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1 Introduction

In 1885, circulant matrix was first proposed by Muir, and he did some basic research.
Until 1950-1955, Good et al. began to study the inverse, determinants and characteristic
values of circulant matrices; these efforts have opened the door to study circulant matri-
ces. A circulant matrix is a kind of matrix with a special structure, which has been widely
used in algebra, geometry, signal processing and coding theory. In recent years, the cir-
culant matrix is still a topic of focus in the research of matrix theory. Especially, some
scholars studied the norms of r-circulant matrices and geometric circulant matrices with
some famous numbers and polynomials, for example, on the spectral norms of circulant
matrices, r-circulant matrices, geometric circulant matrices with Fibonacci number, Lu-
cas number, generalized Fibonacci and Lucas numbers, generalized k-Horadam numbers,
the biperiodic Fibonacci and Lucas numbers have been studied [1-13]. To the best of our
knowledge, no one has studied the upper and lower estimate problems for the spectral
norms involving trigonometric functions cos(l%), sin(%”) yet by using exponential sum.

A n x n r-circulant matrix C, is defined by [8]

Co C1 € 0 Cp2 Cpa
rCp-1 Co it 0 Cp3  Cp2
C,=|"n2 TCh-1 Co -+ Cp-a  Cp-3
rc rc rcg - TCy_ C
1 2 3 n-1 0 ) s
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Kizilates and Tuglu [9] defined geometric circulant matrices by the form

Co 1 C2 o Cp2 Cpd
rCp-1 Co C1 o Cp-3 Cyp
Co=|"Cn2 TChpa Co t Cpda Cp-3

n—2 n_363 . FCyo1 o .
Obviously, when the parameter satisfies r = 1, we can get the classical circulant matrix.
Inspired by [7], in this paper, we shall use identities of the trigonometric functions and

power sums of cos(k:) sm( ™) to study the norms of the r-circulant matrices

. 0-7 1.7 2.7 n-1)-m
A = Circ, | cos ,COS ,COS yees,COS ——— |,
n n n n
. .0 1w .27 C(m-1)-7m
B = Circ, | sin ,sin ,sin bee,8iDn ————— ),
n n n n

and then we obtain the norms of geometric circulant matrices

. 0.7 . 2.7 n-1)-m
P« = Circ,+ | cos ,COS ,COS yees,COS —— |,
n n n n
. .0 1w . 2.7 C(n-1)-7w
R« = Circ,« | sin ,sin ,sin ,.ee.ySIN .
n n n n

Then we get some interesting and concise results which are stated by the following theo-

rems.
Theorem 1 Let A = C,(cos 2 —,cos —,cos 2—” ..,CO8 @) be an r-circulant matrix,
then we have
\/_
vl =1, -5 = <[All2 = \/(n Dir> +
V2
Ir <1, —Ir[=|All2 < —-n
2 2
Theorem 2 Let B = C,(sin &X =, sin X ,sm ., sin =0T ) be an r-circulant matrix, then
we have
V2 nn-1)
=1, — <IBll2=Irly/ ——;
2 2
V2 n(n-1)
<1, —Ir[<|Blla <y —F—-
2
s %, cos 2—” .,COS (” D7) pe g geometric circulant

Theorem 3 Let Py« = Cpx(cos 2 =%,cos =

matrix, we have

V2 n [1-|r|?"
L, X< Puly< 5 [
7] > 2 <Pz = A EEE
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V2
Irl<1, |rI"VNi < [[Pll2 < -

_ 1_r—2_r—2n+2 1_r—2n
where N = 7 + 3057
.0 .1 . 9. . —1)- . .
Theorem 4 Let Ry = Cp(sin &%, sin 22 sin 22, sin V7Y pe 4 geometric circulant
n n n n

matrix, we have

2 n ||r|?—|r|*"
"> 1, §S||Rr*||2§\/; IrZ= I,

1—|rf?
nn-1
Irl<1, [rl"VN2 < IR l2 </ ( 5 ),
_ lir—2n lir—Zir—ZVHZ
where Ny = = 4 .

2 Preliminaries
Definition 1 ([9]) Let any matrix A = (a;) € M;uxx(C), the spectral norm and the Eu-
clidean norm of matrix A are defined by

1
m n 2
2 .
Al = [ max 5, (A 4), ||A||E=<ZZ|@|>, respectively,

i=1 j=1

where the A;(A"A) are the eigenvalues of matrices A" A and A" is the conjugate transpose
of A.
The following important inequalities hold between the Euclidean norm and spectral

norm:
1
Jn

Definition 2 ([9]) Let both A = (a;) and B = (b;;) be m x n matrices, then the Hadamard
product of A and B is the m x n matrix of elementwise products, namely A o B = (a;;b;).

ANz < 1All2 < I Alle. 1

Then we have the following inequalities:

[[A 0 Bll> = ri(A)Ci(B), 2)

r1(A) = max

1<i<m 1<j<n

n
Z |aij|?, C1(B) = max
j=1
Lemma 1 ([7]) For any positive integer n > 2, we have

A km A km n
2 KT\ _ TR
,;zo cos < ; ) E sin ( . ) 3

k=0

Lemma 2 For any positive integer n > 2, we can get

n-1
k?T 1-— r—2n 1-— r—Z _ r—2n+2
Zr‘chosz(— = =N,

= +
_ 2
pa n 2(1-r2) 4
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Hil: o 2<kn>_ 1—p2n 1_r72_772n+2_
r“tsin“| — | = - =N,.
= n 2(1-r72) 4

Proof By the properties of cos20 = 2cos?6 — 1 = 1 — 25sin*6, € = cosé + isinf, we can
easily get cosf = M; let e(x) = €™, note that e(1) = e(—1) = 1, using the properties of

the trigonometric sums ZZ;& e(%) = 0. Hence,

n-1 n-1 2km
km 1+ cos(=%)
r—2/< COS2< — § r—2k > n
n
k=0 k=0

n-1
k
S = r‘2ke<—)
=0 n
=r 201 4 ,,2-16(1) + r“e(g) I r2~(n2)e<” — 2> i r2'("1)e(n - 1))
n n n n
1 1 2 3
(5=l ereG) ere(G) -
n n n n

n-1
+ r‘z'(”‘z)e< ) +r 2 De(1).
n

Therefore,

1 -2 «— (k —2n+2 2 one2
l-el—))S1i=1+r el —)-r =1-r“-r s
n —~ \n

. -1 _ 2 —2n+2
thatis Sy = Zzzé r Zke(];() =lr—r— rlfe(rl)
n

So,

. -1 _ _ 2 ,2n+2
, as the same time, Y -y r 2e(£) = %
5

2 ok of kT 1-r2 1-p2—p2m2 1 1
Zr cos’| — | = -+ o+ —~
n 2(1 -r2) 4 I-e(5) 1-e(5)

1-— r—2n 1-— }"_2 _ r—2n+2
= + =Nj.
2(1—r2) 4 !

Using the same methods, note that

n-1 n-1 2k
k 1-cos(==*
Sp=Y r* sin2<—:> =) r_2k72( )

k=0 k=0
-1 n-1
1« 2km
= 5 rk r 2 cos ——
k=0 k=0
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3 Proofs of theorems

Proof of Theorem 1 The matrix A = C,(cos %X =, c08 1—”, cos 2—” ...,CO8 @) is of the fol-
lowing form:

cos 0‘7” cos 17” cos 27” .-+ cos W
~1)- . —2)-
rcos M cos 0771 cos l_ﬂ .ee COS w
1 . _3).
A= | reos = 2) rcos &= ) cos ox cos =37
n n
rcosl'T” rcosZ'T” rcosg"T’r cos &%

n nxn
(i) From |r| > 1, using the definition of Euclidean norm and Lemma 1, we have

n-1

lAIlE = Z(n k)cos( ) ka cos( )
>Zn kcos( ) chos( >

! k-m n>
_anos< ) EX
by (1), that is to say,
1 V2
Al > —||Allg > —.
IAll2 > ﬁ” e > 5

Moreover, let the matrices E and F be defined by

1 1 1
r 1 1
E=|r r 1
r r r 1
nxn
and
cos°—7r cosl—” cosz'77r cosM
cos("% cosO‘T” 0031'77r ... cos 2z 2)
n n n n ’
cos L cosZX  cos¥E ... coslZ
n n n

n nxn

then A = Eo F. So ||Alls = | E o Ell» < r1(E)Ci(F),

r1(E) = max

1<i<n

n
Z lej|> =/ (n—1)r2 +1;
j=1
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¢1(F) = max E Ifiil? = E cos2
1<j<n
Therefore, we have

All2 < V(n-1)r + 1\/2.

Thus, we can obtain the inequality

? = |All2 = \/gv (n=Dlr|*+ 1.

(ii) From |r| < 1,

n-1

Az = 0~ k)cos( ) ka cos( )

k=0

n

>Zn k) |r|2cos( ) Z/<|r|2cos< )

|22

k-m r|*n
:nlrlzzcosz<7>=| 5

we can get

1 V2
Ally > —|Allg > —|7].
[ IIz_ﬁII e > 5 |7

Moreover, for the matrices E and F as mentioned above, A = Eo F.So ||All = [|[EoF|| <

r(E)Ci(F) = 5
Therefore, we have §|r| < ||All2 < V2
This proves Theorem 1.

Now we prove Theorem 2.

Proof

sin &% sin LX sin 2%

n n n

rsin &= sin &% sin LZ

n n n

B | rsin@2m pgip 2T Gy 0

n n n
rsin 1% rsin 2% rsin 2%

n n n

(i) From |r| > 1, using the definition of Euclidean norm and Lemma 1, we have

sin =D 1)

sin =2 2)

sin =37 3)

sin &%
n

anE—Z(n k)sm( )Zk|r|2sm( )

nxn
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! k-m ! k-m
> (n—k)sm2<—> + E ksin2<—)
n n
k=0 k=1
n-1
k-m n?
_ V) BNl I
nk%o sin ( - ) >

that is,

1 V2
Bl > —||Bllg = —.
[ IIz_ﬁII le> 5

Moreover, let the matrices C and D be defined by

sin®x 1 |
r sin 0'7” 1 e 1
0.
C= 7 r sin = 1
r r r sin &%
n nxmn
and
sin &% sin LT sin2% ... gjp =Lz
n n n n
. ~1)- . X . . . —2).
gin (i=b-x sin &z sinkZ ... gjp =2z
n n n n
D= |sin®27T gip =D G 0 g 23
n n n n ’
sin 1% sin 2% sin¥x ... sin &%
n n n n nxn

then B=CoD. So ||B|l» = ||C o D|» < r1(C)C1(D),

n
(€)= max | el = Vn -1
lflfn\ =
n n-1 k- 7
) °
D)= max D = ) st =5 =5
i= =

Therefore, we have

n(n-1)

B, <|r
1Bll2 < Ir 5

Thus, we can obtain

V2 n(n-1)
— <IBl2 = Irlyf ——-
2 2

(ii) From |r| < 1,

n-1 n-1
121 =3 004 st (7 )+ ZMI(Q)
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Zin k|r|231n< )Zk|r|23m( )

|22

n-1
N .o fk-m [r|"n
=n|r| E sin“| — | = ,
n 2
k=0

we can get

Y

I1Bll2 = —=lIBlle = —=Irl.

\/_

On the other hand, for the matrices C and D as mentioned above, B= C o D. So ||B||; =

IC oDl < i (C)Ci(D) = /2.

Therefore, we have §|r| <|IBll2 < @

This proves Theorem 2. d

Now we prove Theorem 3 and Theorem 4.

Proof

cos 0'7” cos 17” cos 27” ... cos =l
¥ Ccos —( —-m cos 0'7” cos 17” .-~ COS —(”’3)'”

" ~1). . _3).
P = | *cos =21 ) rcos =T cos &% o cos =T

T n n n
Pleos L pr2cog ZE B opg3 T L. g X
n n n n nxn

(i) On the one hand, |7| > 1 and by using the definition of Euclidean norm, we can obtain

n-1 n-1
1Bl = 301 Rycost (S )+ it oo (£
n
k=1

k=0

n-1 ) k T n-1 ) k -
> E (n—k)cos"| — | + kcos®| ——
n n
k=0 k=1

That is,

1 V2
1Py l2 > ﬁ”Pr* e > -5

On the other hand, let the matrices S and Q be represented by

1 1 1 1 1

r 1 1 1 1

S = r2 r 1 1 1
rn—l rn—2 rn—S r 1

nxn
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and
cos 0—” cos 17” cos 27” ... cog=m
cos (r-1)n cos & coslz cos =2
n n n n
—2)- —-1)- —3)-
Q- cos VDT og UEDT oo O g 23T
n n n n )
cos 12 cosZZ  cos¥T ...  cosZ
n n n

nxn

then Pyx =S 0 Q. So [|Py]l2 = IS0 Qll2 < r1(S)C1(Q),

1—|}”|2”
+ |r"—1i2 — - |r|2 ,

n n-1

) ) k-m n

max E lg;1* = E cos?( —= )= /5
SEN = —

N =,

n
S s =1+ 12+
j=1

c1(Q) = max

Therefore,

1 _ 2n
1P 112 < 1(S)er(Q) = ,/1%;"2\@

(ii) For |r] < 1,

n—1 n—1

18- 1} = Y- Kycos ()« o ()
k=1
>Z(Vl k)| | cos ( )+Zz|r" ¥ cos <k n)
< k-
a3 |r|-2kcos2(7) PN
k=0

So
1P ll2 > \/—”Pr*”E > [r|"/ Ny,
1-r— 2n l_r—2_r—2n+2
where Nj = st 2 .

Moreover, for the matrices S and Q as mentioned above, in this case, P+ = S o Q. So
I1Prll2 = 1S 0 Qll2 = r1(S)C1(Q),

r1(S) = max

1<i<n

n n-1
k- n
- 12 = 2 _”
a(Q) = max ?_1 lq1° = ;_0 cos ( - ) =7

2
1P ll2 < L.
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Therefore, we have

V2
[7]" /N1 < [|[Py]l2 < Tl

By the same methods, using Lemma 2 and Theorem 2, we can get Theorem 4.
This completes all of the theorems. d

Remark Lemma 2 of this paper gave a new method to compute the power sums of the

trigonometric functions.

4 Conclusion
By the same methods as of this paper, we can also get determinants and norms of some
other special circulant matrices involving trigonometric functions cos(kT”), sin(l%).
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