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1 Introduction
In [1], Stolarsky obtained the bounds for the exponential function whose power involves
a hyperbolic function.

Theorem 1 Let x > 0. Then

1 < ex coth x–1 < cosh x. (1.1)

On the other hand, Pittenger [2] and Stolarsky [3] got the lower bound for the function
ex coth x–1 as follows.

Theorem 2 Let x > 0. Then

(
cosh

2x
3

) 3
2

< ex coth x–1. (1.2)

In fact, Zhu [4] and Kouba [5] showed a new sharp lower bound for the function ex coth x–1

as follows.

Theorem 3 Let x > 0. Then

(
2(cosh x)

6
5 + 1

3

) 5
6

< ex coth x–1. (1.3)

Zhu [6] proved

(
cosh

2x
3

) 3
2

<
(

2(cosh x)
6
5 + 1

3

) 5
6

, x > 0 (1.4)

to illustrate that the inequality (1.3) is stronger than (1.2).
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It should be pointed out that the paper of Yang et al. [7] has made a great deal of im-
provement on inequality (1.2). The subject of the present paper is to further study the
inequality (1.3), and to obtain the following results.

Theorem 4 Let p �= 0, p1 = (ln(3/2))/(ln(e/2)) = 1.3214 . . . , and x ∈ (0, +∞). Then we have
(i) when p ∈ [2, +∞), the double inequality

ep(x coth x–1) <
2 coshp x + 1

3
<

2
3

(
e
2

)p

ep(x coth x–1) (1.5)

holds, where the constants 1 and (2/3)(e/2)p are the best possible;
(ii) when p ∈ (–∞, 6/5], we have

(a) if p ∈ (0, 6/5], the double inequality (1.5) reverses, that is,

2
3

(
e
2

)p

ep(x coth x–1) <
2 coshp x + 1

3
< ep(x coth x–1) (1.6)

holds, where the constants (2/3)(e/2)p and 1 are the best possible;
(b) if p ∈ (–∞, 0), the left-hand side of the double inequality (1.5) holds too;

(iii) when p ∈ (6/5, 2), we have
(c) if p ∈ [p1, 2), the left-hand side of inequality (1.5) holds;
(d) if p ∈ (6/5, p1), the left-hand side of inequality (1.6) holds.

As straightforward consequences of Theorem 4, Theorem 5 which is due to Kouba [5]
may be derived immediately.

Theorem 5 Let p �= 0, and p1 = (ln(3/2))/(ln(e/2)) = 1.3214 . . . . Then
(1) the inequality

2 coshp x + 1
3

< ep(x coth x–1) (1.7)

holds for all x ∈ (0, +∞) if and only if p ∈ (0, 6/5];
(2) the inequality (1.7) reverses for all x ∈ (0, +∞) if and only if p ∈ (–∞, 0) ∪ [p1, +∞).

The analog of Theorem 4 for the circular functions is the following result.

Theorem 6 Let p �= 0, p2 = ln 3 = 1.0986 . . . , and x ∈ (0,π/2). Then we have
(i) when p ∈ [6/5, +∞), the double inequality

ep(x cot x–1) <
2 cosp x + 1

3
<

(
ep

3

)
ep(x cot x–1) (1.8)

holds, where the constants 1 and ep/3 are the best possible;
(ii) when p ∈ (–∞, 1], we have

(a) if p ∈ (0, 1], the double inequality (1.8) reverses, that is,

(
ep

3

)
ep(x cot x–1) <

2 cosp x + 1
3

< ep(x cot x–1) (1.9)

holds, where the constants ep/3 and 1 are the best possible;
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(b) if p ∈ (–∞, 0), the double inequality (1.8) holds too;
(iii) when p ∈ (1, 6/5), we have

(c) if p ∈ (p2, 6/5), the right-hand side of inequality (1.8) holds;
(d) if p ∈ (1, p2], the right-hand side of inequality (1.9) holds.

The following result which is due to Yang et al. [7] is a straightforward consequence of
Theorem 6.

Theorem 7 Let p �= 0, and p2 = ln 3 = 1.0986 . . . . Then
(A) the inequality

ep(x cot x–1) <
2 cosp x + 1

3
(1.10)

holds for all x ∈ (0,π/2) if and only if p ∈ (–∞, 0) ∪ [6/5, +∞);
(B) the inequality (1.10) reverses for all x ∈ (0,π/2) if and only if p ∈ (0, p2].

2 Lemmas
Lemma 1 ([8]) For –∞ < a < b < ∞, let f , g : [a, b] → R be continuous functions that are
differentiable on (a, b), with f (a) = g(a) = 0 or f (b) = g(b) = 0. Assume that g ′(x) �= 0 for each
x in (a, b). If f ′/g ′ is increasing (decreasing) on (a, b), then so is f /g .

Lemma 2 ([9]) Let A(x) =
∑∞

n=0 anxn and B(x) =
∑∞

n=0 bnxn be two real power series con-
verging on (0, r) (r > 0) with bn > 0 for all n. If the sequence {an/bn} is increasing (decreasing)
for all n, then the function A(x)/B(x) is also increasing (decreasing) on (0, r).

Lemma 3 Let l(x) be defined by

l(x) =
ln sinh 2x–2x

4(x cosh x–sinh x)

ln cosh x
. (2.1)

Then l(x) is strictly increasing from (0, +∞) onto (1/5, 1).

Proof Let

l(x) =
ln sinh 2x–2x

4(x cosh x–sinh x)

ln cosh x
=:

f (x)
g(x)

=
f (x) – f (0+)
g(x) – g(0+)

,

where

f (x) = ln
sinh 2x – 2x

4(x cosh x – sinh x)
, g(x) = ln cosh x.

Then

f ′(x) =
2 cosh 2x – 2
sinh 2x – 2x

+
x sinh x

sinh x – x cosh x

= sinh x
(

4 sinh x
sinh 2x – 2x

+
x

sinh x – x cosh x

)
,

g ′(x) =
sinh x
cosh x

.
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We compute

f ′(x)
g ′(x)

=
sinh x( 4 sinh x

sinh 2x–2x + x
sinh x–x cosh x )

sinh x
cosh x

=
(

x
sinh x – x cosh x

+ 4
sinh x

–2x + sinh 2x

)
cosh x

= (cosh x)
–4 sinh2 x – x sinh 2x + 2x2 + 4x cosh x sinh x

(–2x + sinh 2x)(– sinh x + x cosh x)

=
(2x2 cosh x + 2x cosh2 x sinh x – 4 cosh x sinh2 x)

–(2x2 cosh x – 2x cosh2 x sinh x – 2x sinh x + 2 cosh x sinh2 x)

=
(cosh x – cosh 3x + 1

2 x sinh x + 1
2 x sinh 3x + 2x2 cosh x)

–( 1
2 cosh 3x – 1

2 cosh x – 5
2 x sinh x – 1

2 x sinh 3x + 2x2 cosh x)

=
2 cosh x – 2 cosh 3x + x sinh x + x sinh 3x + 4x2 cosh x
– cosh 3x + cosh x + 5x sinh x + x sinh 3x – 4x2 cosh x

:=
A(x)
B(x)

,

where

A(x) = 2 cosh x – 2 cosh 3x + x sinh x + x sinh 3x + 4x2 cosh x,

B(x) = – cosh 3x + cosh x + 5x sinh x + x sinh 3x – 4x2 cosh x.

Then

A(x) =
+∞∑
n=2

6(n – 2)32n + 16n2 + 26n + 12
(2n + 2)!

x2n+2 =:
+∞∑
n=2

anx2n+2,

B(x) =
+∞∑
n=2

3(2n – 1)32n – 16n2 – 14n + 3
(2n + 2)!

x2n+2 =:
+∞∑
n=2

bnx2n+2,

where

an =
6(n – 2)32n + 16n2 + 26n + 12

(2n + 2)!
,

bn =
3(2n – 1)32n – 16n2 – 14n + 3

(2n + 2)!
.

We can obtain

an

bn
= 2

3(n – 2)32n + 8n2 + 13n + 6
3(2n – 1)32n – 16n2 – 14n + 3

=: 2sn, n ≥ 2.

Now we will prove that {sn}n≥2 is strictly increasing, which means

sn < sn+1 ⇐⇒ h(n)32n + 32n2 + 112n + 81 > 0,
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where

h(n) =: 81 · 32n –
(
256n3 + 224n2 + 112n + 162

)
> 0

for n ≥ 2 due to

h(n + 1) – 9h(n) = 2048n3 + 1024n2 – 320n + 704

= 20,544 + 28,352(n – 2) + 13,312(n – 2)2 + 2048(n – 2)3 > 0

for n ≥ 2 and h(2) = 3231 > 0. This leads to sn < sn+1 for n ≥ 2. So {an/bn}n≥2 is strictly
increasing. By Lemma 2, we know that A(x)/B(x) = f ′(x)/g ′(x) is strictly increasing on
(0, +∞). Then l(x) = f (x)/g(x) is strictly increasing on (0, +∞) by Lemma 1.

Since

lim
x→0+

ln sinh 2x–2x
4(x cosh x–sinh x)

ln cosh x
=

1
5

, lim
x→+∞

ln sinh 2x–2x
4(x cosh x–sinh x)

ln cosh x
= 1,

this completes the proof of Lemma 3. �

Lemma 4 Let x > 0, B2n be the even-indexed Bernoulli numbers (see [10]). Then the follow-
ing power series expansions:

tan x =
∞∑

n=1

22n – 1
(2n)!

22n|B2n|x2n–1, (2.2)

sec2 x =
∞∑

n=1

22n(22n – 1)(2n – 1)
(2n)!

|B2n|x2n–2, (2.3)

tan x sec2 x =
∞∑

n=2

22n(22n – 1)(2n – 1)(n – 1)
(2n)!

|B2n|x2n–3 (2.4)

hold for all x ∈ (–π/2,π/2).

Proof The power series expansion (2.2) can be found in [11, equations 1.3.1.4(3)]. By (2.2)
we have

(sec x)2 = (tan x)′ =
∞∑

n=1

22n(22n – 1)(2n – 1)
(2n)!

|B2n|x2n–2, |x| <
π

2
,

and

tan x sec2 x =
1
2
(
sec2 x

)′

=
1
2

∞∑
n=2

22n(22n – 1)(2n – 1)(2n – 2)
(2n)!

|B2n|x2n–3

=
∞∑

n=2

22n(22n – 1)(2n – 1)(n – 1)
(2n)!

|B2n|x2n–3, |x| <
π

2
. �
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Lemma 5 ([12, 13]) Let B2n be the even-indexed Bernoulli numbers. Then

(2n + 2)(2n + 1)(22n–1 – 1)
π2(22n+1 – 1)

<
|B2n+2|
|B2n| <

(2n + 2)(2n + 1)(22n – 1)
π2(22n+2 – 1)

(2.5)

holds for n = 1, 2, . . . .

Lemma 6 Let z(x) be defined by

z(x) =
ln 2x–sin 2x

4(sin x–x cos x)

ln cos x
. (2.6)

Then z(x) is strictly decreasing from (0,π/2) onto (0, 1/5).

Proof Let

z(x) =
ln 2x–sin 2x

4(sin x–x cos x)

ln cos x
=

p(x)
q(x)

=
p(x) – p(0+)
q(x) – q(0+)

,

where

p(x) = ln
2x – sin 2x

4(sin x – x cos x)
, q(x) = ln cos x.

Since

p′(x) = (sin x)
[

4 sin x
2x – sin 2x

–
x

sin x – x cos x

]
, q′(x) = –

sin x
cos x

,

we have

p′(x)
q′(x)

=
x cos x

sin x – x cos x
–

2 sin x cos x
x – cos x sin x

=
x2 cos x + x cos2 x sin x – 2 cos x sin2 x

–x2 cos x + x cos2 x sin x + x sin x – cos x sin2 x

=
(x2 cos x + x cos2 x sin x – 2 cos x sin2 x)/ cos3 x

(–x2 cos x + x cos2 x sin x + x sin x – cos x sin2 x)/ cos3 x

=
x2 sec2 x + x tan x – 2 tan2 x

–x2 sec2 x + x tan x + x tan x sec2 x – tan2 x

=:
C(x)
D(x)

.

From Lemma 4 we obtain

C(x) = x2 sec2 x + x tan x – 2 tan2 x

=
∞∑

n=3

[
(2n)(22n – 1)|B2n|

(2n)!
–

8(22n+2 – 1)(2n + 1)|B2n+2|
(2n + 2)!

]
22nx2n

=:
∞∑

n=3

cnx2n,
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D(x) = –x2 sec2 x + x tan x + x tan x sec2 x – tan2 x

=
∞∑

n=3

[
2(2n + 1)(22n+2 – 1)|B2n+2|

(2n + 2)!
–

(22n – 1)|B2n|
(2n)!

]
(n – 1)22n+1x2n

=:
∞∑

n=3

dnx2n.

We consider the monotonicity of C(x)/D(x), and compute that

cn

dn
=

1
2(n – 1)

(n + 1)(2n)(22n – 1)|B2n| – 4(22n+2 – 1)|B2n+2|
(22n+2 – 1)|B2n+2| – (n + 1)(22n – 1)|B2n| .

Then for n ≥ 3

cn

dn
>

cn+1

dn+1
⇐⇒

L
M

=:
(n + 1)(2n)(22n – 1)|B2n| – 4(22n+2 – 1)|B2n+2|

(n – 1)[(22n+2 – 1)|B2n+2| – (n + 1)(22n – 1)|B2n|]

>
(n + 2)(2n + 2)(22n+2 – 1)|B2n+2| – 4(22n+4 – 1)|B2n+4|

n[(22n+4 – 1)|B2n+4| – (n + 2)(22n+2 – 1)|B2n+2|]
:=

X
Y

.

Since

LY – MX
2|B2n+2|2

= –(n + 2)
(
n2 – 2n – 1

)(
22n+2 – 1

)2

–
(
22n+2 – 1

)(
22n – 1

)
(n + 2)(n + 1)

|B2n|
|B2n+2|

+ (n + 1)
(
n2 – 2n + 2

)(
22n+4 – 1

)(
22n – 1

) |B2n|
|B2n+2|

|B2n+4|
|B2n+2|

– 2
(
22n+4 – 1

)(
22n+2 – 1

) |B2n+4|
|B2n+2| ,

by Lemma 5 we have

LY – MX
2|B2n+2|2

> –(n + 2)
(
n2 – 2n – 1

)(
22n+2 – 1

)2

–
(22n+2 – 1)(22n – 1)(n + 2)(n + 1)π2(22n+1 – 1)

(2n + 2)(2n + 1)(22n–1 – 1)

+ (n + 1)
(
n2 – 2n + 2

)(
22n+4 – 1

)(
22n – 1

)

× π2(22n+2 – 1)
(2n + 2)(2n + 1)(22n – 1)

(2n + 4)(2n + 3)(22n+1 – 1)
π2(22n+3 – 1)
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– 2
(
22n+4 – 1

)(
22n+2 – 1

) (2n + 4)(2n + 3)(22n+2 – 1)
π2(22n+4 – 1)

=
(22n+2 – 1)(n + 2)

π2(22n+3 – 1)(22n – 2)(2n + 1)
r(n),

where

r(n) =
[
u1(n)22n – v1(n)

]
24n + u2(n)22n – v2(n)

with

u1(n) =
(
64π2 – 512

)
n2 –

(
1024 – 64π2)n + 224π2 – 16π4 – 384,

v1(n) = 12π2n3 +
(
146π2 – 1216

)
n2 –

(
2432 – 140π2)n

+
(
568π2 – 26π4 – 912

)
,

u2(n) = 24π2n3 –
(
400 – 38π2)n2 –

(
800 – 26π2)n

+ 247π2 – 11π4 – 300,

v2(n) =
(
4π2 – 32

)
n2 +

(
64 – 4π2)n –

(
14π2 – π4 – 24

)
.

Then we have cn/dn > cn+1/dn+1 for n ≥ 3 when proving

u1(n)22n – v1(n) > 0 ⇐⇒ 22n >
v1(n)
u1(n)

, (2.7)

u2(n)22n – v2(n) > 0 ⇐⇒ 22n >
v2(n)
u2(n)

. (2.8)

Now we use mathematical induction to prove (2.7). When n = 3, (2.7) clearly holds.
Assuming that (2.7) holds for n = m, that is,

22m >
v1(m)
u1(m)

. (2.9)

Next, we prove that (2.7) is valid for n = m + 1. By (2.9) we have

22(m+1) = 4 · 22m > 4
v1(m)
u1(m)

,

in order to complete the proof of (2.7) it suffices to show that

4
v1(m)
u1(m)

>
v1(m + 1)
u1(m + 1)

⇐⇒ 4v1(m)u1(m + 1) – v1(m + 1)u1(m) > 0.

In fact,

4v1(m)u1(m + 1) – v1(m + 1)u1(m) = k(m),

where

k(m) =
(
13,452,288π4 – 184,343,040π2 – 230,976π6 + 1248π8 + 728,082,432

)
+

(
11,200,896π4 – 166,279,680π2 – 103,872π6 + 663,994,368

)
(m – 3)
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+
(
3,983,424π4 – 59,525,376π2 – 16,608π6 + 225,067,008

)
(m – 3)2

+
(
738,048π4 – 10,274,304π2 – 576π6 + 33,619,968

)
(m – 3)3

+
(
68,736π4 – 801,792π2 + 1,867,776

)
(m – 3)4

+
(
2304π4 – 18,432π2)(m – 3)5

> 0

for m ≥ 3.
Similarly, we can prove (2.8). By (2.7) and (2.8) we find that {cn/dn}n≥3 is a monotonic

decreasing sequence. Then we arrive at the conclusion that p′(x)/q′(x) = C(x)/D(x) is de-
creasing on (0,π/2) by Lemma 2. By Lemma 1 we see that z(x) is decreasing on (0,π/2).

Since

z
(
0+)

=
1
5

, z
((

π

2

)–)
= 0,

this completes the proof of Lemma 6. �

3 The proofs of main results
3.1 The proof of Theorem 4

Proof Let

G(x) =
2 coshp x + 1
3ep(x coth x–1) , x > 0.

Then

G(+∞) =

⎧⎨
⎩

2
3 ( e

2 )p, p > 0,

+∞, p < 0,

and

G′(x) =
p
3

Q(x)
ep(x coth x–1) , (3.1)

where

Q(x) =
2(x cosh x – sinh x)

sinh2 x
coshp–1 x –

cosh x sinh x – x
sinh2 x

=
2(x cosh x – sinh x)

sinh2 x

[
coshp–1 x –

cosh x sinh x – x
2(x cosh x – sinh x)

]

=
2(x cosh x – sinh x)(ln cosh x)

sinh2 x
coshp–1 x – cosh x sinh x–x

2(x cosh x–sinh x)

ln(coshp–1 x) – ln cosh x sinh x–x
2(x cosh x–sinh x)

×
(

p – 1 –
ln sinh 2x–2x

4(x cosh x–sinh x)

ln cosh x

)
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=: 2
(x cosh x – sinh x)(ln cosh x)

sinh2 x
coshp–1 x – cosh x sinh x–x

2(x cosh x–sinh x)

ln(coshp–1 x) – ln cosh x sinh x–x
2(x cosh x–sinh x)

× (
p – 1 – l(x)

)
(3.2)

with

l(x) =
ln sinh 2x–2x

4(x cosh x–sinh x)

ln cosh x
.

We consider the following three cases.
Case 1: p ≥ 2.
From Lemma 3, we get maxx∈(0,+∞) l(x) = 1. So p – 1 – l(x) > 0. This leads to Q(x) > 0 by

(3.2), and G′(x) > 0 by (3.1). Then

G
(
0+)

< G(x) < G(+∞),

this is the double inequality (1.5).
Case 2: p ≤ 6/5.
From Lemma 3, we get minx∈(0,+∞) l(x) = 1/5. So p – 1 – l(x) < 0. This leads to Q(x) < 0.
Subcase 2.1: 0 < p ≤ 6/5. In this case, G′(x) < 0 by (3.1). Then

G(+∞) < G(x) < G
(
0+)

,

this is the double inequality (1.6).
Subcase 2.2: p < 0. We have G′(x) > 0 by (3.1). In view of G(+∞) = +∞, the left-hand side

of inequality (1.5) holds too.
Case 3: 6/5 < p < 2.
Let r(x) := l(x) + 1 – p. Then

r
(
0+)

= l
(
0+)

+ 1 – p =
6
5

– p < 0,

r(+∞) = l(+∞) + 1 – p = 2 – p > 0,

and there is the unique point ξ ∈ (0, +∞) such that r(x) < 0 holds for all x ∈ (0, ξ ) and
r(x) > 0 holds for all for x ∈ (ξ , +∞). That is, p – 1 – l(x) > 0 holds for all x ∈ (0, ξ ) and
p – 1 – l(x) > 0 holds for all x ∈ (ξ , +∞). By (3.2) and (3.1), we have G′(x) > 0 for all x ∈ (0, ξ )
and G′(x) < 0 holds for all x ∈ (ξ , +∞). Then

min(G
(
0+)

, G(+∞) < G(x) < G(ξ ).

Subcase 3.1: p1 = (ln(3/2))/(ln(e/2)) < p < 2. In this case, 1 < (2/3)(e/2)p, that is, G(0+) <
G(+∞) holds, so min(G(0+), G(+∞)) = G(0+). This leads to the left-hand side of inequality
(1.5).

Subcase 3.2: 6/5 < p < p1 = (ln(3/2))/(ln(e/2)). In this case, 1 > (2/3)(e/2)p, that is, G(0+) >
G(+∞) holds, so min(G(0+), G(+∞)) = G(+∞). This leads to the left-hand side of inequal-
ity (1.6).

The proof of Theorem 4 is complete. �
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3.2 The proof of Theorem 6

Proof Let

F(x) =
2 cosp x + 1
3ep(x cot x–1) , 0 < x <

π

2
.

Then

F
((

π

2

)–)
=

ep

3

and

F ′(x) =
p
3

2(sin x – x cos x)[– ln(cos x)]
(sin2 x) exp(p(x cot x – 1))

cosp–1 x – x–cos x sin x
2(sin x–x cos x)

(p – 1) ln cos x – ln (x–cos x sin x)
2(sin x–x cos x)

×
(

p – 1 –
ln 2x–sin 2x

4(sin x–x cos x)

ln cos x

)

=
p
3

2(sin x – x cos x)[– ln(cos x)]
(sin2 x) exp(p(x cot x – 1))

cosp–1 x – x–cos x sin x
2(sin x–x cos x)

(p – 1) ln cos x – ln (x–cos x sin x)
2(sin x–x cos x)

× [
p – 1 – z(x)

]
, (3.3)

where

z(x) =
ln 2x–sin 2x

4(sin x–x cos x)

ln cos x
.

We consider the following three cases.
Case 1: p ≥ 6/5.
From Lemma 6, we get maxx∈(0,+∞) z(x) = 1/5. So p – 1 – z(x) > 0 holds. This leads to

F ′(x) < 0 by (3.3). Then

F
(
0+)

< F(x) < F
((

π

2

)–)
,

which is the double inequality (1.8).
Case 2: p ≤ 1.
From Lemma 6, we get minx∈(0,+∞) z(x) = 0. So p – 1 – z(x) < 0 holds.
Subcase 2.1: 0 < p ≤ 1. In this case, F ′(x) < 0 by (3.3). Then

F
((

π

2

)–)
< F(x) < F

(
0+)

,

which is the double inequality (1.9).
Subcase 2.2: p < 0. We have F ′(x) > 0 by (3.3), the double inequality (1.8) holds too.
Case 3: 1 < p < 6/5.
Let q(x) := z(x) – p + 1. Then q(0+) = z(0+) – p + 1 = 6/5 – p > 0, q((π/2)–) = z((π/2)–) – p +

1 = 1 – p < 0. There is a unique point η ∈ (0,π/2) such that q(x) > 0 holds for all x ∈ (0,η)
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and q(x) < 0 holds for all for x ∈ (η,π/2). That is, p – 1 – z(x) < 0 holds for all x ∈ (0,η) and
p – 1 – z(x) > 0 holds for all x ∈ (η,π/2). By (3.3), we have F ′(x) < 0 for all x ∈ (0,η) and
F ′(x) > 0 for all x ∈ (η,π/2). Then

F(η) < F(x) < max
(
F
(
0+)

, F
(
(π/2)–))

.

Subcase 3.1: p2 = ln 3 = 1.0986 < p < 6/5. In this case, 1 < ep/3, that is, F(0+) < F((π/2)–),
so max(F(0+), F((π/2)–)) = F((π/2)–). This leads to the right-hand side of inequality (1.8).

Subcase 3.2: 1 < p ≤ p2 = ln 3 = 1.0986. In this case, 1 ≥ ep/3, that is, F(0+) ≥ F((π/2)–),
so max(F(0+), F((π/2)–)) = F(0+). This leads to the right-hand side of inequality (1.9).

The proof of Theorem 6 is complete. �
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