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Abstract
In this study, we present the notions of f -asymptotically I2-equivalence, strongly
f -asymptotically I2-equivalence, f -asymptotically lacunary I2-equivalence, and
strongly f -asymptotically lacunary I2-equivalence of double sequences and
investigate some relationships between them. Also, we examine some relationships
between strongly f -asymptotically I2-equivalence and asymptotically I2-statistical
equivalence and between strongly f -asymptotically lacunary I2-equivalence and
asymptotically lacunary I2-statistical equivalence of double sequences.
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1 Introduction and background
Throughout the paper, N is the set of all positive integers, and R is the set of all real num-
bers. The concept of convergence of a sequence of real numbers has been extended to
statistical convergence independently by Fast [14] and Schoenberg [39]. Fridy and Orhan
[15] studied lacunary statistical convergence. This concept was extended to the double
sequences by Mursaleen and Edely [28]. A lot of development have been made in this area
after the works of [1, 2, 13, 25–27].

The idea of I-convergence was introduced by Kostyrko, S̆alát, and Wilczyński [20] as
a generalization of statistical convergence. Das et al. [4] introduced the concept of I-
convergence of double sequences in a metric space and studied some properties of this
convergence. A lot of development have been made in this area after the works of [5–11,
29–32, 40, 44].

Marouf [24] presented definitions for asymptotically equivalent and asymptotic regu-
lar matrices. Patterson [35] presented asymptotically statistically equivalent sequences
for nonnegative summability matrices. Dündar et al. [12] defined asymptotically Iσ

2 -
equivalent, asymptotically invariant equivalent, strongly asymptotically invariant equiv-
alent, and p-strongly asymptotically invariant equivalent for double sequences. Ulusu
and Dündar [42] introduced the concepts of asymptotically lacunary I2-invariant equiva-
lence, asymptotically lacunary σ2-equivalence, and asymptotically lacunary invariant S2-
equivalence of double sequences. Hazarika and Kumar [16] studied asymptotically double
lacunary statistically equivalent sequences in ideal context.
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The modulus function was introduced by Nakano [33]. Maddox [23], Pehlivan [37], and
many authors used the modulus function f to define some new concepts and inclusion
theorems. Kumar and Sharma [21] studied lacunary equivalent sequences by ideals and
the modulus function. Also, several authors define some new concepts and give inclusion
theorems using a modulus function f (see [17, 18]).

Now we recall the basic concepts and some definitions (see [3, 15, 19, 20, 22–24, 34–38,
41, 43]).

By a lacunary sequence we mean an increasing integer sequence θ = {kr} such that k0 = 0
and hr = kr – kr–1 → ∞ as r → ∞. Throughout the paper, we let θ = {kr} be a lacunary
sequence.

A double sequence θ2 = {(kr , ju)} is called a double lacunary sequence if there exist two
increasing sequences of integers such that k0 = 0, hr = kr – kr–1 → ∞ and j0 = 0, h̄u =
ju – ju–1 → ∞ as r, u → ∞. We further use the following notations:

kru = krju, hru = hrh̄u, Iru =
{

(k, j) : kr–1 < k ≤ kr and ju–1 < j ≤ ju
}

,

qr =
kr

kr–1
and qu =

ju
ju–1

.

Throughout the paper, we let θ2 = {(kr , ju)} be a double lacunary sequence.
A family of sets I ⊆ 2N is called an ideal if and only if

(i) ∅ ∈ I ,
(ii) for all A, B ∈ I , we have A ∪ B ∈ I ,

(iii) for each A ∈ I and each B ⊆ A, we have B ∈ I .
An ideal is called nontrivial if N /∈ I , and a nontrivial ideal is called admissible if {n} ∈ I

for each n ∈ N. Throughout the paper, we let I be an admissible ideal.
A nontrivial ideal I2 of N×N is called a strongly admissible ideal if {i} ×N and N× {i}

belong to I2 for each i ∈ N .
Throughout the paper, we let I2 be a strongly admissible ideal in N×N.
It is evident that a strongly admissible ideal is admissible.
We denote I0

2 = {A ⊂ N×N : (∃m(A) ∈N) (i, j ≥ m(A) ⇒ (i, j) /∈ A)}. Then I0
2 is a strongly

admissible ideal, and clearly an ideal I2 is strongly admissible if and only if I0
2 ⊂ I2.

Two nonnegative sequences x = (xk) and y = (yk) are said to be asymptotically equivalent
if limk→∞ xk

yk
= 1 (denoted by x ∼ y).

Two nonnegative sequences x = (xk) and y = (yk) are said to be asymptotically statistically
equivalent of multiple L if for every ε > 0,

lim
n→∞

1
n

∣∣∣∣

{
k ≤ n :

∣∣∣∣
xk

yk
– L

∣∣∣∣ ≥ ε

}∣∣∣∣ = 0

(denoted by x
SL∼ y) and simply asymptotically statistically equivalent, if L = 1.

Two nonnegative sequences x = (xk) and y = (yk) are said to be strongly asymptotically
equivalent of multiple L with respect to the ideal I if for every ε > 0,

{

n ∈ N :
1
n

n∑

k=1

∣∣∣∣
xk

yk
– L

∣∣∣∣ ≥ ε

}

∈ I
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(denoted by xk
I(ω)∼ yk) and simply strongly asymptotically equivalent with respect to the

ideal I if L = 1.
Two nonnegative sequences x = (xk) and y = (yk) are said to be strongly asymptotically

lacunary equivalent of multiple L with respect to the ideal I if for every ε > 0,

{
r ∈N :

1
hr

∑

k∈Ir

∣∣∣∣
xk

yk
– L

∣∣∣∣ ≥ ε

}
∈ I

(denoted by xk
I(Nθ )∼ yk) and simply strongly asymptotically lacunary I-equivalent with

respect to the ideal I if L = 1.
Two nonnegative sequences x = (xk) and y = (yk) are said to be asymptotically lacunary

statistically equivalent of multiple L with respect to the ideal I if for all ε > 0 and γ > 0,

{
r ∈N :

1
hr

∣∣∣∣

{
k ∈ Ir :

∣∣∣∣
xk

yk
– L

∣∣∣∣ ≥ ε

}∣∣∣∣ ≥ γ

}
∈ I

(denoted by xk
I(Sθ )∼ yk) and simply asymptotically lacunary I-statistically equivalent if

L = 1.
A function f : [0,∞) → [0,∞) is called a modulus if
1. f (x) = 0 if and if only if x = 0,
2. f (x + y) ≤ f (x) + f (y),
3. f is increasing, and
4. f is continuous from the right at 0.

A modulus may be unbounded (for example, f (x) = xp, 0 < p < 1) or bounded (for example,
f (x) = x

x+1 ).
Let f be a modulus function. Two nonnegative sequences x = (xk) and y = (yk) are said to

be f -asymptotically equivalent of multiple L with respect to the ideal I if for every ε > 0,

{
k ∈N : f

(∣∣∣∣
xk

yk
– L

∣∣∣∣

)
≥ ε

}
∈ I

(denoted by xk
I(f )∼ yk) and simply f -asymptotically I-equivalent if L = 1.

Let f be a modulus function. Two nonnegative sequences x = (xk) and y = (yk) are said
to be strongly f -asymptotically equivalent of multiple L with respect to the ideal I if for
every ε > 0,

{

n ∈ N :
1
n

n∑

k=1

f
(∣∣∣∣

xk

yk
– L

∣∣∣∣

)
≥ ε

}

∈ I

(denoted by xk
I(ωf )∼ yk)) and simply strongly f -asymptotically I-equivalent if L = 1.

Let f be a modulus function. Two nonnegative sequences x = (xk) and y = (yk) are said
to be strongly f -asymptotically lacunary equivalent of multiple L with respect to the ideal
I if for every ε > 0,

{
r ∈N :

1
hr

∑

k∈Ir

f
(∣∣

∣∣
xk

yk
– L

∣∣∣∣

)
≥ ε

}
∈ I
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(denoted by xk
I(Nf

θ )∼ yk)) and simply strongly f -asymptotically lacunary I-equivalent if
L = 1.

Two nonnegative double sequences x = (xkj) and y = (ykj) are said to be asymptotically
strongly I2-equivalent of multiple L if for every ε > 0,

{

(m, n) ∈N×N :
1

mn

m,n∑

k,j=1

∣∣∣∣
xkj

ykj
– L

∣∣∣∣ ≥ ε

}

∈ I2

(denoted by xkj
[IL

2 ]∼ ykj) and simply asymptotically I2-statistical equivalent if L = 1.
Two nonnegative double sequences x = (xkj) and y = (ykj) are said to be asymptotically

I2-statistically equivalent of multiple L if for all ε > 0 and each γ > 0,

{
(m, n) ∈N×N :

1
mn

∣∣∣∣

{
k, j ≤ m, n :

∣∣∣∣
xkj

ykj
– L

∣∣∣∣ ≥ ε

}∣∣∣∣ ≥ γ

}
∈ I2

(denoted by xkj
I2(S)∼ ykj) and simply asymptotically I2-statistically equivalent if L = 1.

Two nonnegative double sequences x = (xkj) and y = (ykj) are said to be asymptotically
lacunary I2-equivalent of multiple L if for every ε > 0,

{
(r, u) ∈N×N :

1
hru

∑

(k,j)∈Iru

∣∣∣∣
xkj

ykj
– L

∣∣∣∣ ≥ ε

}
∈ I2

(denoted by xkj
[IL

θ2
]

∼ ykj) and simply strongly asymptotically lacunary I2-equivalent if L = 1.
Two nonnegative double sequences x = (xkj) and y = (ykj) are said to be asymptotically

lacunary I2-statistically equivalent of multiple L if for all ε > 0 and γ > 0,

{
(r, u) ∈N×N :

1
hru

∣∣∣∣

{
(k, j) ∈ Iru :

∣∣∣∣
xkj

ykj
– L

∣∣∣∣ ≥ ε

}∣∣∣∣ ≥ γ

}
∈ I2

(denoted by xkj
I2(Sθ )∼ ykj) and simply asymptotically I2-statistically equivalent if L = 1.

Lemma 1 ([37]) Let f be a modulus, and let 0 < δ < 1. Then, for each x ≥ δ, we have f (x) ≤
2f (1)δ–1x.

2 Main results
Definition 2.1 Let f be a modulus function. Two nonnegative sequences x = (xkj) and
y = (ykj) are said to be f -asymptotically I2-equivalent of multiple L if for every ε > 0,

{
(k, j) ∈N×N : f

(∣∣∣∣
xkj

ykj
– L

∣∣∣∣

)
≥ ε

}
∈ I2

(denoted by xkj
IL

2 (f )∼ ykj) and simply f -asymptotically I2-equivalent if L = 1.

Definition 2.2 Let f be a modulus function. The two nonnegative sequences x = (xkj) and
y = (ykj) are said to be strongly f-asymptotically I2-equivalent of multiple L if for every
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ε > 0,
{

(m, n) ∈N×N :
1

mn

m,n∑

k,j=1

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
≥ ε

}

∈ I2

(denoted by xkj
[IL

2 (f )]∼ ykj) and simply strongly f -asymptotically I2-equivalent if L = 1.

Theorem 2.1 Let f be a modulus function. Then xkj
[IL

2 ]∼ ykj ⇒ xkj
[IL

2 (f )]∼ ykj.

Proof Suppose that xkj
[IL

2 ]∼ ykj, and let ε > 0 be given. Select 0 < δ < 1 such that f (t) < ε for
0 ≤ t ≤ δ. We can write

1
mn

m,n∑

k,j=1

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
=

1
mn

m,n∑

k,j=1
| xkj

ykj
–L|≤δ

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)

+
1

mn

m,n∑

k,j=1
| xkj

ykj
–L|>δ

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
,

and so by Lemma 1

1
mn

m,n∑

k,j=1

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
< ε +

(
2f (1)

δ

)
1

mn

m,n∑

k,j=1

∣∣∣∣
xkj

ykj
– L

∣∣∣∣.

Thus, for any γ > 0,
{

(m, n) ∈N×N :
1

mn

m,n∑

k,j=1

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
≥ γ

}

⊆
{

(m, n) ∈N×N :
1

mn

m,n∑

k,j=1

∣∣∣∣
xkj

ykj
– L

∣∣∣∣ ≥ (γ – ε)δ
2f (1)

}

.

Since xkj
[IL

2 ]∼ ykj, it follows that the second set and thus the first set in the above expression

belong to I2. This proves that xkj
[IL

2 (f )]∼ ykj. �

Theorem 2.2 If limt→∞ f (t)
t = α > 0, then xkj

[IL
2 (f )]∼ ykj ⇔ xkj

[IL
2 ]∼ ykj.

Proof We showed that xkj
[IL

2 ]∼ ykj ⇒ xkj
[IL

2 (f )]∼ ykj in Theorem 2.1. Now we must show that

xkj
[IL

2 (f )]∼ ykj ⇒ xkj
[IL

2 ]∼ ykj.

Let limt→∞ f (t)
t = α > 0. Then we have f (t) ≥ αt for all t ≥ 0. Assume that xkj

[IL
2 (f )]∼ ykj.

Since

1
mn

m,n∑

k,j=1

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
≥ 1

mn

m,n∑

k,j=1

α

(∣∣∣∣
xkj

ykj
– L

∣∣∣∣

)
= α

(
1

mn

m,n∑

k,j=1

∣∣∣∣
xkj

ykj
– L

∣∣∣∣

)

,
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it follows that for each ε > 0, we have
{

(m, n) ∈N×N :
1

mn

m,n∑

k,j=1

∣∣∣∣
xkj

ykj
– L

∣∣∣∣ ≥ ε

}

⊆
{

(m, n) ∈N×N :
1

mn

m,n∑

k,j=1

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
≥ αε

}

.

Since xkj
[IL

2 (f )]∼ ykj, it follows that the latter set and hence the former set in the above ex-

pression belong to I2. This proves that xkj
[IL

2 (f )]∼ ykj ⇔ xkj
[IL

2 ]∼ ykj. �

Definition 2.3 Let f be a modulus function. Two nonnegative sequences x = (xkj) and
y = (ykj) are said to be f -asymptotically lacunary I2-equivalent of multiple L if for every
ε > 0,

{
(k, j) ∈ Iru : f

(∣∣∣∣
xkj

ykj
– L

∣∣∣∣

)
≥ ε

}
∈ I2

(denoted by xkj
IL

θ2
(f )

∼ ykj)) and simply f -asymptotically lacunary I2-equivalent if L = 1.

Definition 2.4 Let f be a modulus function. Two nonnegative sequences x = (xkj) and
y = (ykj) are said to be strongly f -asymptotically lacunary I2-equivalent of multiple L if for
every ε > 0,

{
(r, u) ∈N×N :

1
hru

∑

(k,j)∈Iru

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
≥ ε

}
∈ I2

(denoted by xkj
[IL

θ2
(f )]

∼ ykj)) and simply strongly f -asymptotically lacunary I2-equivalent if
L = 1.

Theorem 2.3 Let f be a modulus function. Then, xkj
[IL

θ2
]

∼ ykj ⇒ xkj
[IL

θ2
(f )]

∼ ykj.

Proof Let xkj
[IL

θ2
]

∼ ykj, and let ε > 0 be given. Choose 0 < δ < 1 such that f (t) < ε for 0 ≤ t ≤ δ.
We can write

1
hru

∑

(k,j)∈Iru

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
=

1
hru

∑

(k,j)∈Iru

| xkj
ykj

–L|≤δ

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)

+
1

hru

∑

(k,j)∈Iru

| xkj
ykj

–L|>δ

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
,

and so by Lemma 1

1
hru

∑

(k,j)∈Iru

f
(∣∣

∣∣
xkj

ykj
– L

∣∣∣∣

)
< ε +

(
2f (1)

δ

)
1

hru

∑

(k,j)∈Ir

∣∣∣∣
xkj

ykj
– L

∣∣∣∣.
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Thus, for each any γ > 0,

{
(r, u) ∈N×N :

1
hru

∑

(k,j)∈Iru

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
≥ γ

}

⊆
{

(r, u) ∈N×N :
1

hru

∑

(k,j)∈Iru

∣∣∣∣
xkj

ykj
– L

∣∣∣∣ ≥ (γ – ε)δ
2f (1)

}
.

Since xkj
[IL

θ2
]

∼ ykj, it follows that the latter set and hence the former set in the above expres-

sion belong to I2. This proves that xkj
[IL

θ2
(f )]

∼ ykj. �

Theorem 2.4 If limt→∞ f (t)
t = α > 0, then xkj

[IL
θ2

(f )]
∼ ykj ⇔ xkj

[IL
θ2

]
∼ ykj.

Proof We showed that xkj
[IL

θ2
]

∼ ykj ⇒ xkj
[IL

θ2
(f )]

∼ ykj in Theorem 2.3. Now we must show that

xkj
[IL

θ2
(f )]

∼ ykj ⇒ xkj
[IL

θ2
]

∼ ykj.

Let limt→∞ f (t)
t = α > 0. Then we have f (t) ≥ αt for all t ≥ 0. Assume that xkj

[IL
θ2

(f )]
∼ ykj.

From

1
hru

∑

(k,j)∈Iru

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
≥ 1

hru

∑

(k,j)∈Iru

α

(∣∣∣∣
xkj

ykj
– L

∣∣∣∣

)

= α

(
1

hru

∑

(k,j)∈Iru

∣∣∣∣
xkj

ykj
– L

∣∣∣∣

)

it follows that for each ε > 0, we have

{
(r, u) ∈N×N :

1
hru

∑

(k,j)∈Iru

∣∣∣∣
xkj

ykj
– L

∣∣∣∣ ≥ ε

}

⊆
{

(r, u) ∈N×N :
1

hru

∑

(k,j)∈Iru

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
≥ αε

}
.

Since xkj
[IL

θ2
(f )]

∼ ykj, it follows that the latter set and hence the former set in the above ex-

pression belong to I2. This proves that xkj
[IL

θ2
]

∼ ykj ⇔ xkj
[IL

θ2
(f )]

∼ ykj. �

Theorem 2.5 Let f be a modulus function. If lim infr,u qr,u > 1, then

xkj

[
IL

2 (f )
]

∼ ykj ⇒ xkj

[
IL

θ2
(f )

]

∼ ykj.

Proof Suppose that lim infr,u qr,u > 1. Then there exists η > 0 such that qr,u ≥ 1 + η for
sufficiently large r, u. Then we have

hru

krju
≥ η

1 + η
.
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Let xkj
[IL

2 (f )]∼ ykj. For sufficiently large r, u, we have

1
krju

krju∑

k,j=1,1

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
≥ 1

krju

∑

(k,j)∈Iru

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)

=
(

hru

krju

)
1

hru

∑

(k,j)∈Iru

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)

≥ η

1 + η

1
hru

∑

(k,j)∈Iru

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
,

which gives, for any ε > 0,

{
(r, u) ∈N×N :

1
hru

∑

(k,j)∈Iru

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
≥ ε

}

⊆
{

(r, u) ∈N×N :
1

krju

krju∑

k,j=1,1

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
≥ εη

1 + η

}

.

Since xkj
[IL

2 (f )]∼ ykj, it follows that the latter set and hence the former set belong to I2. This

shows that xkj
[IL

θ2
(f )]

∼ ykj. �

Theorem 2.6 Let f be a modulus function. Then, xkj
[IL

2 (f )]∼ ykj ⇒ xkj
I2(S)∼ ykj.

Proof Assume that xkj
[IL

2 (f )]∼ ykj, and let ε > 0 be given. From

1
mn

m,n∑

k,j=1

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
≥ 1

mn

n∑

k,j=1
| xkj

ykj
–L|≥ε

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)

≥ f (ε) · 1
mn

∣∣∣∣

{
k ≤ m, j ≤ n :

∣∣∣∣
xkj

ykj
– L

∣∣∣∣ ≥ ε

}∣∣∣∣

it follows that for any γ > 0, we have

{
(m, n) ∈N×N :

1
mn

∣∣∣∣

{
k ≤ m, j ≤ n :

∣∣∣∣
xkj

ykj
– L

∣∣∣∣ ≥ ε

}∣∣∣∣ ≥ γ

f (ε)

}

⊆
{

(m, n) ∈ N×N :
1

mn

m,n∑

k,j=1

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
≥ γ

}

.

Since xkj
[IL

2 (f )]∼ ykj, it follows the latter set and hence the former set in the above expression

belong to I2. Therefore xkj
I2(S)∼ ykj. �

Theorem 2.7 Let f be a modulus function. If f is bounded, then xkj
I2(S)∼ ykj ⇔ xkj

[IL
2 (f )]∼ ykj.
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Proof We showed that xkj
[IL

2 (f )]∼ ykj ⇒ xkj
I2(S)∼ ykj in Theorem 2.6. Now we must show that

xkj
I2(S)∼ ykj ⇒ xkj

[IL
2 (f )]∼ ykj.

Assume that f is bounded and let xkj
I2(S)∼ ykj. Since f is bounded, there exists a positive

real number M such that |f (x)| ≤ M for all x ≥ 0. We have

1
mn

m,n∑

k,j=1

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
=

1
mn

m,n∑

k,j=1
| xkj

ykj
–L|≥ε

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)

+
1

mn

m,n∑

k,j=1
| xkj

ykj
–L|<ε

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)

≤ M
mn

∣∣∣∣

{
k ≤ m, j ≤ n :

∣∣∣∣
xkj

ykj
– L

∣∣∣∣ ≥ ε

}∣∣∣∣ + f (ε).

This proves that xkj
[IL

2 (f )]∼ ykj. �

Theorem 2.8 Let f be a modulus function. Then xkj
[IL

θ2
(f )]

∼ ykj ⇒ xkj
I(Sθ2)∼ ykj.

Proof Assume that xk
[IL

θ2
(f )]

∼ yk , and let ε > 0 be given. From

1
hru

∑

(k,j)∈Iru

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
≥ 1

hru

∑

(k,j)∈Iru

| xkj
ykj

–L|≥ε

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)

≥ f (ε) · 1
hru

∣∣∣∣

{
(k, j) ∈ Iru :

∣∣∣∣
xkj

ykj
– L

∣∣∣∣ ≥ ε

}∣∣∣∣

it follows that for any γ > 0,

{
(r, u) ∈N×N :

1
hru

∣∣∣∣

{
(k, j) ∈ Iru :

∣∣∣∣
xkj

ykj
– L

∣∣∣∣ ≥ ε

}∣∣∣∣ ≥ γ

}

⊆
{

(r, u) ∈N×N :
1

hru

∑

(k,j)∈Iru

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
≥ γ f (ε)

}
.

Since xkj
[IL

θ2
(f )]

∼ ykj, the last set belongs to I2, and so by the definition of an ideal the first

set belongs to I2. Therefore xkj
I(Sθ2 )∼ ykj. �

Theorem 2.9 Let f be a modulus function. If f is bounded, then xkj
I(Sθ2 )∼ ykj ⇔ xkj

[IL
θ2

(f )]
∼ ykj.

Proof We showed that xkj
[IL

θ2
(f )]

∼ ykj ⇒ xkj
I(Sθ2 )∼ ykj in Theorem 2.8. Now we must show

that xkj
I(Sθ2 )∼ ykj ⇒ xkj

[IL
θ2

(f )]
∼ ykj.
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Assume that f is bounded and let xkj
I(Sθ2 )∼ ykj. Since f is bounded, there exists a positive

real number M such that |f (x)| ≤ M for all x ≥ 0. We have

1
hru

∑

(k,j)∈Iru

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)
=

1
hru

∑

(k,j)∈Iru

| xkj
ykj

–L|≥ε

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)

+
1

hru

∑

(k,j)∈Iru

| xkj
ykj

–L

∣∣∣∣<ε

f
(∣∣∣∣

xkj

ykj
– L

∣∣∣∣

)

≤ M
hru

∣∣∣∣

{
(k, j) ∈ Iru :

∣∣∣∣
xkj

ykj
– L

∣∣∣∣ ≥ ε

}∣∣∣∣ + f (ε).

This proves that xkj
[IL

θ2
(f )]

∼ ykj. �
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4. Das, P., Kostyrko, P., Wilczyński, W., Malik, P.: I and I∗-convergence of double sequences. Math. Slovaca 58(5), 605–620

(2008)
5. Dündar, E.: On rough I2-convergence of double sequences. Numer. Funct. Anal. Optim. 37(4), 480–491 (2016)
6. Dündar, E., Altay, B.: On some properties of I2-convergence and I2-Cauchy of double sequences. Gen. Math. Notes

7(1), 1–12 (2011)
7. Dündar, E., Altay, B.: Multipliers for bounded I2-convergent of double sequences. Math. Comput. Model. 55(3–4),

1193–1198 (2012)
8. Dündar, E., Altay, B.: I2-Convergence and I2-Cauchy of double sequences. Acta Math. Sci. 34B(2), 343–353 (2014)
9. Dündar, E., Altay, B.: I2-Convergence of double sequences of functions. Electron. J. Math. Anal. Appl. 3(1), 111–121

(2015)
10. Dündar, E., Altay, B.: I2-Uniform convergence of double sequences of functions. Filomat 30(5), 1273–1281 (2016)
11. Dündar, E., Talo, Ö.: I2-Convergence of double sequences of fuzzy numbers. Iran. J. Fuzzy Syst. 10(3), 37–50 (2013)
12. Dündar, E., Ulusu, U., Nuray, F.: On asymptotically ideal invariant equivalence of double sequences. (Under review)
13. Edely, O.H.H., Mohiuddine, S.A., Noman, A.K.: Korovkin type approximation theorems obtained through generalized

statistical convergence. Appl. Math. Lett. 23, 1382–1387 (2010)



Pancaroǧlu Akın Journal of Inequalities and Applications        (2019) 2019:224 Page 11 of 11

14. Fast, H.: Sur la convergence statistique. Colloq. Math. 2, 241–244 (1951)
15. Fridy, J.A., Orhan, C.: Lacunary statistical convergence. Pac. J. Math. 160, 43–51 (1993)
16. Hazarika, B., Kumar, V.: On asymptotically double lacunary statistical equivalent sequences in ideal context. J. Inequal.

Appl. 2013, 543 (2013). https://doi.org/10.1186/1029-242X-2013-543
17. Khan, V.A., Khan, N.: On some I-convergent double sequence spaces defined by a modulus function. Engineering 5,

35–40 (2013)
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36. Patterson, R.F., Savaş, E.: On asymptotically lacunary statistically equivalent sequences. Thai J. Math. 4(2), 267–272

(2006)
37. Pehlivan, S., Fisher, B.: Some sequences spaces defined by a modulus. Math. Slovaca 45, 275–280 (1995)
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