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1 Introduction-preliminaries
Let H1 and H2 be Hilbert spaces, and let C and Q be nonempty convex closed sets in H1

and H2, respectively. Let A : H1 → H2 be a bounded linear mapping.
In 1994, Censor and Elfving [10] introduced the well-known split feasibility problem for

modeling inverse problems formulated as follows:

Find x∗ ∈ C such that Ax∗ ∈ Q. (1.1)

It can be formulated as the following convex feasibility problem:

Find x∗ ∈ C ∩ A–1(Q).

Both split feasibility and convex feasibility problems are much related to a number of real-
world applications, for example, signal processing, intensity-modulated radiation therapy,
and image reconstruction; see [9, 11, 35] and the references therein. Recently, a number of
regularized iterative methods have been introduced and investigated for solutions of the
feasibility problems in either Banach or Hilbert spaces by many authors; see [1–5, 16, 17,
19, 28, 31] and the references therein.

Let H be a real Hilbert space endowed with inner product 〈·, ·〉 and induced norm ‖ · ‖.
Let S be a mapping on H . Fix(S) stands for a fixed point set of S. Recall that S is said to be
nonexpansive if

‖Sx – Sy‖ ≤ ‖x – y‖, ∀x, y ∈ H .
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It is well known that every nonexpansive mapping satisfies the following property:

2
〈
Sx – Sy, (y – Sy) – (x – Sx)

〉 ≤ ∥∥(x – Sx) – (y – Sy)
∥∥2, ∀x, y ∈ H .

The mapping S is said to be quasinonexpansive if

‖x – Sy‖ ≤ ‖x – y‖, ∀x ∈ Fix(S) �= ∅, y ∈ H .

It is obvious that quasinonexpansive mappings may not be continuous beyond their fixed-
point sets. Every quasinonexpansive mapping S satisfies the following property:

2
〈
x – Sy, (y – Sy)

〉 ≤ ‖y – Sy‖2, ∀x ∈ Fix(S) �= ∅, y ∈ H . (1.2)

It is said to be firmly nonexpansive if

‖Sx – Sy‖2 ≤ 〈Sx – Sy, x – y〉, ∀x, y ∈ H .

It is is said to be firmly quasinonexpansive if

‖x – Sy‖2 ≤ 〈x – Sy, x – y〉, ∀x ∈ Fix(S) �= ∅, y ∈ H .

It is is said to be contractive if there exists a constant κ ∈ (0, 1) such that

‖Sx – Sy‖2 ≤ κ‖x – y‖, ∀x, y ∈ H .

Contractive mappings and their extensions are important classes of nonlinear mappings
since they are connected with differential equations and nonsmooth optimization; see [7,
8, 14, 21] and the references therein. Recently, they have been extensively analyzed via
projection-based iterative methods. It deserves mentioning that the methods based on
nearest-point projections are not efficient from the viewpoint of numerical computation.
Let ProjH

C be the nearest-point (metric) projection from H onto C, that is,

ProjH
C y :=

{
x ∈ C : ‖x – y‖ = distC(y)

}
,

where distC(y) := infx∈C ‖x – y‖ for y ∈ H .
To avoid using nearest projections, Yamada [33] recently studied a descent method,

which is known as the Yamada descent algorithm. This algorithm is as follows:

un+1 = (I – αn+1μF)Tun, ∀n ∈N,

where {αn} is a real sequence in (0, 1), μ is some positive real number, T is a nonexpansive
mapping on H , and F is η-strongly monotone and L-Lipschitz continuous on H . Recently,
many authors studied the Yamada descent methods for nonexpansive nonlinear operators
in Banach or Hilbert spaces; see [13, 22, 23, 26] and the references therein.
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Now we recall some useful notions. Let F : C → H be a nonself single-valued operator.
It is called

(i) monotone if

〈
x∗ – x, Fx∗ – Fx

〉 ≥ 0, ∀x∗, x ∈ C;

(ii) strongly monotone if there exists a positive constant η > 0 such that

η
∥∥x∗ – x

∥∥2 ≤ 〈
x∗ – x, Fx∗ – Fx

〉
, ∀x∗, x ∈ C.

(iii) L-Lipschitz if there exists L > 0 such that

∥∥Fx – Fx∗∥∥ ≤L
∥∥x – x∗∥∥, ∀x∗, x ∈ C.

Let M : H → 2H be a set-valued monotone mapping. The zero-point set of M is de-
noted by M–1(0). Recall that M is said to be monotone if, for all x, y ∈ H , u ∈ Mx, and
v ∈ My

〈x – y, u – v〉 ≥ 0.

It is said to be maximal if its graph Graph(M) is not properly contained in the graph of any
other monotone mapping. If M is maximally monotone, then Graph(M) is weakly strongly
closed; see [24] and the references therein. A well-known fact is that for (x, u) ∈ H × H ,
〈x – y, u – v〉 ≥ 0 for all (y, v) ∈ Graph(M) implies that u ∈ M(x) iff M is maximal. Let N be
a maximal monotone operator with domain Dom(N) and range H . Define the mapping
ResN

λ : H → Dom(M) associated with index λ by

ResN
λ x = (λN + Id)–1(x), ∀x ∈ H ,

where Id is the identity operator on H . If N is the subdifferential of proper convex
lower semicontinuous functions, then the resolvent operator is the known proximity op-
erator. The resolve operator plays a significant role in nonsmooth optimization prob-
lems. A variety of nonlinear problems, including variational inequalities and equilib-
rium problems, can be formulated as finding a zero of a maximal monotone opera-
tor. It is known that Fix(ResN

λ ) = N–1(0); see [15, 18, 20, 27, 34] and the references
therein.

Let N be a set-valued maximal monotone operator on H1, and let M be a set-valued
maximal monotone operator on H2. We consider the following split inclusion problem:
find x∗ ∈ H1 such that

0 ∈ N
(
x∗), y∗ = Ax∗ ∈ H2 solves 0 ∈ M

(
y∗), (1.3)

where A is a linear bounded mapping from H1 to H2. We denote by SIP(M, N) the solution
set of problem (1.3).

In this paper, we analyze iterative solutions of a split feasibility problem with common
fixed-point constraints of a family of nonexpansive mappings. We present solution theo-
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rems of the feasibility problem under some weak assumptions imposed on different map-
pings. For our main result, we also need the following tools.

Let Si be a nonexpansive mapping on C, and let ηi be real numbers with 0 < ηi < 1 for
each i ≥ 1. Let Wn be a mapping on C defined for each n ≥ 1 by

Un,n+1 = I,

Un,n = (1 – ηn)I + ηnSnUn,n+1,

Un,n–1 = (1 – ηn–1)I + ηn–1Sn–1Un,n,

...

Un,k = (1 – ηk)I + ηkSkUn,k+1,

Un,k–1 = (1 – ηk–1)I + ηk–1Sk–1Un,k ,

...

Un,2 = (1 – η2)I + η2S2Un,3,

Un,1 = (1 – η1)I + η1S1Un,2,

Wn = Un,1.

(1.4)

It is clear that Wn : C → C, governed by S1, S2, . . . , Sn and η1,η2, . . . ,ηn, is a nonexpansive
mapping; see [29] and the references therein. We further assume that 0 < ηi ≤ η < 1 for
i ≥ 1, where η is a constant in (0, 1).

Lemma 1.1 ([29]) Let C be a convex and closed set in a Hilbert space H , and let Si be
nonexpansive mappings on C with fixed points. If

⋂∞
i=1 Fix(Si) �= ∅, then

(1) limn→∞ Un,k exists for each positive integer k and each x ∈ C;
(2) the mapping W : C → C defined by

Wx := lim
n→∞ Wnx = lim

n→∞ Un,1x, x ∈ C, (1.5)

is a nonexpansive mapping with Fix(W ) =
⋂∞

i=1 Fix(Si) = Fix(Wn).

Lemma 1.2 ([12]) Let C be a convex and closed set in a Hilbert space H , and let Si

be a nonexpansive mappings on C with fixed points. Assume that
⋂∞

i=1 F(Si) �= ∅. Then
limn→∞ supx∈K ‖Wnx – Wx‖ = 0 for any bounded set K ⊂ C.

Lemma 1.3 ([33]) Let H be a Hilbert space. Let F be an L-Lipschitz continuous and η-
strongly monotone mapping on the space H . Let Tα be a mapping on the space H defined
by Tαx = x – μαFx for x ∈ H , where α is a real number in (0, 1). If 0 < L2μ ∈ (0, 2η) and
τ = 1 –

√
1 – μ(2η – μL2) ∈ (0, 1], then

∥∥Tαx – Tαy
∥∥ ≤ (1 – τα)‖x – y‖, ∀x, y ∈ H .

Lemma 1.4 ([32]) Let {αn}, {βn}, and {γn} be sequences of real numbers such that αn ∈
[0, 1],

∑∞
n=1 αn = ∞, lim supn→∞ βn ≤ 0, and

∑∞
n=1 γn < ∞ Let {λn} be a sequence of non-
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negative real numbers such that

λn+1 ≤ (1 – αn)λn + αnβn + γn.

Then limn→∞ λn = 0.

Lemma 1.5 ([25]) Let {xn} be a sequence in a real Hilbert space H . If xn ⇀ x, then

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖

for any y ∈ X with y �= x. This is also equivalent to

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖.

Lemma 1.6 ([6, resolvent equality]) Let H be a Hilbert space. Let N be a set-valued max-
imal operator on H . For parameters λ > 0 and μ > 0, we have

ResN
μ

((
1 –

μ

λ

)
ResN

λ x +
μ

λ
x
)

= ResN
λ x, ∀x ∈ H . (1.6)

Lemma 1.7 ([30]) Let H be a Hilbert space. Let {xn} and {yn} be bounded sequences in H
with xn+1 = (1 – βn)yn + βnxn for all n ≥ 0 and

lim sup
n→∞

(‖yn+1 – yn‖ – ‖xn+1 – xn‖
) ≤ 0,

where {βn} is a sequence in (0, 1) such that lim infn→∞ βn > 0 and lim supn→∞ βn < 1. Then
limn→∞ ‖yn – xn‖ = 0.

2 Main results
Theorem 2.1 Let H1 and H2 be Hilbert spaces, and let N and M be set-valued maximal
monotone mappings on H1 and H2, respectively. Let Si be nonexpansive mappings on H1 for
all integers i ≥ 1. Let F : H1 → H1 be an L-Lipschitz continuous and τ -strongly monotone
mapping. Let A be a linear bounded operator from H1 to H2, and let A∗ be its adjoint
operator. Assume that

⋂∞
i=1 Fix(Si) ∩ SIP(M, N) �= ∅. Let {xn} be a vector sequence in H1

generated by the iterative process

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∈ H1,

yn = γn ResN
sn (xn + γ A∗(ResM

rn –I)Axn) + (1 – γn)xn,

xn+1 = βn(I – μαnF)Wnyn + (1 – βn)xn, n ≥ 1,

where γ and μ are two positive real numbers, {sn} and {rn} are two positive real number se-
quences, {αn}, {βn}, and {γn} are real number sequences in (0, 1). Suppose that γ ∈ (0, 1

‖A‖2 ),
μ ∈ (0, 2τ

L2 ), lim infn→∞ sn > 0, limn→∞ |sn –sn+1| < ∞, lim infn→∞ rn > 0, limn→∞ |rn –rn+1| <
∞,

∑∞
n=1 αn = ∞, {βn} is number sequence in [β̄ , β̄ ′], where β̄ and β̄ ′ are two real numbers

in (0, 1), such that limn→∞ |βn+1 – βn| = 0, and {γn} is a sequence in [γ̄ , 1], where γ̄ ∈ (0, 1],
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such that limn→∞ |γn+1 –γn| = 0. Then the sequence {xn} converges strongly to x̃ ∈ H1, which
is a unique solution of the variational inequality

〈̃x – y, Fx̃〉 ≤ 0, ∀y ∈
∞⋂

i=1

Fix(Si) ∩ SIP(M, N).

Proof The proof is split into four steps.
Step 1. We prove that {xn} is a bounded vector sequence in H1.
For any fixed p ∈ ⋂∞

i=1 Fix(Si) ∩ SIP(M, N), we conclude Ap = ResM
rn Ap, p = ResN

sn p, and
p = Sip for each i ≥ 1. Since Ap is a fixed point of ResM

rn and ResM
rn is a (firmly) nonexpansive

mapping, we have

〈(
ResM

rn –I
)
Axn, ResM

rn Axn – Ap
〉 ≤ ‖ResM

rn Axn – Axn‖2

2
. (2.1)

Putting

zn = ResN
sn

(
xn + γ A∗(ResM

rn –I
)
Axn

)
,

(2.1) sends us to

‖zn – p‖2

≤ ∥∥γ A∗(ResM
rn –I

)
Axn + (xn – p)

∥∥2

≤ γ 2‖A‖2∥∥(
ResM

rn –I
)
Axn

∥∥2 + 2γ
〈
A∗(ResM

rn –I
)
Axn, xn – p

〉
+ ‖xn – p‖2

= γ
(
γ ‖A‖2 – 2

)∥∥(
ResM

rn –I
)
Axn

∥∥2

+ 2γ
〈(

ResM
rn –I

)
Axn, ResM

rn Axn – Ap
〉
+ ‖xn – p‖2

≤ γ
(
γ ‖A‖2 – 1

)∥∥(
ResM

rn –I
)
Axn

∥∥2 + ‖xn – p‖2, (2.2)

which leads to

‖yn – p‖2 ≤ γn‖zn – p‖2 + (1 – γn)‖xn – p‖2

≤ ‖xn – p‖2 – γnγ
(
1 – γ ‖A‖2)∥∥(

ResM
rn –I

)
Axn

∥∥2). (2.3)

The restriction imposed on parameter γ tells us that ‖yn – p‖ ≤ ‖xn – p‖. Since Wn is a
nonexpansive mapping for each n, we find from Lemma 1.3 that

‖xn+1 – p‖ ≤ βn
∥∥(I – μαnF)Wnyn – (I – μαnF)p – μαnFp

∥∥ + (1 – βn)‖xn – p‖
≤ βn

∥∥(I – μαnF)Wnyn – (I – μαnF)p
∥∥ + μβnαn‖Fp‖ + (1 – βn)‖xn – p‖

≤ βn(1 – ταn)‖Wnyn – Wnp‖ + μβnαn‖Fp‖ + (1 – βn)‖xn – p‖
≤ βn(1 – ταn)‖yn – p‖ + μβnαn‖Fp‖ + (1 – βn)‖xn – p‖

≤ ταnβn
‖Fp‖μ

τ
+ (1 – ταnβn)‖xn – p‖

≤ max

{‖Fp‖μ
τ

,‖xn – p‖
}

,

from which we conclude that {xn} is a bounded vector sequence in H1.
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Step 2. We prove that limn→∞ ‖xn+1 –xn‖ = 0. From resolvent equality (1.6) in Lemma 1.6
we see that

‖zn – zn+1‖ ≤ ∥∥ResN
sn ρn – ResN

sn+1 ρn
∥∥ +

∥∥ResN
sn+1 ρn – ResN

sn+1 ρn+1
∥∥

≤ ∥∥ResN
sn ρn – ResN

sn+1 ρn
∥∥ + ‖ρn – ρn+1‖

=
∥∥∥∥ResN

sn+1

(
sn+1

sn
ρn +

(
1 –

sn+1

sn

)
ResN

sn ρn

)
– ResN

sn+1 ρn

∥∥∥∥ + ‖ρn – ρn+1‖

=
∥∥∥∥

(
sn+1

sn
ρn +

(
1 –

sn+1

sn

)
ResN

sn ρn

)
– ρn

∥∥∥∥ + ‖ρn – ρn+1‖

≤
∣∣∣∣1 –

sn+1

sn

∣∣∣∣
∥∥ρn – ResN

sn ρn
∥∥ + ‖ρn+1 – ρn‖, (2.4)

where

ρn = xn + γ A∗(ResM
rn –I

)
Axn.

It is easy to see that

∥∥(xn+1 – xn) – γ A∗(Axn+1 – Axn)
∥∥

=
√

‖xn+1 – xn‖2 – 2γ
〈
xn+1 – xn, A∗(Axn+1 – Axn)

〉
+

∥∥γ A∗(Axn+1 – Axn)
∥∥2

=
(
1 – γ ‖A‖2)‖xn+1 – xn‖,

which sends us to

‖ρn+1 – ρn‖
≤ γ

∥∥A∗(ResM
rn+1 Axn+1 – ResM

rn Axn
)∥∥ +

∥∥(xn+1 – xn) – γ A∗(Axn+1 – Axn)
∥∥

≤ ‖xn+1 – xn‖ + γ ‖A‖
∣∣∣∣1 –

rn+1

rn

∣∣∣∣
∣∣∣
∥∥Axn – ResM

rn Axn
∥∥. (2.5)

Inequalities (2.4) and (2.5) yield

‖zn – zn+1‖ ≤
∣∣∣∣1 –

sn+1

sn

∣∣∣∣
∥∥ρn – ResN

sn ρn
∥∥ + ‖xn+1 – xn‖

+ γ ‖A‖
∣∣∣∣1 –

rn+1

rn

∣∣∣∣
∣∣∣
∥∥Axn – ResM

rn Axn
∥∥,

which further leads us to

‖yn – yn+1‖ ≤ γn‖zn – zn+1‖ + (1 – γn)‖xn – xn+1‖ + |γn – γn+1|‖zn+1 – xz+1‖

≤ γn

∣∣∣∣1 –
sn+1

sn

∣∣∣∣
∥∥ρn – ResN

sn ρn
∥∥ + ‖xn+1 – xn‖

+ γnγ ‖A‖
∣∣∣∣1 –

rn+1

rn

∣∣∣∣
∣∣∥∥Axn – ResM

rn Axn
∥∥

+ |γn – γn+1|‖zn+1 – xz+1‖.
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From Lemma 1.1 we arrive at

‖Wn+1yn+1 – Wnyn‖
≤ ‖Wn+1yn+1 – Wnyn+1‖ + ‖Wnyn+1 – Wnyn‖
≤ sup

x∈Ψ

[‖Wn+1x – Wx‖ + ‖Wx – Wnx‖] + ‖yn+1 – yn‖

≤ sup
x∈Ψ

[‖Wn+1x – Wx‖ + ‖Wx – Wnx‖] + γn

∣∣∣∣1 –
sn+1

sn

∣∣∣∣
∥∥ρn – ResN

sn ρn
∥∥

+ ‖xn+1 – xn‖ + γnγ ‖A‖
∣∣∣∣1 –

rn+1

rn

∣∣∣∣
∣∣∥∥Axn – ResM

rn Axn
∥∥

+ |γn – γn+1|‖zn+1 – xz+1‖, (2.6)

where Ψ is a bounded set containing {yn}. Inequality (2.6) ensures that

∥∥(I – μαn+1F)Wn+1yn+1 – (I – μαnF)Wnyn
∥∥

≤ ∥∥(I – μαn+1F)Wn+1yn+1 – (I – μαn+1F)Wnyn
∥∥

+
∥∥(I – μαn+1F)Wnyn – (I – μαnF)Wnyn

∥∥

≤ (1 – ταn+1)‖Wn+1yn+1 – Wnyn‖ + |αn+1 – αn|‖μFWnyn‖
≤ (1 – ταn+1)‖Wn+1yn+1 – Wnyn‖ + |αn+1 – αn|‖μFWnyn‖
≤ (1 – ταn+1)sup

x∈Ψ

[‖Wn+1x – Wx‖ + ‖Wx – Wnx‖]

+ (1 – ταn+1)γn

∣∣∣∣1 –
sn+1

sn

∣∣∣∣
∥∥ρn – ResN

sn ρn
∥∥

+ (1 – ταn+1)‖xn+1 – xn‖ + (1 – ταn+1)γnγ ‖A‖
∣∣∣∣1 –

rn+1

rn

∣∣∣∣
∣∣∥∥Axn – ResM

rn Axn
∥∥

+ (1 – ταn+1)|γn – γn+1|‖zn+1 – xz+1‖ + |αn+1 – αn|‖μFWnyn‖.

This further leads to

∥∥(I – μαn+1F)Wn+1yn+1 – (I – μαnF)Wnyn
∥∥ – ‖xn+1 – xn‖

≤ sup
x∈Ψ

[‖Wn+1x – Wx‖ + ‖Wx – Wnx‖] + γn

∣∣∣∣1 –
sn+1

sn

∣∣∣∣
∥∥ρn – ResN

sn ρn
∥∥

+ γnγ ‖A‖
∣∣∣∣1 –

rn+1

rn

∣∣∣∣
∣∣∥∥Axn – ResM

rn Axn
∥∥

+ |γn – γn+1|‖zn+1 – xz+1‖ +
(|αn+1| + |αn|

)‖μFWnyn‖.

Using Lemma 1.2, the boundedness of operator A, and the restrictions on the parameter
sequences {αn}, {γn}, {sn}, and {rn}, we obtain that

lim sup
n→∞

(∥∥(I – μαn+1F)Wn+1yn+1 – (I – μαnF)Wnyn
∥∥ – ‖xn+1 – xn‖

) ≤ 0.
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With the aid of Lemma 1.7, we conclude that

lim
n→∞

∥∥(I – μαnF)Wnyn – xn
∥∥ = 0. (2.7)

Since αn → 0 as n → ∞, we also have

lim
n→∞‖Wnyn – xn‖ = 0. (2.8)

From (2.7) we see that

lim
n→∞‖xn+1 – xn‖ = 0. (2.9)

Since {xn} is a bounded vector sequence in H1, we find that there is a subsequence {xni} of
{xn} that converges weakly to x̄.

Step 3. We prove that x ∈ ⋂∞
i=1 Fix(Si) ∩ SIP(M, N).

Put

ϕn = (I – μαnF)Wnyn.

For any p ∈ ⋂∞
i=1 Fix(Si) ∩ SIP(M, N), we conclude from (2.3) that

‖ϕn – p‖2 ≤ ∥∥(I – μαnF)Wnyn – (I – μαnF)Wnp
∥∥2 – 2μαn〈ϕn – p, Fp〉

≤ (1 – ταn)2‖Wnyn – Wnp‖2 – 2μαn〈ϕn – p, Fp〉
≤ (1 – ταn)2‖yn – p‖2 – 2μαn〈ϕn – p, Fp〉
≤ (1 – ταn)2‖xn – p‖2 – γ

(
1 – γ ‖A‖2)(1 – ταn)2∥∥ResM

rn Axn – Axn
∥∥2

+ 2μαn‖Fp‖‖ϕn – p‖.

This shows us that

‖xn+1 – p‖2 ≤ βn‖ϕn – p‖2 + (1 – βn)‖xn – p‖2

≤ ‖xn – p‖2 – βnγ
(
1 – γ ‖A‖2)(1 – ταn)2∥∥ResM

rn Axn – Axn
∥∥2

+ 2μαnβn‖Fp‖‖ϕn – p‖.

It follows that

γ
(
1 – γ ‖A‖2)(1 – ταn)2βn

∥∥Axn – ResM
rn Axn

∥∥2

≤ ‖xn – xn+1‖
(‖xn – p‖ + ‖xn+1 – p‖) + 2μαnβn‖Fp‖‖ϕn – p‖.

Limit (2.9) and the fact that αn → 0 as n → ∞ lead us to

lim
n→∞

∥∥Axn – ResM
rn Axn

∥∥ = 0. (2.10)

Next, we have

2‖zn – p‖2

≤ 2
〈
γ A∗(ResM

rn –I
)
Axn + xn – p, zn – p

〉
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= γ 2∥∥A∗(ResM
rn –I

)
Axn

∥∥2 + 2γ
〈
A∗(ResM

rn –I
)
Axn, xn – p

〉
+ ‖xn – p‖2

–
∥∥xn + γ A∗(ResM

rn –I
)
Axn – yn

∥∥2 + ‖zn – p‖2

≤ γ 2‖A‖2∥∥ResM
rn Axn – Axn

∥∥2

+ 2γ
(〈

ResM
rn Axn – Ap, ResM

rn Axn – Axn
〉
–

∥∥ResM
rn Axn – Axn

∥∥2)

+ ‖zn – p‖2 + ‖xn – p‖2 – ‖zn – xn‖2 – 2γ
〈
A∗(ResM

rn –I
)
Axn, xn – zn

〉

–
∥∥γ A∗(ResM

rn –I
)
Axn

∥∥2)

≤ ‖xn – p‖2 + ‖zn – p‖2 + 2‖A‖γ ‖xn – zn‖
∥∥ResM

rn Axn – Axn
∥∥ – ‖xn – zn‖2,

that is,

‖zn – p‖2 ≤ ‖xn – p‖2 + 2‖A‖γ ‖zn – xn‖
∥∥ResN

sn Axn – Axn
∥∥ – ‖xn – zn‖2.

This sends us to

‖ϕn – p‖2 ≤ (1 – ταn)2‖Wnyn – Wnp‖2 – 2μαn〈ϕn – p, Fp〉
≤ (1 – ταn)2γn‖zn – p‖2 + (1 – ταn)2(1 – γn)‖xn – p‖2 + 2μαn‖ϕn – p‖‖Fp‖
≤ (1 – ταn)2‖xn – p‖2 + 2(1 – ταn)2γn‖A‖γ ‖zn – xn‖

∥∥ResN
sn Axn – Axn

∥∥

– (1 – ταn)2γn‖xn – zn‖2 + 2μαn‖ϕn – p‖‖Fp‖.

It follows that

‖xn+1 – p‖2 ≤ βn‖ϕn – p‖2 + (1 – βn)‖xn – p‖2

≤ ‖xn – p‖2 + 2βn(1 – ταn)2γn‖A‖γ ‖zn – xn‖
∥∥ResN

sn Axn – Axn
∥∥

– βn(1 – ταn)2γn‖xn – zn‖2 + 2μαnβn‖ϕn – p‖‖Fp‖.

Hence

βn(1 – ταn)2γn‖xn – zn‖2

≤ ‖xn – xn+1‖
(‖xn – p‖ + ‖xn+1 – p‖) + 2‖A‖γ ‖zn – xn‖

∥∥ResN
sn Axn – Axn

∥∥

+ 2μαn‖ϕn – p‖‖Fp‖.

Using (2.9) and (2.10), we have that xn – zn → 0 as n → ∞, that is,

lim
n→∞

∥∥xn – ResN
sn

(
xn + γ A∗(ResM

rn –I
)
Axn

)∥∥ = 0. (2.11)

Since xn – zn → 0 as n → ∞, we have that {zn} converges weakly to x̄. Further, {zni} con-
verges weakly to x̄ as i → ∞. The graphs of maximal monotone mappings are weakly-
strongly closed. Observe that

xni – zni

sni

+ γ A∗ ResM
rni

Axni – Axni

sni

∈ Nzni .
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So 0 ∈ N(x̄). Fixing a positive real number p, Lemma 1.6 yields that ‖Axni – ResM
p Axni‖ →

as i → ∞, which implies 0 ∈ M(Ax̄).
We are now in a position to show that x̄ ∈ ⋂∞

i=1 Fix(Si) = Fix(W ). We have

‖yni – Wni yni‖ ≤ ‖yni – Wni yni‖ + ‖Wni yni – Wyni‖
≤ ‖yni – Wni yni‖ + sup

x∈Ψ

‖Wni x – Wx‖.

Relations (2.8) and (2.11) yield that limi→∞ ‖yni – Wni yni‖ = 0. If x̄ �= W x̄, then the Opial
condition, Lemma 1.5, sends us to

lim sup
i→∞

‖x̄ – yni‖ < lim sup
i→∞

‖W x̄ – yni‖

≤ lim sup
i→∞

{‖Wyni – yni‖ + ‖W x̄ – Wyni‖
}

≤ lim sup
i→∞

‖x̄ – yni‖,

a contradiction. Thus x̄ ∈ Fix(W ), that is, x̄ ∈ ⋂∞
i=1 Fix(Si).

Step 4. We prove that the sequence {xn} is strongly convergent.
Since F is strongly monotone and Lipschitz continuous, we get that the following vari-

ational inequality has a unique solution:

〈̃x – y, Fx̃〉 ≤ 0, ∀y ∈
∞⋂

i=1

Fix(Si) ∩ SIP(M, N).

Thus

lim sup
n→∞

〈̃x – ϕn, Fx̃〉 ≤ 0. (2.12)

Lemma 1.1 and Lemma 1.3 send us to

‖xn+1 – x̃‖2

≤ βn‖ϕn – x̃‖2 + (1 – βn)‖xn – x̃‖2

≤ βn
(∥∥(I – μαnF)Wnyn – (I – μαnF )̃x

∥∥2 – 2μαn
〈
ϕn – x̃, F (̃x)

〉)
+ (1 – βn)‖xn – x̃‖2

≤ βn
(
(1 – ταn)2‖yn – x̄‖2 – 2μαn

〈
F (̃x),ϕn – x̃

〉)
+ (1 – βn)‖xn – x̃‖2

≤ (1 – 2τβnαn)‖xn – x̃‖2 + 2τβnαnΠn,

where Π = μ

τ
〈Fx̄, x̃ – ϕn〉 + ταn

2 ‖xn – x̃‖2. In light of Lemma 1.4, we find that ‖xn – x̃‖ → 0
as n → ∞. This completes the proof. �

From Theorem 2.1 we have the following subresult on split inclusion problem (1.3).

Corollary 2.1 Let H1 and H2 be Hilbert spaces, and let N and M be set-valued maximal
monotone mappings on H1 and H2, respectively. Let F : H1 → H1 be an L-Lipschitz con-
tinuous and τ -strongly monotone mapping. Let A be a linear bounded operator from H1 to
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H2, and let A∗ be its the adjoint operator. Assume that SIP(M, N) �= ∅. Let {xn} be the vector
sequence in H1 generated by the iterative process

x1 ∈ H1, xn+1 = βn(I – μαnF) ResN
sn

(
xn + γ A∗(ResM

rn –I
)
Axn

)
+ (1 – βn)xn, n ≥ 1,

where γ and μ are two positive real numbers, {sn} and {rn} are two positive real number
sequences, and {αn} and {βn} are real number sequences in (0, 1). Suppose that γ ∈ (0, 1

‖A‖2 ),
μ ∈ (0, 2τ

L2 ), lim infn→∞ sn > 0, limn→∞ |sn –sn+1| < ∞, lim infn→∞ rn > 0, limn→∞ |rn –rn+1| <
∞,

∑∞
n=1 αn = ∞, {βn} is a number sequence in [β̄ , β̄ ′], where β̄ and β̄ ′ are two real numbers

in (0, 1), such that limn→∞ |βn+1 – βn| = 0. Then the sequence {xn} converges strongly to x̃ ∈
H1, which is a unique solution of the variational inequality 〈̃x – y, Fx̃〉 ≤ 0, ∀y ∈ SIP(M, N).

Remark 2.1 In this paper, we investigated the descent iterative methods for split inclusion
problem with a common fixed point constraint of an infinite family of nonexpansive map-
pings. It deserves mentioning that our method does not involve projections. A solution
theorem of the problem was established in the framework of Hilbert spaces under some
weak assumptions imposed on different mappings and control sequences.
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