (n–1)·π

n cos 0·π
n cos 1·π

n · · · cos (n–2)·π
n

cos (n–2)·π
n cos (n–1)·π

n cos 0·π
n · · · cos (n–3)·π

n
...

...
...

. . .
...

cos 1·π
n cos 2·π

n cos 3·π
n · · · cos 0·π

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

,

then Pr∗ = S ◦ Q. So ‖Pr∗‖2 = ‖S ◦ Q‖2 ≤ r1(S)C1(Q),

r1(S) = max
1≤i≤n

√√√√
n∑

j=1

|sij|2 =
√

1 + |r|2 + · · · +
∣∣rn–1

∣∣2 =

√
1 – |r|2n

1 – |r|2 ,

c1(Q) = max
1≤j≤n

√√√√
n∑

i=1

|qij|2 =

√√√√
n–1∑
k=0

cos2
(

k · π
n

)
=

√
n
2

.

Therefore,

‖Pr∗‖2 ≤ r1(S)c1(Q) =

√
1 – |r|2n

1 – |r|2
√

n
2

.

(ii) For |r| < 1,

‖Pr∗‖2
E =

n–1∑
k=0

(n – k) cos2
(

k · π
n

)
+

n–1∑
k=1

k
∣∣rn–k∣∣2

cos2
(

k · π
n

)

≥
n–1∑
k=0

(n – k)
∣∣rn–k∣∣2

cos2
(

k · π
n

)
+

n–1∑
k=1

i
∣∣rn–k∣∣2

cos2
(

k · π
n

)

= n|r|2n
n–1∑
k=0

|r|–2k cos2
(

k · π
n

)
= n|r|2nN1.

So

‖Pr∗‖2 ≥ 1√
n

‖Pr∗‖E ≥ |r|n√N1,

where N1 = 1–r–2n

2(1–r–2) + 1–r–2–r–2n+2

4 .
Moreover, for the matrices S and Q as mentioned above, in this case, Pr∗ = S ◦ Q. So

‖Pr∗‖2 = ‖S ◦ Q‖2 ≤ r1(S)C1(Q),

r1(S) = max
1≤i≤n

√√√√
n∑

j=1

|sij|2 =
√

n,

c1(Q) = max
1≤j≤n

√√√√
n∑

i=1

|qij|2 =

√√√√ n–1∑
i=0

cos2
(

k · π
n

)
=

√
n
2

,

‖Pr∗‖2 ≤
√

2
2 n.
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Therefore, we have

|r|n√N1 ≤ ‖Pr∗‖2 ≤
√

2
2

n.

By the same methods, using Lemma 2 and Theorem 2, we can get Theorem 4.
This completes all of the theorems. �

Remark Lemma 2 of this paper gave a new method to compute the power sums of the
trigonometric functions.

4 Conclusion
By the same methods as of this paper, we can also get determinants and norms of some
other special circulant matrices involving trigonometric functions cos( kπ

n ), sin( kπ
n ).
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