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1 Introduction
The digamma (or psi) function ψ(x) for x > 0 is defined to be the logarithmic derivative of
Euler’s gamma function

Γ (x) =
∫ ∞

0
txe–t dt

t
.

The function ψ and its derivatives are called polygamma functions.
There are many interesting inequalities involving the polygamma functions in the liter-

ature, many of which are closely related to the fact that ψ ′ is completely monotonic on
(0, +∞). Here we recall that a function f (x) is said to be completely monotonic on (a, b) if
it has derivatives of all orders and (–1)kf (k)(x) ≥ 0, x ∈ (a, b), k ≥ 0, and f (x) is said to be
strictly completely monotonic on (a, b) if (–1)kf (k)(x) > 0, x ∈ (a, b), k ≥ 0.

A general result of Fink [5, Theorem 1] on completely monotonic functions implies that,
for integers n ≥ 2,

(
ψ (n)(x)

)2 ≤ ψ (n–1)(x)ψ (n+1)(x), x > 0.

The following inequality of the reverse direction is given in [11]:

1
2
ψ ′(x)ψ ′′′(x) ≤ (

ψ ′′(x)
)2, x > 0.

A short proof of the above inequality is given in [4].
For integers p ≥ m ≥ n ≥ q ≥ 0 and any real number s, we define

Fp,m,n,q(x; s) = (–1)m+nψ (m)(x)ψ (n)(x) – s(–1)p+qψ (p)(x)ψ (q)(x),

where we set ψ (0)(x) = –1 for convenience.

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-019-2172-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-019-2172-x&domain=pdf
mailto:penggao@buaa.edu.cn


Gao Journal of Inequalities and Applications        (2019) 2019:218 Page 2 of 9

In [3, Theorem 2.1], Alzer and Wells established a nice generalization of the above re-
sults. Their result asserts that, for n ≥ 2, the function Fn+1,n,n,n–1(x; s) is strictly completely
monotonic on (0, +∞) if and only if s ≤ (n – 1)/n and –Fn+1,n,n,n–1(x; s) is strictly completely
monotonic on (0, +∞) if and only if s ≥ n/(n + 1).

We denote

αp,m,n,q =
(m – 1)!(n – 1)!
(p – 1)!(q – 1)!

, q ≥ 1;

αp,m,n,0 =
(m – 1)!(n – 1)!

(p – 1)!
; βp,m,n,q =

m!n!
p!q!

.

Note that 0 < αp,m,n,q, βp,m,n,q < 1 when p + q = m + n, p > m.
In [6, Theorem 4.1], it is shown that, for integers p > m ≥ n > q ≥ 0 satisfying m + n =

p + q, the function Fp,m,n,q(x;αp,m,n,q) is completely monotonic on (0, +∞) and the func-
tion –Fp,m,n,q(x;βp,m,n,q) is also completely monotonic on (0, +∞) when q > 0. This gives a
generalization of the above result of Alzer and Wells.

For a given function f (x), we denote, for c > 0,

�f (x; c) =
f (x + c) – f (x)

c
.

We define, for integers p ≥ m ≥ n ≥ q ≥ 0, real number c > 0, and any real number s:

Fp,m,n,q(x; s; c) = (–1)m+n�ψ (m–1)(x; c)�ψ (n–1)(x; c)

– s(–1)p+q�ψ (p–1)(x; c)�ψ (q–1)(x; c),

where we set ψ (0)(x) = ψ(x), ψ (–1)(x) = –x for convenience. We further define
Fp,m,n,q(x; s; 0) = limc→0+ Fp,m,n,q(x; s; c), and it is then easy to see that Fp,m,n,q(x; s; 0) =
Fp,m,n,q(x; s).

It is shown in [8] that on (– min(s, t), +∞) the function F2,1,1,0(x + s; 1; t – s) (resp. its
negative) is completely monotonic when |t – s| < 1 (resp. when |t – s| < 1), and it is further
given in [10] a necessary and sufficient condition on λ, t, s for F2,1,1,0(x + s;λ; t – s) or it is
negative to be completely monotonic on (– min(s, t), +∞). We point out here that one can
easily deduce these results on F2,1,1,0(x + s;λ; t – s) from similar results on F2,1,1,0(x;λ; t) by
a change of variable.

Recently, the complete monotonicity of Fp,m,n,q(x; s; c) in the case of (m, n, p, q) = (n, n,
n – 1, n + 1) for various c has been determined in [12, Theorem 1]. We also note that the
logarithmically complete monotonicity of ratios of two gamma functions is closely related
to the divided difference of psi and polygamma functions. There are many known results
in this direction, and we refer the reader to recent articles [7, 9, 13–17] and the references
therein.

Motivated by the above results, it is our goal in this paper to prove the following:

Theorem 1.1 Let p > m ≥ n > q ≥ 0 be integers satisfying m + n = p + q, and let c > 0. Then
1. For 0 < c ≤ 1,

(a) the function Fp,m,n,q(x; s; c) is completely monotonic on (0, +∞) if and only if
s ≤ αp,m,n,q;
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(b) the function –Fm+n,m,n,0(x; s; c) is completely monotonic on (0, +∞) if and only if
s ≥ αm+n,m,n,0/c.

2. For c ≥ 1,
(a) the function –Fp,m,n,q(x; s; c) is completely monotonic on (0, +∞) if and only if

s ≥ αp,m,n,q;
(b) the function Fm+n,m,n,0(x; s; c) is completely monotonic on (0, +∞) if and only if

s ≤ αm+n,m,n,0/c.
3. The function –Fp,m,n,q(x;βp,m,n,q; c) is completely monotonic on (0, +∞) for all c > 0

when q ≥ 1.

We note here that, when p = n + 1, m = n, q = n – 1, the limiting case c → 0+ of part (1)(a)
and part (3) of Theorem 1.1 allows us to recover the above mentioned result of Alzer and
Wells. We also point out that by considering finite values of c as done in Theorem 1.1,
one is able to see that the monotonicity properties of the function Fp,m,n,q(x;αp,m,n,q; c) are
different for different values of c, while this phenomenon does not occur for the limiting
case c → 0+ (as in the result of Alzer and Wells). Another advantage for considering finite
values of c instead of the limiting case c → 0+ directly is that one is able to give similar
proofs of case 1(a) and (3) for finite values of c in Theorem 1.1. (The proofs corresponding
to the limiting case c → 0+ for these two cases in [3] and [6] are different.)

2 Lemmas
The first lemma lists some facts about the polygamma functions. These can be found, for
example, in [1, (1.1)–(1.3), (1.5)].

Lemma 2.1 For x > 0,

ψ(x) = –γ +
∫ ∞

0

e–t – e–xt

1 – e–t dt, γ = 0.57721 . . . ; (2.1)

(–1)n+1ψ (n)(x) =
∫ ∞

0
e–xt tn

1 – e–t dt, n ≥ 1; (2.2)

ψ (n)(x + 1) = ψ (n)(x) + (–1)n n!
xn+1 , n ≥ 0; (2.3)

(–1)n+1ψ (n)(x) =
(n – 1)!

xn +
n!

2xn+1 + O
(

1
xn+2

)
, n ≥ 1, x → +∞. (2.4)

Lemma 2.2 ([6, Lemma 2.7]) Let m > n ≥ 1 be two integers, then for any fixed constant
0 < c < 1, the function

a(t; m, n, c) = tm–n + tn – c
(
1 + tm)

has exactly one root when t ≥ 1.

Lemma 2.3 Let a, c > 0, then the function

u(s; a, c) =
1 – e–ac(1–s)

1 – e–a(1–s) · 1 – e–ac(1+s)

1 – e–a(1+s)

is decreasing on s ∈ (0, 1) if 0 < c ≤ 1 and increasing on (0, 1) if c ≥ 1.
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This is Lemma 5 of [2], on setting r = e–a there.

3 Proof of Theorem 1.1
We first prove assertions (1)(a) and (2)(a) of the theorem. Note first that if Fp,m,n,q(x; s; c) is
completely monotonic on (0, +∞), then we have

s ≤ (–1)m+n�ψ (m–1)(x; c)�ψ (n–1)(x; c)
(–1)p+q�ψ (p–1)(x; c)�ψ (q–1)(x; c)

.

It then follows easily from the mean value theorem and (2.4) that we have

lim
x→+∞

(–1)m+n�ψ (m–1)(x; c)�ψ (n–1)(x; c)
(–1)p+q�ψ (p–1)(x; c)�ψ (q–1)(x; c)

= αp,m,n,q.

Thus, s ≤ αp,m,n,q. Similarly, one shows that if –Fp,m,n,q(x; s; c) is completely monotonic on
(0, +∞), then s ≥ αp,m,n,q and this proves the “only if” part of assertions (1)(a) and (2)(a) of
the theorem.

To prove the “if” part of assertions (1)(a) and (2)(a) of the theorem, it is easy to see
that it suffices to show that Fp,m,n,q(x;αp,m,n,q; c) is completely monotonic on (0, +∞) when
0 < c ≤ 1 and that –Fp,m,n,q(x;αp,m,n,q; c) is completely monotonic on (0, +∞) when c ≥ 1.

We first consider the function Fp,m,n,q(x;αp,m,n,q; c) with q ≥ 1 following the approach in
[3]. Using the integral representations (2.1) and (2.2) for the polygamma functions and
using ∗ for the Laplace convolution, we get

Fp,m,n,q(x;αp,m,n,q; c) =
∫ ∞

0

e–xt

c2 gp,m,n,q(t;αp,m,n,q) dt,

where

gp,m,n,q(t;αp,m,n,q) =
tm–1(e–ct – 1)

1 – e–t ∗ tn–1(e–ct – 1)
1 – e–t

– αp,m,n,q
tp–1(e–ct – 1)

1 – e–t ∗ tq–1(e–ct – 1)
1 – e–t

=
∫ t

0

(
(t – s)m–1sn–1 – αp,m,n,q(t – s)p–1sq–1)hc(t – s)hc(s) ds,

with

hc(s) =
1 – e–cs

1 – e–s . (3.1)

By a change of variable s → ts, we can recast g(t) as

gp,m,n,q(t;αp,m,n,q)

= tm+n–1
∫ 1

0

(
(1 – s)m–1sn–1 – αp,m,n,q(1 – s)p–1sq–1)hc

(
t(1 – s)

)
hc(ts) ds.

We now break the above integral into two integrals, one from 0 to 1/2 and the other from
1/2 to 1. We make a further change of variable s → (1 – s)/2 for the first one and s →
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(1 + s)/2 for the second one. We now combine them to get

gp,m,n,q(t;αp,m,n,q)

=
(

t
2

)m+n–1 ∫ 1

0
a
(

1 + s
1 – s

; p – q, n – q,αp,m,n,q

)

× (
1 – s2)q–1(1 – s)p–qu(s; t/2, c) ds, (3.2)

where the function a(t; m, n, c) is defined as in Lemma 2.2 and the function u(s; a, c) is
defined as in Lemma 2.3. Note that (1 + s)/(1 – s) ≥ 1 for 0 ≤ s < 1 and p – q > n – q ≥ 1,
hence by Lemma 2.2, there is a unique number 0 < s0 < 1 such that

a
(

1 + s0

1 – s0
; p – q, n – q,αp,m,n,q

)
= 0.

It follows from a(1; p – q, n – q,αp,m,n,q) > 0 and limt→+∞ a(t; p – q, n – q,αp,m,n,q) < 0 that,
for 0 < s ≤ s0,

a
(

1 + s
1 – s

; p – q, n – q,αp,m,n,q

)
≥ 0,

with the above inequality being reversed when s0 ≤ s < 1.
We further note by Lemma 2.3 that the function u(s; t/2, c) is decreasing on s ∈ (0, 1)

when 0 < c ≤ 1 and increasing when c ≥ 1. Thus we conclude that, when 0 < c ≤ 1,

a
(

1 + s
1 – s

; p – q, n – q,αp,m,n,q

)(
1 – s2)q–1(1 – s)p–qu(s; t/2, c)

≥ a
(

1 + s
1 – s

; p – q, n – q,αp,m,n,q

)(
1 – s2)q–1(1 – s)p–qu(s0; t/2, c),

with the above inequality being reversed when c ≥ 1.
Hence, when 0 < c ≤ 1,

gp,m,n,q(t;αp,m,n,q)

≥
(

t
2

)m+n+1

u(s0; t/2, c)
∫ 1

0
a
(

1 + s
1 – s

; p – q, n – q,αp,m,n,q

)(
1 – s2)q–1(1 – s)p–q ds,

with the above inequality being reversed when c ≥ 1.
Note that the integral above is (by reversing the process above on changing variables)

2m+n–1
∫ 1

0

(
(1 – s)m–1sn–1 – αp,m,n,q(1 – s)p–1sq–1)ds = 0,

where the last step follows from the well-known beta function identity

B(x, y) =
∫ 1

0
tx–1(1 – t)y–1 dt =

Γ (x)Γ (y)
Γ (x + y)

, x, y > 0,
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and the well-known fact Γ (n) = (n – 1)! for n ≥ 1. It follows that g(t) ≥ 0 when 0 < c ≤ 1
and g(t) ≤ 0 when c ≥ 1, and this completes the proof for the “if” part of assertions (1)(a)
and (2)(a) of Theorem 1.1 for Fp,m,n,q(x;αp,m,n,q; c) with q ≥ 1.

Now we consider the function Fp,m,n,q(x;αp,m,n,q; c) with q = 0. In this case p = m + n, and
we note that

αm+n,m,n,0 = B(m, n) =
∫ 1

0
sm–1(1 – s)n–1 ds,

and we use this to write

αm+n,m,n,0
tm+n–1(e–ct – 1)

1 – e–t =
∫ t

0

sm–1(t – s)n–1(e–ct – 1)
1 – e–t ds.

It follows that

Fm+n,m,n,0(x;αm+n,m,n,0; c)

=
∫ ∞

0

e–xt

c2

(
tm–1(e–ct – 1)

1 – e–t ∗ tn–1(e–ct – 1)
1 – e–t + αm+n,m,n,0

ctm+n–1(e–ct – 1)
1 – e–t

)
dt

=
∫ ∞

0

e–xt

c2

(∫ t

0
sm–1(t – s)n–1

(
1 – e–cs

1 – e–s · 1 – e–c(t–s)

1 – e–(t–s) –
c(1 – e–ct)

1 – e–t

)
ds

)
dt. (3.3)

Now we note that, for hc(s) defined as in (3.1),

h′
c(s)

hc(s)
= –vc(s),

where

vc(x) =
1

ex – 1
–

c
ecx – 1

.

It is easy to see that v′
c(x) = z(x, c) – z(x, 1) with

z(x, c) =
c2ecx

(ecx – 1)2 .

Now, we have

∂z
∂c

=
f (cx)cecx

(ecx – 1)3 ,

where f (t) = (2 – t)et – (2 + t). It is then easy to see that f (t) ≤ 0 for t ≥ 0, and it follows
that v′

c(x) ≥ 0 when 0 < c ≤ 1 and that v′
c(x) ≤ 0 when c ≥ 1. It follows that (h′

c(s)/hc(s))′ ≤ 0
when 0 < c ≤ 1 and (h′

c(s)/hc(s))′ ≥ 0 when c ≥ 1. We then deduce that, when 0 < c ≤ 1,

h′
c(t – s)

hc(t – s)
–

h′
c(t)

hc(t)
≥ 0

for t ≥ s ≥ 0 with the above inequality being reversed when c ≥ 1. This implies that the
function t 	→ ln hc(t – s) – ln hc(t) is increasing (resp. decreasing) for t > s when 0 < c ≤ 1
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(resp. when c ≥ 1). Thus we obtain that, when 0 < c ≤ 1,

ln hc(s) + ln hc(t – s) – ln hc(t) ≥ lim
t→s+

(
ln hc(s) + ln hc(t – s) – ln hc(t)

)
= ln c,

with the above inequality being reversed when c ≥ 1. One checks easily that this implies
that, when 0 < c ≤ 1,

1 – e–c(t–s)

1 – e–(t–s) ≥ c(1 – e–ct)
1 – e–t ,

with the above inequality being reversed when c ≥ 1. This implies the “if” part of assertions
(1)(a) and (2)(a) of the theorem for Fm+n,m,n,0(x;αm+n,m,n,0; c).

Now we prove assertions (1)(b) and (2)(b) of the theorem. Note that if Fm+n,m,n,0(x; s; c)
is completely monotonic on (0, +∞), then we have

s ≤ (–1)m+n�ψ (m–1)(x; c)�ψ (n–1)(x; c)
(–1)m+n+1�ψ (m+n–1)(x; c)

.

It then follows from (2.3) that we have

lim
x→0+

(–1)m+n�ψ (m–1)(x; c)�ψ (n–1)(x; c)
(–1)m+n+1�ψ (m+n–1)(x; c)

=
αm+n,m,n,0

c
.

Thus, s ≤ αm+n,m,n,0/c. Similarly, one shows that if –Fm+n,m,n,0(x; s; c) is completely mono-
tonic on (0, +∞), then s ≥ αm+n,m,n,0/c and this proves the “only if” part of assertions (1)(b)
and (2)(b) of the theorem.

To prove the “if” part of assertions (1)(b) and (2)(b) of the theorem, it is easy to see that
it suffices to show that –Fm+n,m,n,0(x;αm+n,m,n,0/c; c) is completely monotonic on (0, +∞)
when 0 < c ≤ 1 and that Fm+n,m,n,0(x;αm+n,m,n,0/c; c) is completely monotonic on (0, +∞)
when c ≥ 1.

Similarly to (3.3), we have

Fm+n,m,n,0

(
x;

αm+n,m,n,0

c
; c

)

=
∫ ∞

0

e–xt

c2

(∫ t

0
sm–1(t – s)n–1

(
1 – e–cs

1 – e–s · 1 – e–c(t–s)

1 – e–(t–s) –
(1 – e–ct)
1 – e–t

)
ds

)
dt.

For fixed t > s > 0, define

rs,t(c) =
(1 – e–cs)(1 – e–c(t–s))

1 – e–ct .

Then we have

c
r′

s,t(c)
rs,t(c)

=
cs

ecs – 1
+

c(t – s)
ec(t–s) – 1

–
ct

ect – 1
> 0,

as it is easy to see that the function x 	→ x/(ex – 1) is decreasing for x > 0. It follows that
the function rs,t(c) is an increasing function of c so that rs,t(c) ≤ rs,t(1) when 0 < c ≤ 1 and
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rs,t(c) ≥ rs,t(1) when c ≥ 1. One sees easily that the “if” part of assertions (1)(b) and (2)(b)
of the theorem follows from this.

Lastly, we prove assertion (3) of the theorem. This is similar to our proof above of the
“if” part of assertions (1)(a) and (2)(a) of the theorem for Fp,m,n,q(x;αp,m,n,q; c) with q ≥ 1,
except that we replace αp,m,n,q by βp,m,n,q and recast the function gp,m,n,q(t;βp,m,n,q) similar
to (3.2) as

gp,m,n,q(t;βp,m,n,q)

=
(

t
2

)m+n+1 ∫ 1

0
a
(

1 + s
1 – s

; p – q, n – q,βp,m,n,q

)

× (
1 – s2)q(1 – s)p–q

(
t2

4
(
1 – s2))–1

u(s; t/2, c) ds.

It is then easy to show using the method in the proof of Lemma 2.3 that the function
s 	→ a–2(1 – s2)–1u(s; a, c) is increasing on s ∈ (0, 1) when c > 0, and essentially repeating
the rest of the proof of the “if” part of assertions (1)(a) and (2)(a) of the theorem allows us
to establish assertion (3) of the theorem.
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