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Abstract
In this paper, we adopt conformable fractional integral to develop integral
inequalities such as Minkowski and Hermite–Hadamard inequalities. Our results are
the generalization of the inequalities obtained by Dahmani and Bougoffa cited in the
literature.
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1 Introduction
The theory of fractional integral inequalities plays a vital role in the field of mathemati-
cal sciences. There is one of the most famous inequalities for convex functions known as
Hermite–Hadamard inequality. Many researchers studied this inequality and published
various generalizations and extensions by using fractional integral. We begin with the
Hermite–Hadamard inequality, which is defined as follows: Let f : I ⊆R →R be a convex
function and a, b ∈ I with a < b, then

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
. (1)

Further generalizations and extensions can be found in, e.g., [3, 8, 10, 17]. In [15], the
Riemann–Liouville fractional integrals Iα

a+ and Iα
b– of order α > 0 are defined respectively

by

I
α
a+ f (x) =

1
Γ (α)

∫ x

a
(x – t)α–1f (t) dt

(
x > a,�(α) > 0

)
(2)

and

I
α
b– f (x) =

1
Γ (α)

∫ b

x
(t – x)α–1f (t) dt

(
x < b,�(α) > 0

)
, (3)
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where Γ is the gamma function (see [18]). In [7], the left- and right-sided fractional con-
formable integral operators are respectively defined by

β
I

α
a+ f (x) =

1
Γ (β)

∫ x

a

(
(x – a)α – (t – a)α

α

)β–1 f (t)
(t – a)1–α

dt, x > a (4)

and

β
I

α
b– f (x) =

1
Γ (β)

∫ b

x

(
(b – x)α – (b – t)α

α

)β–1 f (t)
(b – t)1–α

dt, x < b, (5)

where β ∈ C and �(β) > 0. Obviously, if we consider a = 0, b = 0, and α = 1 in (4) and (5),
then we get the Riemann–Liouville fractional integrals (2) and (3) respectively. In [16], Set
et al. defined the following one-sided conformable fractional integral operator:

β
I

αf (x) =
1

Γ (β)

∫ x

0

(
xα – τα

α

)β–1 f (τ )
τ 1–α

dτ . (6)

Recently Rahman et al. [13, 14] established some new inequalities of the Grüss type and
certain Chebyshev-type inequalities for conformable fractional integrals. In [5, 9, 11, 12],
various researchers established generalized k-fractional conformable integral inequalities,
Minkowski and Chebyshev type integral inequalities involving generalized k-fractional
conformable integrals. The Hermite–Hadamard type inequalities for k-fractional con-
formable integrals are found in [6]. A significant contribution by Guessab and Schmeisser
[4] is an investigation of sharp integral inequalities of the Hermite–Hadamard type.

The paper is arranged as follows: In Sect. 2, the main results, which are reverse
Minkowski and related Hermite–Hadamard type integral inequalities, are established by
employing fractional conformable integral operators. The concluding remarks are given
in Sect. 3.

2 Main results
In this section, we use fractional conformable integral operator to develop reverse
Minkowski and Hermite–Hadamard integral inequalities. The reverse Minkowski frac-
tional integral inequality is presented in the following theorems.

Theorem 2.1 Let β ,α > 0, σ ≥ 1, and let Φ , Ψ be two positive functions on [0,∞) such
that, for all x > 0, βIαΦσ (x) < ∞, βIαΨ σ (x) < ∞. If 0 < m ≤ Φ(t)

Ψ (t) ≤ M, t ∈ [0, x], then the
following inequality holds:

(
β
I

αΦσ (x)
) 1

σ +
(
β
I

αΨ σ (x)
) 1

σ ≤ 1 + M(m + 2)
(m + 1)(M + 1)

(
β
I

α(Φ + Ψ )σ (x)
) 1

σ . (7)

Proof Using the condition Φ(t)
Ψ (t) < M, t ∈ [0, x], x > 0, we have

(M + 1)σ Φσ (t) ≤ Mσ (Φ + Ψ )σ (t). (8)
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Multiplying both sides of (8) by 1
Γ (β) ( xα–tα

α
)β–1tα–1 and integrating the resultant inequality

with respect to t from 0 to x, we have

(M + 1)σ

Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tα–1Φσ (t) dt ≤ Mσ

Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tα–1(Φ + Ψ )σ (t) dt,

which can be written as

β
I

αΦσ (x) ≤ Mσ

(M + 1)σ
β
I

α(Φ + Ψ )σ (x).

Hence, it follows that

(
β
I

αΦσ (x)
) 1

σ ≤ M
(M + 1)

(
β
I

α(Φ + Ψ )σ (x)
) 1

σ . (9)

Now, using the condition mΨ (t) ≤ Φ(t), we have

(
1 +

1
m

)
Ψ (t) ≤ 1

m
(
Φ(t) + Ψ (t)

)
,

which yields

(
1 +

1
m

)σ

Ψ σ (t) ≤
(

1
m

)σ (
Φ(t) + Ψ (t)

)σ . (10)

Multiplying both sides of (10) by 1
Γ (β) ( xα–tα

α
)β–1tα–1 and integrating the resultant inequality

with respect to t from 0 to x, we get

(
β
I

αΨ σ (x)
) 1

σ ≤ 1
(m + 1)

(
β
I

α(Φ + Ψ )σ (x)
) 1

σ . (11)

Thus, adding inequalities (9) and (11) yields the desired inequality. �

Theorem 2.2 Let β ,α > 0, β ∈ C, σ ≥ 1, and let Φ , Ψ be two positive functions on [0,∞)
such that, for all x > 0, βIαΦσ (x) < ∞, βIαΨ σ (x) < ∞. If 0 < m ≤ Φ(t)

Ψ (t) ≤ M, t ∈ [0, x], then
the following inequality holds:

(
β
I

αΦσ (x)
) 2

σ +
(
β
I

αΨ σ (x)
) 2

σ

≥
(

(M + 1)(m + 1)
M

– 2
)(

β
I

αΦσ (x)
) 1

σ
(
β
I

αΨ σ (x)
) 1

σ . (12)

Proof From the multiplication of inequalities (9) and (11), we have

(
(M + 1)(m + 1)

M

)(
β
I

αΦσ (x)
) 1

σ
(
β
I

αΨ σ (x)
) 1

σ ≤ ([
β
I

α
(
Φ(x) + Ψ (x)

)σ ] 1
σ
)2. (13)

Now, applying the Minkowski inequality to the right-hand side of (13), we obtain

([
β
I

α
(
Φ(x) + Ψ (x)

)σ ] 1
σ
)2
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≤ [(
β
I

αΦσ (x)
) 1

σ +
(
β
I

αΨ σ (x)
) 1

σ
]2

≤ (
β
I

αΦσ (x)
) 1

σ +
(
β
I

αΨ σ (x)
) 1

σ + 2
(
β
I

αΦσ (x)
) 1

σ
(
β
I

αΨ σ (x)
) 1

σ . (14)

Thus, from inequalities (13) and (14), we get the desired inequality (12). �

Lemma 2.3 ([2]) Let f be a concave function on [a, b], then the following inequalities hold:

f (a) + f (b) ≤ f (b + a – x) + f (x) ≤ 2f
(

a + b
2

)
. (15)

Theorem 2.4 Let β ,α > 0, β ∈ C, r, s > 1, and let Φ and Ψ be two positive functions on
[0,∞). If Φr and Ψ s are two concave functions on [0,∞), then the following inequality
holds:

2–r–s(Φ(0) + Φ
(
xα

))r(
Ψ (0) + Ψ

(
xα

))s(β
I

α
(
xαβ–α

))2

≤ β
I

α
(
xαβ–αΦr(xα

))
β
I

α
(
xαβ–αΨ s(xα

))
. (16)

Proof Since the functions Φr and Ψ s are concave on [0,∞), therefore for any x > 0, α > 0
and by Lemma 2.3, we have

Φr(0) + Φr(xα
) ≤ Φr(xα – tα

)
+ Φr(tα

) ≤ 2Φr
(

xα

2

)
(17)

and

Ψ s(0) + Ψ s(xα
) ≤ Ψ s(xα – tα

)
+ Φs(tα

) ≤ 2Ψ s
(

xα

2

)
. (18)

Multiplying both sides of (17) and (18) by 1
Γ (β) ( xα–tα

α
)β–1tαβ–1, t ∈ (0, x), and integrating

the resultant inequalities from 0 to x, we get

Φr(0) + Φr(xα)
Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tαβ–1 dt

≤ 1
Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tαβ–1Φr(xα – tα
)

dt

+
1

Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tαβ–1Φr(tα
)

dt

≤ 2Φr( xα

2 )
Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tαβ–1 dt (19)

and

Ψ s(0) + Ψ s(xα)
Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tαβ–1 dt

≤ 1
Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tαβ–1Ψ s(xα – tα
)

dt
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+
1

Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tαβ–1Ψ s(tα
)

dt

≤ 2Ψ s( xα

2 )
Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tαβ–1 dt. (20)

Taking xα – tα = yα , we have

1
Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tαβ–1Φr(xα – tα
)

dt = β
I

α
(
xαβ–αΦr(xα

))
(21)

and

1
Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tαβ–1Ψ s(xα – tα
)

dt = β
I

α
(
xαβ–αΨ s(xα

))
. (22)

Thus the use of (19) and (21) yields

(
Φr(0) + Φr(xα

))(β
I

α
(
xαβ–α

))

≤ 2
(
β
I

α
(
xαβ–αΦr(xα

))) ≤ 2Φr
(

xα

2

)(
β
I

α
(
xαβ–α

))
. (23)

Similarly, the use of (20) and (22) yields

(
Ψ s(0) + Ψ s(xα

))(β
I

α
(
xαβ–α

)) ≤ 2
(
β
I

α
(
xαβ–αΨ s(xα

)))

≤ 2Ψ s
(

xα

2

)(
β
I

α
(
xαβ–α

))
. (24)

From inequalities (23) and (24), it follows that

(
Φr(0) + Φr(xα

))(
Ψ s(0) + Ψ s(xα

))(
β
I

α
(
xαβ–α

))2

≤ 4
(
β
I

α
(
xαβ–αΦs(xα

)))(
β
I

α
(
xαβ–αΨ s(xα

)))
. (25)

Since Φ and Ψ are positive functions, therefore for any x > 0, α > 0, r ≥ 1, and s ≥ 1, we
have

(
Φr(0) + Φr(xα)

2

) 1
r
≥ 2–1(Φ(0) + Φ

(
xα

))
(26)

and

(
Ψ s(0) + Ψ s(xα)

2

) 1
s
≥ 2–1(Ψ (0) + Ψ

(
xα

))
. (27)

Hence, it follows that

(
Φr(0) + Φr(xα)

2

)(
β
I

α
(
tαβ–α

)) ≥ 2–r(Φ(0) + Φ
(
xα

))r(β
I

α
(
tαβ–α

))
(28)
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and

(
Ψ s(0) + Ψ s(xα)

2

)(
β
I

α
(
tαβ–α

)) ≥ 2–s(Ψ (0) + Ψ
(
xα

))s(β
I

α
(
tαβ–α

))
. (29)

From inequalities (28) and (29), we obtain

(Φr(0) + Φr(xα))(Ψ s(0) + Ψ s(xα))
4

(
β
I

α
(
tαβ–α

))2

≥ 2–r–s(Φ(0) + Φ
(
xα

))r(
Ψ (0) + Ψ

(
xα

))s(β
I

α
(
tαβ–α

))2. (30)

Thus, by combining (25) and (30), we get the desired result. �

Theorem 2.5 Let β ,μ,α > 0, β ,μ ∈ C, r > 1, s > 1, and let Φ , Ψ be two positive functions
on [0,∞). If Φr and Ψ s are two concave functions on [0,∞), then we have the following
inequality:

22–r–s(Φ(0) + Φ(x)
)r(

Ψ (0) + Ψ (x)
)s(β

I
α
(
xαμ–α

))2

≤
[

Γ (μ)
Γ (β)

μ
I

α
(
xαβ–αΦr(xα

))
+ β

I
α
(
xμα–αΦr(xα

))]

×
[

Γ (μ)
Γ (β)

μ
I

α
(
xαβ–αΨ s(xα

))
+ β

I
α
(
xμα–αΨ s(xα

))]
. (31)

Proof Multiplying both sides of inequalities (17) and (18) by 1
Γ (β) ( xα–tα

α
)β–1tμα–1, t ∈ (0, x)

and then integrating the resultant inequalities with respect to t from 0 to x, we have

Φr(0) + Φr(xα)
Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tμα–1 dt

≤ 1
Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tμα–1Φr(xα – tα
)

dt

+
1

Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tμα–1Φr(tα
)

dt

≤ 2Φr( xα

2 )
Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tμα–1 dt (32)

and

Ψ s(0) + Ψ s(xα)
Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tμα–1 dt

≤ 1
Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tμα–1Ψ s(xα – tα
)

dt

+
1

Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tμα–1Ψ s(tα
)

dt

≤ 2Ψ s( xα

2 )
Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tμα–1 dt. (33)



Nisar et al. Journal of Inequalities and Applications        (2019) 2019:217 Page 7 of 8

Now, using xα – tα = yα , we have

1
Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tμα–1Φr(xα – tα
)

dt =
Γ (μ)
Γ (β)

μ
I

α
(
xαβ–αΦr(xα

))
(34)

and

1
Γ (β)

∫ x

0

(
xα – tα

α

)β–1

tμα–1Ψ s(xα – tα
)

dt =
Γ (μ)
Γ (β)

μ
I

α
(
xαβ–αΨ s(xα

))
. (35)

Thus, from (32) and (34), we can write

(
Φr(0) + Φr(xα

))
β
I

α
(
xαμ–α

) ≤ Γ (μ)
Γ (β)

μ
I

α
(
xαβ–αΦr(xα

))
+ β

I
α
(
xαμ–αΦr(xα

))

≤ 2Φr
(

xα

2

)
β
I

α
(
xαμ–α

)
. (36)

Similarly, from inequalities (33) and (35), we obtain

(
Ψ s(0) + Ψ s(xα

))
β
I

α
(
xαμ–α

) ≤ Γ (μ)
Γ (β)

μ
I

α
(
xαβ–αΨ s(xα

))
+ β

I
α
(
xαμ–αΨ s(xα

))

≤ 2Ψ s
(

xα

2

)
β
I

α
(
xαμ–α

)
. (37)

From (36) and (37), it follows that

(
Φr(0) + Φr(xα

))(
Ψ s(0) + Ψ s(xα

))(
β
I

α
(
xαμ–α

))2

≤
[

Γ (μ)
Γ (β)

μ
I

α
(
xαβ–αΦr(xα

))
+ β

I
α
(
xαμ–αΦr(xα

))]

×
[

Γ (μ)
Γ (β)

μ
I

α
(
xαβ–αΨ s(xα

))
+ β

I
α
(
xαμ–αΨ s(xα

))]
. (38)

Since Φ and Ψ are positive functions, therefore for any x > 0, α > 0, r ≥ 1, s ≥ 1, we have

Φr(0) + Φr(xα)
2

β
I

α
(
xαμ–α

) ≥ 2–r(Φr(0) + Φr(xα
))rβ

I
α
(
xαμ–α

)
(39)

and

Ψ s(0) + Ψ s(xα)
2

β
I

α
(
xαμ–α

) ≥ 2–s(Ψ s(0) + Ψ s(xα
))sβ

I
α
(
xαμ–α

)
. (40)

Thus from (39) and (40) it follows that

(Φr(0) + Φr(xα))(Ψ s(0) + Ψ s(xα))
4

[
β
I

α
(
xαμ–α

)]2

≥ 2–r–s(Φr(0) + Φr(xα
))r(

Ψ s(0) + Ψ s(xα
))s[β

I
α
(
xαμ–α

)]2. (41)

Combining inequalities (38) and (41), we get the desired proof. �

Remark 1 Letting β = μ in Theorem 2.5, we obtain Theorem 2.4.
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3 Concluding remarks
In this paper, we established Minkowski and Hermite–Hadamard inequalities for con-
formable fractional integral operator. If we consider α = 1 throughout the paper, then the
obtained results will reduce to the said inequalities obtained by Dahmani [2]. Similarly, if
we consider α = β = 1, then all the results will lead to the classical inequalities obtained
by [1].
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